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Blood flow measurements with magnetic resonance 
phase velocity mapping 
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I. Introduction 

Hydrogen-based magnet ic resonance (MR) 
imaging provides st ructural , runctional, and 
fl ow information non-invasivcly. The techn ique is 
based on the interact ion or the magnetic moment 

• Tel.: + 12166875396; fax: + 12166879220. 
E·mail ilddress: g.chulzim;!vroudiS@CSuohio.edu 

of hydrogen nuclei (protons) with applied mag
netic fields. If a mass of protons is placed inside 
a static magnetic field , the magnetic moments of 
the protons lend to align pa rallel and anti-parallel 
with the direction of the stat ic fie ld. The protons 
inside the magnetic field are in a complex rota
tional motion, called precession , with a frequency 
that depends on the st rength or the magnetic field . 
Using radio-rrequeney pulses with a rrequeney 



equal to this precession frequency, the protons can 
be energetically excited. While they return to equi
librium, they emit a signal that is used to recon
struct an image. By applying a combination of 
magnetic field gradients in the x-, y-, and z-direc
tion (by convention the frequency encoding direc
tion, the phase encoding direction, and the slice 
selection direction, respectively (Fig. 1)), the posi
tion of the excited protons can be spatially en
coded. The raw data is in the frequency domain 
(k-space). Every time the protons are excited and 
then return to equilibrium, the received signal fills 
one or more lines of k-space. After the k-space is 
filled, an inverse two-dimensional Fourier trans
form reconstructs the image in the space domain. 

An important feature of MR is its ability to 
measure flow velocity in any spatial direction using 
a technique called MR phase velocity mapping 
(PVM). By applying the proper bipolar magnetic 
field gradients (Fig. 1), the velocity of the protons 
can be encoded in the phase of the received signal 
[1]. This phase-velocity encoding follows a linear 
equation:  Z TE  
/ ¼ ðcM1Þv ¼ c GðtÞt dt v ¼ ðcAgT Þv ð1Þ 

0 

where / is the phase of the received signal, c is the 
gyromagnetic ratio [Hz/T], v is the velocity (as-
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Fig. 1. A simplistic diagram of an unsegmented gradient-echo 
MR sequence with a bipolar gradient (shaded area) for velocity 
encoding in the slice selection direction (a: flip angle, Ag: bipolar 
gradient single lobe area, T: time between the lobe centers in the 
bipolar gradient). 

sumed constant) [m/s], M1 is the first moment of 
the gradient waveform [T s2/m] at the echo time 
(TE), G(t) is the magnetic field gradient [T/m], 
Ag is the ‘‘area’’ of each lobe of the bipolar gradi
ent [(T/m) s], and T is the time between the centers 
of the two lobes of the gradient [s]. The magnitude 
of the acquired signal is used to reconstruct the 
magnitude (structural) image, whereas the phase 
of the signal can be used to reconstruct the phase 
(velocity) map. 

The ability of MR to characterize and quantify 
flow has found wide application in the clinical field 
for blood flow measurements in the aorta, pul
monary artery, venae cavae, ventricles, and vari
ous arteries and veins [2–9]. MR has also been of 
value in non-biomedical applications, such as to 
characterize the velocity profiles of pure fluids 
and suspensions [10], to study flow in porous med
ia [11], to visualize flow in fixed-bed reactors [12], 
and as a rheological technique [13] and viscometer 
[14]. Studies have shown that conventional unseg
mented k-space MR PVM is accurate and precise, 
with errors of less than 10% under both steady and 
pulsatile flow conditions [15–20]. Clinical studies 
evaluating the technique for blood flow character
ization or quantification found good correlations 
with Doppler ultrasound and flowmetric tech
niques [6,16,21]. 

This review will focus on the application of MR 
PVM to two clinical problems: the quantitative 
diagnosis of heart valve regurgitation and the eval
uation of the energetic performance of the total 
cavo-pulmonary connection. Recent studies on 
the potential of MR PVM for rapid velocity acqui
sitions will also be discussed. 

