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A Wavelet-Based Multiresolution PID Controller 
Shahid Parvez and Zhiqiang Gao, Member, IEEE 

Abstract—A novel controller based on multiresolution decom­
position using wavelets is presented. The controller is similar to a 
proportional-integral-derivative (PID) controller in principle and 
application. The output from a motion control system represents 
the cumulative effect of uncertainties such as measurement noise, 
frictional variation, and external torque disturbances, which man­
ifest at different scales. The wavelet is used to decompose the error 
signal into signals at different scales. These signals are then used 
to compensate for the uncertainties in the plant. This approach 
provides greater expanse over the degree of control applied to the 
system. Through hardware and simulation results on motion con­
trol systems, this controller is shown to perform better than a PID 
in terms of its ability to provide smooth control signal, better dis­
turbance, and noise rejection. 

Index Terms—Motion control, multiresolution, wavelet con­
troller, wavelets. 

I. INTRODUCTION 

THE wavelet transform, developed earlier as a mathemat­
ical tool [2], [6], [7], has in recent years been used in 

various industrial applications. Wavelets possess two features 
that make them especially valuable for data analysis: they re­
veal local properties of the data and they allow multiscale anal­
ysis. Their locality is useful for applications that require online 
response to changes, such as controlling a process. Recently, 
some work has been reported on use of time–frequency local­
ization of wavelet transforms in process control industry [1], 
[3], [4]. However, these applications have been largely limited 
to signal processing that indirectly help to improve the perfor­
mance of the control systems. In this paper, a direct application 
of wavelet transform to controller design is proposed. In par­
ticular, based on the multiresolution decomposition property of 
wavelet, a wavelet controller analogous to the well-known pro-

circuits and is intuitive, which makes it easy to tune. On the 
other hand, this very simplicity limits the performance of PID 
controllers. Various attempts have been made to enhance the 

portional-integral-derivative (PID) controller is presented. 
The PID controller has been around for more than 80 years 

[8] and is still widely used across the industry. In addition to its 
effectiveness as a control means, the reasons for its longevity 
can be traced to the fact that it is easy to implement in analog 

where 
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PID controller, such as the nonlinear PID, or PID with nonlinear 
gains. See, for example, nonlinear PID (NPID) controller in [9]. 
The wavelet transform provides another vehicle in developing 
high performance controllers based on the PID principles. 

In general, a PID controller takes as its input the error and 
acts on the error to generate a control output , as shown in 
the following equation: 

(1) 

where , , and are the PID gains to be selected. The 
three terms in this controller intuitively represent the current, the 
past, and the trend of the error. Arguably, it is this error-based 
design philosophy that has made the PID a successful controller 
in industrial settings, where the plant is often highly nonlinear, 
uncertain, and time-varying. 

The controller in (1) can be described as linear PID since 
is a weighted sum of the error, the integration of the error, and 
the derivative of the error. One type of proposed improvements 
is to use nonlinear gains in PID, which make it more powerful 
and flexible [9]. In this case, the control law is described as 

(2) 

where , , and are certain nonlinear functions. 
In this paper, a generalization of the PID controller, based on 

multiresolution decomposition of the error by using small waves 
popularly known as wavelets, is presented. The basic idea is that, 
if is decomposed as 

(3) 

is the error signal at the th scale, then a generalized 
PID controller can be formulated as 

(4) 

where are controller parameters to be determined. 
Applying wavelet decomposition to error signal extracts the 

average energy of the error signal, as well as the cumulative ef­
fect of many underlying phenomena such as process dynamics, 
measurement noise, and effects of external disturbances, which 
manifest on different scales (3). Then, each one of these compo­
nents is scaled by its respective gain and then added together to 
generate the control signal (4). Note that the wavelet decom­
position provides much higher resolution than a traditional PID 
in describing the history and predicting the immediate future of 
the error. Therefore, this controller is named a multiresolution 
proportional-integral-derivative (MRPID) controller. 
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In Section II, a brief description of wavelet transforms and 
multiresolution decomposition is given. The framework of an 
MRPID is discussed in Section III. Implementation issues are 
discussed in Section IV. Implementation of the MRPID on mo­
tion control systems and experimental results are given in Sec­
tion V and VI. Finally, some concluding remarks are included 
in Section VII. 

