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We give simple analytic and numerical demonstrations showing that the interference structure in the Mie ex-
tinction efficiency of a sphere is caused by the interference of the light waves that are diffracted and transmit-
ted in the near-forward direction.

When the Mie extinction efficiency for a spherical particle
is calculated and graphed as a function of its radius a for a
fixed wavelength A of the incident light, the resulting
graph possesses both an interference structure and a rip-
ple structure. The ripple structure is caused by scatter-
ing resonances of individual partial waves in the multipole
expansion of the scattered fields. The interference struc-
ture has been interpreted as being caused by the interfer-
ence either of (i) the forward-scattered light and the
incident beam'13 or (ii) the diffracted and the transmitted
light waves in the near-forward direction.4 6

Recently there has been renewed interest in the inter-
ference structure. 7 In this paper our purposes are to
comment on the connection between the two interpreta-
tions of the interference structure and to give a simple
demonstration of it by employing the diffraction-plus-
transmission interpretation.

When plane-polarized electromagnetic waves of wave-
length A are scattered by a sphere of radius a and refrac-
tive index n located at the origin of coordinates, the total
electric field outside the sphere is

Eoutside(r, t) = Eincident(r, t) + Escattered(r, t)' (1)

where the field of the incident plane wave is

Eincident(r,t) = Ei2x exp(ikz - iot) (2)

and the far-zone asymptotic form of the spherically out-
going scattered field is

lim Ecattered(r, t) = E(O, )exp(ikr - it)/r, (3)

where

E.(O,) = i~ 21 + 1 aT()+biir(O)]}cos 0
+i 1 + 1) [al r(O) + kzs e

k 1(1 + 1)[a7T1(O) + brTi(O)] }sin u

(4)

and where the partial wave coefficients a, and b, and the
partial wave angular functions 7r,(0) and T1(0) have been
derived by many authors.8 The extinction efficiency of

the sphere is expressed in terms of a, and b by

2 
Eext 2 2 (21 + 1)(Re a, + Re bl),

X1=1

where the size parameter x is given by

x = 2a/A.

(5)

(6)

If the refractive index of the sphere is real, no absorption
occurs, and the extinction efficiency and the scattering
efficiency

Escat = - 1(21 + 1)(Ia,12 + IbuI2)
1'=1

(7)

are equal.
The partial wave coefficients a, and b may be written

as an infinite series of interactions of the various spheri-
cal multipole waves with the surface of the sphere9 0:

a=l 1 )mTl12

b 2 [ 1 - B , 2
- = T 2 ( R " (8)

where the interior of the sphere is region 1 and the exte-
rior is region 2. The term R" is the amplitude for the
radially propagating multipole wave to be reflected at
the sphere surface from region i back into region i, and Ti
is the amplitude for the multipole wave to be transmitted
through the sphere surface from region i into region j.
The first term in Eq. (8) is independent of the refractive
index of the sphere and represents diffraction." This se-
ries is known as the Debye series. It is analogous to a
plane wave incident upon a thin film, for which the trans-
mitted and reflected fields may again be written as an
infinite series of interactions of the incident wave with
the two surfaces of the film.'2 The partial wave reflec-
tion and transmission amplitudes for both the a, and b,
polarizations in Eq. (8) are given in Refs. 9 and 10.

In interpretation of the interference structure (i), the
incident field and the forward-scattered field are given by
Eq. (2) and by the near-zone expression for Escattered(r, t)
for 0 = = 0, respectively. In interpretation (ii), the
diffracted and transmitted fields in the far zone are given
by the first term and by the m = 0 term of Eq. (8), respec-
tively. The relation between the two interpretations is as
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follows: The incident-plus-forward-scattered fields in
a near-zone plane immediately beyond the sphere act as a
source field for Fraunhofer diffraction over the circular
aperture consisting of the projected area of the sphere.
The Fraunhofer diffraction of this source field generates
the diffracted-plus-transmitted fields in the far zone.'3

A demonstration of the interference structure employ-
ing the diffracted-plus-transmitted fields in the far zone
has been outlined by van de Hulst'4 and has been per-
formed with the use of the complex angular momentum
analysis of the Debye series by Nussenzveig and Wis-
combe,5'6 in which the sums over partial waves are con-
verted into integrals over an impact parameter by the
modified Watson transform.