2. Heart valve regurgitation 

The human heart has four one-way valves that 
regulate blood circulation. Two of these valves, 
the aortic and the mitral, are located in the left side 
of the heart (Fig. 2). The aortic valve is located be
tween the left ventricle and the aorta, and allows 
blood to flow during systole from the heart to all 
arteries that supply blood to organs and muscles. 
Under normal conditions, the aortic valve is com
pletely closed during diastole. The mitral valve is 
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Fig. 2. A schematic of the left side of the heart. 

located between the left atrium and the left ventri
cle, and allows blood to fill the left ventricle during 
diastole. Under normal conditions, the mitral 
valve is completely closed in systole. However, be
cause of a variety of reasons, these valves may not 
close completely allowing some blood to flow in 
the opposite direction. This disease is called valvu
lar regurgitation and has a direct effect on cardiac 
function. In severe cases, it leads to death if it re
mains untreated. 

Knowledge of the severity of regurgitation is 
diagnostically very important for proper patient 
management and for optimizing the time for valve 
replacement surgery. In the past, a number of clin
ical approaches have been used to diagnose the 
severity of regurgitation. Unfortunately, these ap
proaches usually lack reliability. Angiography [22] 
has been traditionally used to diagnose the disease, 
but it is invasive, only semi-quantitative, and in
volves radiation exposure. A variety of echocar
diographic and MR techniques [23–29] have also 
been evaluated to assess regurgitation focusing 
on the jet side of the regurgitant valve. Unfortu
nately, these techniques are accompanied by tech
nical limitations. One of the main problems is that 
they do not provide information about the main 
variable of interest, which is the volume of blood 
that regurgitates through the valve. 

The regurgitant volume has been identified as 
an important index of the severity of regurgitation. 

The first approach to determine the regurgitant 
volume was through volumetric MR imaging tech
niques [21,30], from the difference between the left 
and right ventricular stroke volumes. Although the 
combination of left and right ventricular volumes 
with systolic and diastolic aortic and pulmonic 
flows can provide an estimate for the regurgitant 
volumes of the heart valves, this approach is not 
reliable in the presence of multi-valvular disease. 
Furthermore, the volumetric techniques estimate 
the regurgitant volume by combining measure
ments at different sites in the heart and not focus
ing on the site of interest, which is the regurgitant 
valve. 

One of the first promising approaches to di
rectly measure the mitral regurgitant volume was 
the proximal isovelocity surface area (PISA) meth
od [31]. Although PISA can provide an estimate of 
the regurgitant volume, the reliability and accu
racy of the method can be severely affected by geo
metric uncertainties and by the complex nature of 
the flow field in the left ventricle due to the inter
action of the regurgitant flow field with the aortic 
outflow field [32]. 

3. Quantification of the aortic regurgitant volume 
with MR PVM 

MR PVM can provide accurate flow quantifica
tion in a tube from through-plane fluid velocity 
measurements. Since the ascending aorta is a tube, 
it is possible to quantify aortic blood flow by plac
ing an imaging slice perpendicular to the long-axis 
of the aorta and measuring the through-plane 
velocity (Fig. 3). The instantaneous aortic flow 
rate can be calculated by integrating this velocity 
over the aortic cross-sectional area. Then, an inte
gration of this flow rate over diastole can finally 
provide the aortic regurgitant volume. 

Initial in vivo investigations [33] on the clinical 
potential of this single slice MR PVM method 
showed the presence of high negative flow rates 
during diastole in the ascending aorta, indicating 
possible aortic regurgitation. Subsequent clinical 
studies [34] showed a fair correlation between the 
MR PVM regurgitant volume results and quali
tative classification using aortography. With a 



Fig. 3. The principle of the single slice method to quantify the 
aortic regurgitant flow. The reverse diastolic flow through the 
slice will primarily flow through the regurgitant aortic valve 
(LV: left ventricle). 