II. WAVELETS AND MULTIRESOLUTION DECOMPOSITION 

Multiresolution analysis is a convenient framework for 
hierarchical representation of functions or signals on different 
scales. The basic idea of multiresolution analysis is to represent 
a function as a limit of successive approximations. Each of 
these successive approximations is a smoother version of the 
original function with more and more of the finer “details” 
added. Wavelets are terminating basis vectors which are used 
to represent a signal using a set of coefficients. Consider a 
sampled signal and generate the following sequence of 
approximations [2]: 

(5) 

Each approximation is expressed as the weighted sum of the 
shifted versions of the same function , which is called the 
scaling function. If the th approximation is required to 
be a refinement of the th approximation, then the function 

should be a linear combination of the basis functions 
spanning the space of the th approximation, i.e., 

(6) 

If represents the space of all functions spanned by the 
orthogonal set the set of integers and 

the space of the coarser functions spanned by the orthogonal 
set , then . Let 

(7) 

Then is the space that contains the information added upon 
moving from the coarser to the finer represen­
tation of the original function . Mallat [2] shows that ’s 
are spaces that are spanned by the orthogonal translates of a 
single function , thus leading to the following equation: 

(8) 

The function is called a wavelet and is related to the scaling 
function , through the following relationship: 

(9) 

TABLE I 
COEFFICIENTS OF DAUBECHIES (4) FILTERS 

and form a conjugate mirror filter pair. Concluding 
the discussion, a mixed-form -level discrete wavelet series 
representation of the signal is given by 

(10) 

where and are the conjugate functions corresponding 
to and , respectively. Interestingly, the multiresolution 
concept, besides being intuitive and useful in practice, forms 
the basis of a mathematical framework for wavelets. One can 
decompose a function into a coarse version plus a residual and 
then iterate this to infinity. If properly done, this can be used 
to analyze wavelet schemes and derive the wavelet basis. It can 
be seen from (10) that a wavelet transform decomposes a signal 

into trend and detail coefficients . An  efficient ap­
proach in computing the discrete wavelet transform (DWT) is to 
use the subband coding scheme [10] which uses only the filters 

and , which are found to be 

(11) 

Equations (10) and (11) provide a hierarchical and fast scheme 
for the computation of the wavelet coefficients of a given func­
tion. A pair of the “Daubechies” (4) filters used in experiments 
is shown in Table I. 

A. Decomposition Process 

The DWT of a signal results in trend and detail 
coefficients as given by (10). The first step in signal 
decomposition consists of computing these trend and detail 
coefficients. Thereafter, the trend coefficients combined with 
the scaling function as a basis is used to generate the trend 
signal [the left-hand side of the summation in (10)] and the 
detail coefficients using the wavelets as a basis are used to 
generate the detail signals [the right-hand side of the sum­
mation in (10)]. The trend signal captures the high-scale 
(low-frequency) information and the detail signal captures the 
low-scale (high-frequency) information contained in the signal 

. Depending upon the number of decomposition levels, 
the end product of a multiresolution decomposition is a set of 
these signals at different scales (frequencies), as shown in (12), 
where is the high-scale signal, is the low-scale signal, 



Fig. 1. Decomposition analysis. 