A shorter derivation employing the Debye series alone
proceeds as follows: We retain only the diffraction and
transmission terms of Eq. (8):

al-) (1 _- Tz 2 ). (9)

Since the amplitudes T1
2' and TI'2 are proportional to each

other, expression (9) may be rewritten as

a, 2 1 - exp(2ki, 2 1)J (10)

where r1
2' and 'k 2' are the magnitude and the phase of T1

2',

tan k121 = t-l + t1l (11)

and where the t1' are sums of products of spherical Bessel
and Neumann functions given by Eqs. (2.11) and (2.13) of
Ref. 10. However, truncating the scattering amplitudes
by Eq. (9) spoils their unitarity. As a result, the extinc-
tion efficiency obtained from expressions (5) and (9) is in
error by a factor of 2. Instead, we exploit the fact that
Escat and eext are equal when n is real, and we calculate the
scattering efficiency associated with the truncated scat-
tering amplitudes of expression (9). From expression (10)
we obtain

IaiI:} [1 + (r l ) - (ril )2cos 24?1 .

for integer N, and the interference minima occur when

(n - 1)x = Nr. (15)

Since these results are independent of 1, they produce in-
terference maxima and minima in escat and eext when all
the partial wave contributions to Eqs. (5) and (7) for
I << x are added together. These results agree with the
calculations outlined by van de Hulst'4 and those of
Nussenzveig and Wiscombe.6 At the same level of ap-
proximation, the relative maxima and minima of the
exact Mie scattering amplitudes occur at the same val-
ues'8 of (n - 1)x.

As a check of this calculation, the scattering efficiency
of a dielectric sphere of real refractive index n = 1.33
was calculated with the use of the Mie theory and the
diffraction-plus-transmission approximation of ex-
pressions (7) and (9). The results are shown in Fig. 1.
The periodicities of the interference structure of the exact
scattering efficiency and of the diffraction-transmission
scattering efficiency are identical.

When the sphere radius a is comparable with A, well-
defined geometrical rays are not formed within the sphere,
and each term of the Debye series represents a component
of the scattering that is large over a substantial range of
scattering angles. Since the scattering efficiency is the
normalized scattered intensity integrated over all angles,
the truncation of Eq. (8) by expression (9) omits a large
percentage of the scattered field. As a result, the scatter-
ing efficiency obtained from expressions (7) and (9) for
a A deviates greatly from the exact result. For a large
sphere with a >> A, well-defined geometrical rays are
formed within the sphere, and the scattered intensity is
strongly peaked in the forward direction. Thus the scat-
tered intensity integrated over all angles is dominated by
the forward peak. In the near-forward direction, diffrac-
tion and transmission are dominant, while direct reflec-
tion and multiple internal reflections are weaker.'9 Thus
the interference character of diffraction and transmission

5

(12)

The last term in expression (12) is the diffraction-trans-
mission interference in the partial wave 1.

In the geometrical optics limit of Mie scattering, one
associates a narrow range of partial waves of the incident,
interior, and scattered fields with the impact parameter
of a geometrical light ray.'56 Transmission of such rays
with minimal refraction occurs only for small impact
parameters, i.e., for 1 << x. Using the asymptotic forms
of the spherical Bessel and Neumann functions in Eq. (11)
in this limit,'7 we obtain

k1 = (n - 1)x,

4

U)

W

3

2

1

0

(13)

independent of 1 for both the a, and the b1 polarizations.
For both polarizations, the interference maxima of
expression (12) occur when

(n - 1)x = (N + 1/2)7r

20 40 60 80

X

Fig. 1. Mie scattering efficiency of a sphere (lower curve) as a
function of the size parameter x and the Debye series diffraction-
plus-transmission scattering efficiency of expressions (7) and
(9) (upper curve) for n = 1.33. The ripple structure in the
exact scattering efficiency is superimposed upon the interference
structure.
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in the near-forward direction is imprinted on the scatter-
ing and extinction efficiencies, and, as is seen in Fig. 1,
expressions (7) and (9) are a good approximation to the
exact scattering efficiency.

The diffraction-plus-transmission interpretation of the
extinction efficiency gives a simple explanation of three
computationally obtained results6 7 : (1) the damping
of the interference structure when the refractive index of
the sphere has a large imaginary part, (2) the absence
of the interference structure for scattering by a metal
sphere, and (3) the complexity of the interference struc-
ture when the refractive index of the sphere has a large
real part. For case (1), as the sphere becomes absorptive
the diffracted waves are unaffected. But the transmitted
waves are attenuated as they pass through the sphere.
This effect gives weaker interference in the near-forward
direction and a decrease in the amplitude of the interfer-
ence structure in the extinction efficiency. For case (2),
the scattering consists only of diffraction in the near-
forward direction and direct reflection from the surface
that occurs primarily away from the near-forward direc-
tion. As a result, there is no diffraction-transmission
interference and no interference structure. The large
real refractive index of case (3) produces substantial re-
fraction of the transmitted waves away from the near-for-
ward direction, which decreases their interference with
the diffracted waves. Substantial internal reflection also
causes multiply internally reflected waves to exit in the
near-forward direction and interfere with the diffracted
waves, complicating the periodicity of the interference
structure.

*Permanent address, Department of Physics, New Mex-
ico State University, Las Cruces, New Mexico 88003.
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