10 mm thick transverse slice placed in the ascend
ing aorta at a level 1 cm below the innominate ar
tery, the MR PVM results of the regurgitant 
volume showed good correlation with those using 
the ventricular volumetric MR method (r = 0.97) 
[21]. The reproducibility of the MR PVM data 
was also good (r > 0.97) [21]. The rather qualita
tive evaluation of the single slice technique contin
ued using thinner slices (5 mm) in the ascending 
aorta showing small interobserver and intraob
server variations in measuring the regurgitant frac
tion (the ratio of the aortic regurgitant volume to 
the left ventricular stroke volume). The MR 
PVM results showed good correlation with those 
from volumetric MR measurements and parallel 
trends with echocardiographic or aortographic 
grading of aortic regurgitation [35]. Similarly good 
correlations between MR PVM results and volu
metric MR results (r = 0.97 for the stroke volume) 
were found when the imaging slice was moved to 
the aortic valve level [36]. These studies showed 
that MR PVM has high potential in quantifying 
the aortic regurgitant volume. However, because 
of the variety of slice location and imaging param
eters, the effects of a number of functional, fluid 

mechanical, and technical factors on the reliability 
of the technique remained unknown. Factors such 
as the aortic compliance, the coronary artery flow 
and the flow environment in the vicinity of the 
regurgitant orifice could have serious effects on 
the accuracy of the regurgitant flow measure
ments. These effects were studied both in vitro 
and in vivo. 

In vitro [17], measurements were performed 
with a slice perpendicular to the long axis of a 
compliant model of the aortic root (Fig. 4), includ
ing a regurgitant aortic valve and the coronary 
arteries. The most accurate measurements (closest 
agreement between the measured and true flow 
values) were taken when the slice was placed be
tween the aortic valve annulus and the coronary 
ostia (r 2 = 0.995) (Fig. 5). When the slice was 
placed beyond the coronary ostia, coronary flow 
and aortic compliance (Fig. 6) negatively affected 
the accuracy of the measurements. The errors in 
the measurements (with respect to the known 
true flow values) were found to closely follow 
the magnitude of coronary flow and aortic com
pliance. 

Subsequently, the single slice technique was 
implemented in four healthy volunteers and 19 pa
tients with aortic regurgitation, varying from mild 
to severe [8]. In 13 of the patients, the slice was 
placed at three locations: between the aortic valve 

coronary 
artery valve 

leaflet 

imaging
slices

imaging 
slices 

regurgitantregurgitant 
orificeorifice 

Fig. 4. A schematic of the compliant in vitro model of the aortic 
root. The imaging slice was positioned at different locations to 
investigate for the effect of coronary artery flow, aortic 
compliance, and the flow environment in the vicinity of the 
valve on the single slice measurement of the regurgitant flow. 
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Fig. 7. Measured aortic flow waveform with an imaging slice 
placed in the ascending aorta of a patient of aortic regurgita
tion. There is considerable negative (reverse) flow activity 
during diastole, indicative of flow through the regurgitant valve. Fig. 5. In vitro MR PVM steady regurgitant flow measure

ments with a slice placed 0.5 cm from the regurgitant orifice 
(between the valve and the coronary ostia). 