Fig. 2. Decomposition synthesis. 

and , , are the medium-scale signals where 
is the number of decomposition levels. For example, if a 

three-level decomposition of error signal is done, it results in 
one trend signal (low frequency) and three detail signals (high 
and intermediate frequency). There is redundancy in the trend 
signal; hence, only one obtained at the last level is chosen. 
The frequency information of these decomposed signals is 
approximate since the decomposition process does not use a 
precise frequency-characterized basis vector such as sines and 
cosines which are used in Fourier analysis 

(12) 

The process of decomposition uses a subband coding scheme 
that is illustrated in Figs. 1 and 2. The DWT can be computed 
using the filters and which form a quadrature conju­
gate mirror filter pair with and , which are given by 
(11). Fig. 1 illustrates the analysis part of a three-level decom­
position scheme using subband coding. The result of the anal­
ysis step is a set of intermediate coefficients, which represent 
the weights of the original signal in terms of the basis functions 
used, namely the scaling function and the wavelet function. The 
original sampled signal is filtered with the scaling function and 
the wavelet function and downsampled by two, resulting in the 
trend and detail coefficients at level one. The trend coefficients 
thus obtained are then used as the original signal and filtered 
with the scaling function and the wavelet to yield the coeffi­
cients at level two. This process is repeated depending upon the 
number of decomposition levels desired. 

The synthesis process involves upsampling the coefficients 
obtained during the analysis step by a factor of two and fil­
tering them with the corresponding reconstruction filters. The 
synthesis process for a three-level decomposition is shown in 
Fig. 2. The resultant signals are the trend signal , the detail 
signal , and the intermediate resolution signals and . 

Fig. 3. Block diagram of an MRPID. 

III. MRPID CONTROLLER
 

In general, a PID controller takes as its input the error
 and 
then acts on the error to generate a control output , as shown 
in (1). Gains , , and are the proportional, integral, 
and derivative gains used by the system to act on the error, the 
integral of the error, and the derivative of the error, respectively. 
In terms of frequency information, the proportional and integral 
terms tend to capture the low-frequency information of the error 
signal and derivative captures the high-frequency information of 
the signal. In a similar manner, an MRPID decomposes the error 
signal into its high-, low-, and intermediate-scale components, 
as shown in (12). Each of these components are scaled by their 
respective gains and then added together to generate the control 
signal as 

(13) 

Unlike a PID controller, which has three tuning parameters 
( , , and ), an MRPID can have two or more param­
eters based on the number of decomposition levels performed 
on the error signal. For example, a one-level decomposition 
yields a low- and a high-frequency component. So, a controller 
with one-level decomposition has two gains. In order to achieve 
higher resolution if a two-level decomposition is done on the 
error signal, three signal components of are generated. Each 
one of these components can be scaled by a gain and added 
to generate the control signal. A schematic diagram of a plant 
using an MRPID is shown in Fig. 3. Since there are a number 
of different wavelets, the choice of a wavelet affects the per­
formance of the controller. In general, there are two kinds of 
choices to make: the system of representation (continuous or 
discrete) and the properties of the wavelets themselves: for ex­
ample, the number of degree of regularity. A common theme 
in choice is tradeoff. If more resolution in frequency is desired, 
less resolution in time is achieved; if more vanishing moments 
are required, the size of the wavelet has to be increased. In the 
examples that are discussed in this paper, “Daubechies” of order 
4 were found to be suitable for controls. For more details on the 
selection of wavelets, see [10]. 

All physical systems are subjected to some type of extraneous 
signals or noise during operation. Therefore, in the design of a 
control system, consideration has to be made that the system pro­
vides greater insensitivity to noise and disturbance. The effect 
of feedback on noise and disturbance greatly depends on where 



Fig. 4. Comparison of PID and wavelet decomposition of error signal. 

these extraneous signals occur in the system. But, in many situa­
tions, feedback can reduce the effect of noise and disturbance on 
the system performance. In practice, disturbance and commands 
are often low-frequency signals, whereas sensor noises are often 
high-frequency signals. This makes it difficult to minimize the 
effect of these uncertainties simultaneously. It is under these con­
ditions that an MRPID performs extremely well. Fig. 4 shows 
the comparison of signals generated by applying a PID scheme 
(error, differentialof error, and integralof error) to the error signal 
and a multiresolution decomposition (low scale, medium scale 
and high scale) of the error signal. The high-scale signal filters 
out noise and high-frequency distortion from the error signal. In­
creasingthegaincorrespondingtohigh-scalesignal pushes 
the control bandwidth and improves the disturbance rejection of 
the plant. Consider the medium-scale signal in Fig. 4. It approx­
imates the differential of the error signal with low gain and it has 
a very low noise content compared to differentiation performed 
using a first-order filter. Such a noise-free differentiation enables 
us to increase the corresponding gain and add damping to the 
plant, thereby improving its transient response. The lowest scale 
signal filters out the noise. By adjusting the lowest scale gain to 
zero , we can produce a very smooth control signal anddras­
tically reduce the effect of noise on the plant output. Smooth con­
trol effort improves the life of the motor and the overall perfor­
mance of the plant. 