flow waveform in the case of a patient with regur
gitation. The measured regurgitant volume in all 
healthy subjects was zero. The MR PVM results 
correlated well with the angiographic and echocar
diographic grading data. The repeatability of the 
MR PVM results was excellent and interobserver 
variability very small (r 2 = 0.987, p-value = 0.455). 
The measured regurgitant volume decreased as the 
distance of the slice from the aortic valve in
creased, due to aortic compliance, in agreement 
to the previous in vitro results. Even for severe 
severity cases of regurgitation, the difference in 
the measured regurgitant volume between the clos
est and the most distant location from the aortic 
valve was as high as 30%. Close to the valve, blood 
flow acceleration did not affect the accuracy of the 
velocity measurements. Because of the difficulty in 
determining the in vivo accuracy of the regurgitant 
volume measurements (due to the absence of any 
other technique to provide such data), the reliabil
ity of the single slice technique was investigated by 
determining its precision [20]. In three healthy vol
unteers and seven patients with aortic regurgita
tion, single slice measurements in the ascending 
aorta were acquired twice. Comparison between 
the flow volume results from these two measure
ments showed high levels of precision (r 2 = 
0.993), confirmed statistically. The mean difference 
in the measured flow volumes between the two ser
ies of measurements was <1 ml/beat. 
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Fig. 6. MR PVM measured aortic regurgitant volume (ARV) 
as a function of slice location, for actual ARVs of 32, 35, 40 and 
45 ml/cycle. The measured ARV decreases as the distance 
between the imaging slice and the valve increases because of the 
effect of aortic compliance. 

and the coronary ostia; at the sinotubular junc
tion; and 2 cm above the sinotubular junction. In 
the remaining six patients, only one measurement 
was taken as close as technically possible to the 
aortic valve. The MR PVM measurements of the 
regurgitant volume were compared with angio
graphic and echocardiographic grading of aortic 
regurgitation. Fig. 7 shows the measured aortic 



The above results suggest that the most accu
rate measurements of the regurgitant volume 
should be expected with a slice as close to the valve 
as technically possible. However, one of the prob
lems of this strategy is the fact that the valve annu
lus moves during the cardiac cycle. This motion 
may affect the reliability of proper slice placement 
and may introduce errors in the velocity measure
ments. Nevertheless, newer corrective techniques 
have the potential to reduce or even eliminate 
these problems. One of these techniques involves 
an adaptation of slice position according to heart 
motion [37]. The basal cardiac plane is first 
marked and the slice position (offset and angula
tion) is corrected based on the position of this 
basal plane throughout the cardiac cycle. The mea
sured through-plane velocities are corrected to ac
count for this basal motion. A preliminary clinical 
study implementing this corrective technique in 12 
patients with aortic regurgitation [38] showed that 
the aortic annulus moved approximately 8 mm in 
the through-slice direction. The difference in the 
measured regurgitant fraction between implement
ing and not implementing this corrective technique 
was approximately 60% for mild regurgitation, 
15% for moderate regurgitation, and 7% for severe 
regurgitation. 

The ability of MR PVM to quantify the flow 
rate in a vessel by measuring the through-slice 
velocity component has provided a unique method 
to quantify the aortic regurgitant volume. Knowl
edge on proper slice positioning combined with the 
development of techniques to correct for cardiac 
motion are contributing to establishing this ap
proach as the diagnostic method of choice. 

4. Quantification of the mitral regurgitant volume 
with MR PVM 

The quantification of the mitral regurgitant vol
ume is more complicated than that of the aortic 
regurgitant volume. Although a single imaging 
slice placed in the ascending aorta is adequate to 
measure the regurgitant flow in aortic regurgita
tion, the same is not true in mitral regurgitation, 
because of the interaction between the aortic out
flow and the regurgitant flow in the vicinity of 

the mitral valve. In an indirect way, Fujita et al. 
[39] quantified the mitral regurgitant volume from 
the difference between the mitral diastolic inflow 
volume (measured with a single slice placed in 
the mitral valve) and the aortic systolic flow vol
ume (also measured with a single slice in the aortic 
root). The regurgitant fraction correlated well with 
echocardiographic grading of mitral regurgitation 
(r = 0.87). The limitation of this approach is that 
it is not valid if the patient has both mitral and 
aortic regurgitation. 