IV. IMPLEMENTATION ISSUES 

There are a number of practical considerations that must be 
addressed in order to come up with a useful wavelet analysis 
of the time series applicable to controls. Some of these issues 
include the type and size of the wavelet to use, how to calculate 
the instantaneous wavelet transform of a signal when a sample 
of signal becomes available (for real-time control), the number 

Fig. 5. Signal architecture. 

of decomposition levels, and the number of samples to use in 
the transform. 

A. Signal Pipeline Architecture 

Wavelet transform is performed on a bunch of data after 
they are made available to the processing engine, on account 
of the noncausal nature of the wavelets. In order to have causal 
processing, a delay has to be introduced in the channel. This 
delay is proportional to the number of samples used in the 
computation. The other issue that further adds to the delay is 
the ill-conditioning of the data at the boundaries. As control 
systems require real-time signal processing in order to operate 
in real time, this delay has been a bottleneck in application of 
wavelets in controls. Traditionally, researchers have worked 
with the wavelets on the half axis, which work only on past 
data or circular data structures. In order to perform multilevel 
decomposition for real-time operation, a pipeline data architec­
ture was developed. This architecture is illustrated in Fig. 5. 

In this scheme, a signal buffer of length is chosen such 
that where is the number of decomposition levels 
desired in analysis. Initially, the signal buffer is filled with zeros. 
When the current ( th) sample becomes available, it is pipelined 
into the buffer using the first in first out (FIFO) operation. The 
signal buffer values are mirrored and appended so as to have the 
latest data concentrated toward the center. The decomposition 
algorithm is then performed on the resultant signal buffer. The 
decomposed th sample is then available at the center of the 
signal buffer. 

B. Number of Decomposition Levels 

In order to obtain sufficient resolution in both time and fre­
quency, the number of levels that a signal is decomposed 
depends upon the size of the signal buffer (number of observa­
tions in the time series) and the size of the filter used. 

is set to be the largest integer satisfying the equation 

(14) 

From the perspective of a control system, this represents the 
number of tuning, i.e., the gains of the controller. 

C. Selection of Wavelet 

The first problem in constructing a wavelet analysis is the se­
lection of a particular wavelet from amongst all available ones. 
A reasonable choice depends upon the application at hand. In 
control application, the objective is to apply wavelet analysis to 
the error signal. The choice depends on the interplay between a 
specific analysis goal (such as signal decomposition to separate 
noise) and the properties we need in a wavelet filter to achieve 
that goal. 



Fig. 6. Simple compliantly coupled motor and load. 

It has been found that a wavelet of very short widths can 
sometimes introduce undesirable artifacts into the resulting 
analysis, however, they may be desirable on account of their 
flexibility to provide smaller computational effort and ease in 
applications involving real-time operations. On the other hand, 
a wavelet with a large number of coefficients can match the 
characteristic features in a time series with greater efficiency. 
Their use can result in more coefficients being unduly influ­
enced by boundary conditions, some decrease in the degree 
of localization of DWT coefficients, and an increase in com­
putational burden. A reasonable overall strategy is to use the 
smallest sized filter that gives a reasonable result and be alien­
able in time (i.e., a phase shift as small as possible). Further 
details on the selection of wavelets can be found in [10]. 

V. SIMULATION RESULTS OF A LOW-FREQUENCY
 

RESONANCE SYSTEM
 

Two different motion control problems were investigated for 
implementation of the wavelet controller. The first is a velocity 
control servo system exhibiting low-frequency mechanical res­
onance, which is discussed in this section, and the second one 
is a position control system which is discussed in Section VI. 

Servo system inertia mismatch, between load and motor, has 
long been a concern for motion system designer. Most problems 
of resonance are caused by transmission components and the in­
ertia mismatch between motor and load. For a servo system to 
operate effectively, servo amplifiers need to be tuned to opti­
mize the response of the system, which includes command re­
sponse and disturbance rejection. Standard servo control laws 
are structured for rigidly coupled loads. However, in practical 
machines, some compliance is always present; this compliance 
in addition to the inertia mismatch reduces control loop stability 
margins, forcing servo gains down, which lowers the machine 
performance. Often, the resulting rigidity of the transmission is 
so low that instability results when control-law gains are raised 
to levels necessary to achieve the desired servo performance. 
The well-known lumped-parameter model [11] for a compliant 
coupling is shown in Fig. 6. The motor with inertia produces 
a torque which is used to drive a load of inertia . Equiv­
alent spring constant of the entire system is represented by . 

A schematic diagram of the compliantly coupled mechanism 
of Fig. 6 is shown in Fig. 7. Here, the equivalent spring constant 
of the entire transmission is ; also, to represent loss-pro­
ducing properties, a mechanical damping term is shown pro­
ducing torque in proportion to velocity differences via cross-
coupled viscous damping .
 

The transfer function from electromechanical torque
 to 
motor velocity is 

Fig. 7. Block diagram of a compliantly coupled load. 

which is a single lumped inertia , modified by 
a bi-linear quadratic or “bi-quad” function. The bi-quad term 
has its minimum gain at and maximum at , shown as 
follows: 

Hz (16a) 

Hz (16b) 

The bi-quad term corrupts the plant at and above the antireso­
nant frequency . The key problem presented by a compliant 
coupling for low-frequency resonance [11] is the net increase in 
gain above the resonant frequency . 

The model parameters were selected to produce a resonant 
frequency which is consistent with machines used in industry. 
The parameters were 1.8 10 Kg m , 
6.3 10 Kg m , 30 Nm/rad, 0.44 Nm/rad, 
and 0.005 Nm s/rad. This ratio produces a resonance fre­
quency of 233 Hz. The MRPID was used to control the velocity 
of the resonant plant. Three-level decomposition of the error 
signal was done resulting in a high-scale, low-scale, and two 
intermediate-scale signals. Each of these signals were scaled by 
their respective gains ( , , , and ) and added to 
compute the control signal using (13). Comparison of simula­
tion results for a PI controller using a noninteracting PID equa­
tion and an MRPID are shown in Fig. 8. The PI controller was 
tuned with 2.5 and 15 ms. MRPID was tuned 
with 0.025, 0.2, 0.2 and 0. 
It can be seen that the MRPID performs slightly better than a 
PI in transient response, however, it provides much better noise 
rejection, as can be seen from Fig. 9. This is largely obtained 
by simply setting the low-scale gain . Noise is an 
important factor that effects control system performance. It is 
a well-established fact that noise restricts the bandwidth of the 
control system and reduces system stability. Therefore, using 
an MRPID controller offers the distinct advantage of improving 
system bandwidth and stability. 

VI. HARDWARE RESULTS OF POSITION CONTROL SYSTEM 

In a typical application using a motor as the power source, the 
transfer function from input current to output position 
can be modeled as 

(15) (17) 



Fig. 8. Simulation results using an MRPID. 

Fig. 9. Effect of noise during steady-state response. 

where is the torque constant, is the total inertia of motor and 
load, and is the viscous friction coefficient. The control objec­
tives are rotating the load one revolution in one second with no 
overshoot. The experimental setup includes a PC-based control 
platform and a dc brushless servo system made by ECP (Model 
220). The servo system includes two motors (one as an actuator 
and the other as the disturbance source), a power amplifier, and 
an encoder, which provides the position measurement. The in­
ertia, friction, and backlash are all adjustable. 