Since measuring the regurgitant flow with a sin
gle slice is more complicated and less reliable in the 
case of mitral regurgitation compared to the case 
of aortic regurgitation, a more sophisticated meth
od is required. As mentioned previously, MR 
PVM provides measurements of all three spatial 
components of the velocity vector in an imaging 
slice. Then, by acquiring a number of contiguous 
imaging slices with all three components of the 
velocity measured, a control volume in a form of 
an imaginary box surrounding the orifice can be 
considered (Fig. 8). The velocity through the faces 

Mitral Valve 

Regurgitant 
Flow 

Control Volume Imaging 
Boundary Slices 

Control Volume Inflow 

Fig. 8. The multi-slice control volume method. A number of 
contiguous imaging slices are positioned in the mitral valve 
region and all three spatial velocity components are measured. 
Then, because of the principle of mass conservation, the net 
inflow through the drawn boundaries of the control volume 
(shown here as a two-dimensional drawing; in reality it is a 
three-dimensional imaginary box) will be equal to the regurgi
tant flow through the valve orifice. 



of this control volume can be integrated over the 
total inflow area to calculate the flow rate. Based 
on the principle of mass conservation the net in
flow into the control volume will be equal to the 
flow through the regurgitant orifice. 

The control volume method was initially evalu
ated by Walker et al. [40] to quantify flow through 
an orifice in vitro. A very good agreement was 
found between the measured and the true flow 
rates (r = 0.99). Subsequently, a detailed in vitro 
study [18] was performed to investigate for the ef
fects of control volume size, valve geometry, and 
aortic outflow on the accuracy of the method in 
the quantification of the regurgitant flow. The re
sults showed that a properly sized control volume 
whose boundary voxels excluded the region of flow 
acceleration and velocity aliasing too close to the 
orifice provided accurate measurements of the 
regurgitant flow (Fig. 9). A small control volume 
provided erroneous results, because the control 
volume boundaries were in the region of flow 
acceleration and velocity aliasing. A very large 
control volume generally provided inaccurate re
sults due to reduced velocity sensitivity far from 
the orifice. Aortic outflow, orifice shape, and valve 
geometry did not affect the accuracy of the control 
volume measurements [18]. The effects of the mo
tion of the mitral valve during the cardiac cycle 
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Fig. 9. Measured regurgitant flow waveform using different 
control volume (CV) heights for a severe mitral regurgitation 
experimental simulation (mitral regurgitant volume (MRV) = 
55 ml/beat). From the orientation of the slices in Fig. 8, the CV 
height is controlled by the number of slices included in the 
calculation. 

on the accuracy of the control volume measure
ments are significant [41]. Correction must be per
formed to account for the velocity of motion of the 
valve leaflets. The problem of cardiac motion may 
be eliminated with corrective techniques, such as 
the one described in the case of aortic regurgita
tion that involves an adaptation of slice position 
based on the motion of the basal cardiac plane 
[37]. This approach was implemented in a preli
minary study in three patients with mitral regurgi
tation [38]. The mitral regurgitant volume was 
determined from the difference between the mitral 
diastolic inflow volume and the aortic systolic flow 
volume. The mitral annulus moved approximately 
12 mm in the through-slice direction. The differ
ence in the regurgitant volume between imple
menting and not implementing the corrective 
technique was approximately 19%. 

By investigating the effects of additional physi
ological factors (such as the motion of the leaflets, 
the presence of the chordae, etc.) and developing 
/implementing proper motion corrective proce
dures, the control volume method has the poten
tial to be clinically established as a diagnostic 
approach in mitral regurgitation. With the devel
opment of ultra-fast MR PVM acquisition tech
niques, the time to acquire all three components 
of the velocity of blood in a number of slices will 
be short enough to allow a complete examination 
within a reasonable amount of time. 