A Pentium 133-MHz PC running in DOS is programmed as 
the controller. It contains a data-acquisition board to read the 
position encoder output in the servo system. The sampling fre­
quency is 400 Hz. As shown in Fig. 10, the PC performs the 
position control of the load disc. The position signal is read into 
the microcomputer via the counter board and the control signal 
is output to the motor drive via a digital-to-analog controller 
(DAC). With as the torque disturbance, the mathematical 
model was derived and verified in a hardware test as 

(18) 

Fig. 10. Block diagram of a dc brushless servo system. 

The PID and MRPID control algorithms were written in C 
language. The subband coding scheme which uses the filters 

and was used to compute the wavelet decomposi­
tion. Both of the filters had eight coefficients and the error signal 
buffer of size 32 was used in the implementation. Three-level 
decomposition of error signal was done, and the resulting four 
gain parameters were tuned to generate the control signal 
using (13). At nominal plant operation, the PID controller was 
tuned with 2.8, 2.4, and 1.8, using a 
parallel-type PID equation, while the MRPID was tuned with 

7.5, 50, 40, and 0. The plant was 
then tested with varying test conditions to check the robustness 
of the controller. 

A. Disturbance Rejection 

In order to investigate the disturbance rejection feature of the 
MRPID, a step torque disturbance was applied using the second 
motor in the servo system. This occurs after the system reaches 
the steady state, as shown in Fig. 11. Compared to the PID, the 
position output recovers from the disturbance much faster in the 
MRPID on account of its ability to accommodate higher gains. 
The disturbance settling time is almost five times less than that 
of a PID. Furthermore, it can be seen that the control signal of 
a MRPID is smoother and the steady-state error much smaller 
than that obtained by using a PID. 

B. Experimental Results 

To verify the effectiveness of the MRPID, a series of experi­
ments were carried out. These include the following. 

1) changing the set-point from 1 to 10 revolutions; 
2) increasing the inertia by 125% (adding two 0.5-kg 

weights to the disc at a radius of 7.5 cm); 
3) increasing the friction by adjusting the rubbing screw 

in the test setup; 
4) introducing 30% torque disturbance using the distur­

bance motor. 
For comparison, both the PID and MRPID are tested for each 

scenario, and the results are evaluated in terms of overshoot, set­
tling time, steady-state error, and the rms error. With number 
of samples and its mean, the rms error is given by 

(19) 

The results from these tests are listed in Table II. In general, 
the MRPID performs better than the PID. In particular, when 



Fig. 11. MRPID and PID responses to a torque disturbance. 

TABLE II 
EXPERIMENTAL RESULTS USING PID AND WAVELET SCHEMES 

the number of revolutions is changed from a nominal value of 
1 to 10, the percentage overshoot using the PID persists; how­
ever, in the case of the MRPID, it goes to zero. Furthermore, 
the steady-state error in the case of the PID increased by almost 
10 times due to this change, but it only increased by three times 
in the case of the MRPID. By assigning low gain to high-fre­
quency component , we can actively remove noise from 
the control signal. Furthermore, in the absence of noise, gain 
corresponding to low-frequency component can be tuned 
to a higher value. This improves the transient response and dis­
turbance rejection of the plant, as can be seen from Fig. 11. 

VII. CONCLUSION 

A generalized multiresolution PID controller based on the 
wavelet transforms is proposed and tested. Just like a conven­
tional PID controller, the MRPID is intuitive and effective. The 
controller gains have an explicit relationship with the charac­
teristics of the error signal, which makes tuning of the con­
troller insightful. The wavelet decomposition, which represents 

the error signal at different scales, provides higher resolution 
representation of the error signal than the one used in the ex­
isting PID and is the basis of the new controller design. Im­
plementation of the wavelet-based multiresolution controller in 
hardware shows promising results, particularly in its ability to 
provide smooth control effort and better noise and disturbance 
rejection compared to the existing PID controller. More research 
efforts are underway to fully explore the potential of this new 
design concept. 
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