5. Total cavo-pulmonary connection 

Congenital heart disease is the most prevalent 
type of heart disease among children, commonly 
resulting in single-ventricle physiology. Surgical 
repair is essentially the only survival option. The 
initial procedure was the Fontan operation per
formed in 1971 [42], which involved a connection 
of the superior vena cave (SVC) to the distal end 
of the right pulmonary artery (RPA), and a con
nection of the right atrial appendage to the proxi
mal end of the RPA. Since 1971, the atrio
pulmonary Fontan procedure has been modified 
to improve the flow energetics of the new circula
tion. Currently, the most promising (and 
preferred) modification of the initial Fontan oper
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Fig. 10. A simplistic schematic of the total cavo-pulmonary 
connection. The superior vena cava (SVC) and the inferior vena 
cava (IVC) are surgically connected to the right pulmonary 
artery (RPA) and the left pulmonary artery (LPA). Blood flows 
from the SVC and IVC to the lungs via RPA and LPA. 

ation is the total cavo-pulmonary connection 
(TCPC) (Fig. 10), which involves a (multi-stage) 
surgical connection of the SVC and the inferior 
vena cava (IVC) directly to the RPA [43]. The pro
cedure shows evidence of improved performance 
over the atrio-pulmonary connections. 

The superiority of TCPC over the atrio-pul
monary connection is partially due to the more 
streamlined flow patterns in TCPC, with less flow 
disturbances and, thus, lower fluid energy losses 
[43–46]. Optimization of the TCPC has been inves
tigated through several in vitro, numerical, and in 
vivo studies, focusing on the reduction of the en
ergy losses of blood flow through the connection 
and providing proper blood flow distribution to 
the lungs. The optimal design should prevent 
strong flow collisions, allowing at the same time 
adequate IVC flow to both the RPA and the 
LPA, as shown by in vitro and numerical studies 
[47–49]. One way to avoid a direct caval flow col
lision (and conserve energy) is to introduce an off
set between the points of SVC and IVC connection 
with the RPA, as shown in vitro and in vivo [50– 
53]. Addition of flaring at the connection site fur
ther improves the energetics of the system reducing 
the energy losses as much as 68% due to smoother 
transition of SVC and IVC flows to the pulmonary 
arteries [48,51–53]. 

To evaluate the energetics of the TCPC, the 
mechanical energy losses can be calculated via a 
control volume analysis (according to which the 
‘‘energy loss’’ is equal to ‘‘mechanical energy IN’’ 

minus ‘‘mechanical energy OUT’’). The practical 
limitation of this approach is that it requires inva
sive pressure measurements (to determine the po
tential part of the mechanical energy). This 
requirement makes the control volume approach 
less appealing clinically. A non-invasive technique 
to provide the energy loss in the TCPC is pref
erable. 

MR techniques including MR PVM have been 
used to study Fontan cases [52–58] offering signif
icant information that may assist in post-operative 
patient monitoring. Clinical TCPC studies have 
provided quantitative information for the distribu
tion of blood from the SVC and IVC to the LPA 
and RPA [54,56]. The advantage of MR PVM 
being able to measure multi-directional blood 
velocity components [52,53,57,58] has provided 
the ability to generate dynamic velocity vector 
maps in vitro [52] and in patients [53,57,58], show
ing (qualitatively) the fluid dynamic superiority 
(more unidirectional and less variable flow) of 
the TCPC over the atrio-pulmonary connection 
[57] and the importance of the presence of caval 
offset and flaring at the connection [53,54]. The 
accuracy of the information in the MR velocity 
vector plots is high as shown in vitro by comparing 
the MR PVM vector plots (Fig. 11) with those 

Fig. 11. A velocity vector plot in a model of the total cavo
pulmonary connection, constructed by combining two of the 
three measured spatial velocity components with MR PVM. 



from digital particle image velocimetry and with 
traditional particle flow visualization data [52]. 
There was agreement in the main features of the 
flow field (stagnation points, flow separation 
points, regions with secondary flows, etc.). A pre
liminary in vivo study in twelve TCPC patients 
using three-directional MR PVM provided blood 
velocity vector plots with clear visualization of 
fluid mechanic features (streamlined flow, flow 
swirling) [53]. The in vivo findings were in general 
agreement with previously described in vitro re
sults [51,52]. 

In addition to the qualitative flow field informa
tion that MR PVM provides, the three-directional 
velocity data may be used to calculate the viscous 
dissipation, which, according to fluid mechanics 
theory, is equal to the mechanical energy loss in 
a flow field such as that in the TCPC [59]. The 
combination of the semi-qualitative information 
from the velocity vector-plots and the quantitative 
information on the energy loss can provide better 
monitoring of the success of a specific TCPC de
sign post-operatively as well as guide cardiologists 
and cardiac surgeons to make proper treatment 
decisions. 

6. Rapid magnetic resonance phase velocity mapping 

Conventional unsegmented k-space MR PVM 
is performed using the gradient-echo sequence 
shown in Fig. 1, with a bipolar velocity-encoding 
gradient in the desired direction for velocity mea
surements. Because of the arterial flow pulsatility, 
multiple measurements are acquired during the 
cardiac cycle. The MR scanner can be triggered 
by the electrocardiogram (ECG) signal of the 
human subject to identify the beginning of the car
diac cycle. Then, a number of acquisitions are per
formed at different time points (time phases) 
throughout the cycle. Only one line of k-space 
for each time phase is acquired per heart beat. 
As a result, the acquisition of a single velocity 
measurement typically requires a few minutes 
(depending on heart rate and imaging parameters). 
Since blood flow quantification is usually only part 
of a complete cardiac MR examination and since-
new clinical protocols to diagnose valvular disease 

and the energetics of TCPC involve multiple veloc
ity acquisitions [18,41], the unsegmented k-space 
technique becomes less practical clinically. 

With the development of rapid imaging se
quences, a segment of multiple k-space lines (in
stead of a single line) can be acquired very 
rapidly per time phase. Consequently, the acquisi
tion can be performed in seconds instead of min
utes, with high temporal and spatial resolution 
[60–64]. If velocity-encoding gradients are added 
to the regular sequence, the flow velocity can be 
measured rapidly. Systematic in vitro [65,66] and 
in vivo [67] studies have shown that segmented 
k-space MR PVM is very accurate in quantifying 
flow from through-plane velocity measurements, 
under a variety imaging parameters. The in vitro 
study involved flow quantification from through-
plane velocity data in straight tubes, under a vari
ety of steady and pulsatile flow conditions. The 
effect of the number of k-space lines per segment 
was studied by examining the unsegmented se
quence and three segmented k-space schemes, with 
five [65], seven [66] and nine [65] k-space lines per 
segment. Results showed that both segmented se
quences provided very accurate flow quantifica
tion (errors < 5%) under both steady and 
pulsatile flow conditions (p-value � 0.05). Flow 
measurements in the human ascending aorta using 
the unsegmented sequence and the segmented se
quence with seven and nine lines per segment 
[67] showed very close agreement (p-value � 0.05) 
between the two segmented and the unsegmented 
technique. These results suggest that ultra-fast 
MR PVM has great potential for blood flow 
quantification clinically. 

7. Conclusion 

This review focused on magnetic resonance 
phase velocity mapping as a velocimetric and flow-
metric technique. Specific clinical problems, such 
as the diagnosis of heart valve regurgitation and 
the evaluation of the energetic performance of 
the total cavo-pulmonary connection, for which 
MR PVM has great potential as a diagnostic and 
monitoring tool, were discussed. The potential 
for ultra-fast acquisitions was finally addressed. 



As the clinical interest in more detailed quantita
tive information about blood flow increases, the 
need for techniques such MR PVM becomes more 
apparent. This need combined with the continuous 
progress in MR technology promises even broader 
applications of MR PVM not only in the clinical 
but also in non-biomedical fields. 
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