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Rainbow scattering by a coated sphere

James A. Lock, J. Michael Jamison, and Chih-Yang Lin

We examine the behavior of the first-order rainbow for a coated sphere by using both ray theory and
Aden-Kerker wave theory as the radius of the core a12 and the thickness of the coating b are varied. As
the ratio b/a 12 increases from 10-4 to 0.33, we find three classes of rainbow phenomena that cannot occur
for a homogeneous-sphere rainbow. For b/a12 < 10-3, the rainbow intensity is an oscillatory function of
the coating thickness, for 8/a 12 10-2, the first-order rainbow breaks into a pair of twin rainbows, and
for 8/a,2 0.33, various rainbow-extinction transitions occur. Each of these effects is analyzed, and
their physical interpretations are given. A Debye series decomposition of coated-sphere partial-wave
scattering amplitudes is also performed and aids in the analysis.

1. Introduction

In the scattering of a family of parallel light rays by a
homogeneous spherical particle, the scattering angle
0 of the rays that make one internal reflection within
the particle possesses a relative minimum when
considered as a function of the ray impact parameter.
The first-order rainbow occurs at this relative mini-
mum scattering angle." 2 In wave theory, the form
of the rainbow changes only superficially as the
wavelength of the incident light, X, the radius of the
particle, a, and the particle's refractive index n are
varied. As a increases or decreases, the rainbow
intensity slowly increases above the geometric optics
background, the angular size of the supernumerary
structure on the illuminated side of the rainbow
decreases, and the scattering angle of the peak rain-
bow intensity approaches the Descartes rainbow angle
OR of ray theory. As the refractive index of the
particle increases, the Descartes rainbow angle in-
creases. For n = 2, the rainbow occurs at R = 1800
and is known as a rainbow-enhanced glory.36 For
n > 2, the scattering angle of the rays that make one
internal reflection no longer possesses a relative
minimum, and the first-order rainbow does not occur.

Although it has been over forty years since the
problem of electromagnetic-wave scattering by a
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coated sphere was solved by Aden and Kerker,7 to our
knowledge, a systematic study of the properties of
coated-sphere rainbows has not been undertaken.
It is the purpose of this paper to examine the behavior
of the first-order rainbow for a coated sphere when
the thickness of the coating 8 is varied with respect to
the radius a12 of the core particle. For this variation,
we find three classes of rainbow phenomena that have
no counterparts for homogeneous-sphere rainbows.
First, when 5/a12 • 10-3, the coating acts as a thin
film on the surface of the core. As a result, as /a12
increases, the rainbow intensity alternately increases
and decreases because of the constructive and the
destructive interferences of the two Descartes rain-
bow rays that internally reflect off the core-coating
interface and the coating-air interface. Second, when
8/a12 10-2, the two Descartes rainbow rays are
deflected by different amounts within the coated
sphere. As a result, the first-order rainbow breaks
into twin rainbows at slightly differing scattering
angles. Finally, when 6/aU2 0.3 for certain combi-
nations of the core and the coating refractive indices,
there is a transition at which the first-order rainbow
is extinguished. We examine each of these three
rainbow phenomena by using both ray theory and the
Aden-Kerker solution of the electromagnetic-wave
scattering problem.

The body of this paper proceeds as follows. In
Section 2 we examine the thin-film situation and the
resulting rainbow-intensity oscillations. In Section
3 we examine the twin-rainbow situation. Both of
these results demonstrate that for large particles
with (2rral2)/X > 3000, ray theory becomes a good
approximation to the results of the Aden-Kerker
wave theory. For a homogeneous sphere, the link
between ray theory and Mie wave theory is provided
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by the Debye-series expansion of the Mie partial-wave
scattering amplitudest t ' To provide a similar link
between ray theory and wave theory for the coated-
sphere problem, in Section 4 we carry out a Debye-
series decomposition of the Aden-Kerker partial-
wave scattering amplitudes. For completeness, we
also give the Debye-series decomposition of the inter-
nal partial-wave amplitudes both in the core and the
coating, and we relate these internal Debye ampli-
tudes to arbitrary beam-scattering theory.12"3 In
Section 5 we employ the Debye-series results to
examine rainbow-extinction transitions for two differ-
ent classes of light ray trajectories through the coated
spheres. Finally, in Section 6 we briefly describe
experimental observations of rainbow glare spots on a
coated sphere.

2. Coated Sphere as a Thin-Film Problem

Consider a plane wave of field strength E0, wave-
length X, traveling in the z direction, and polarized in
the x direction incident upon a coated sphere that
comprises a core (region 1), surrounded by a coating
(region 2), and surrounded by air (region 3). The
radius and the refractive index of the core are a12 and
n1, respectively. The thickness of the coating and its
refractive index are and n2, respectively. The
refractive index of air is n3. The radius of the
composite particle is then

a2 3 = a 12 + g- (1)

The geometry is shown in Fig. 1(a). The size param-
eters associated with the core and the composite radii
are

2'rra12
X12 = A~ '(2)

21Ta2 3
X23 = A ' (3)

respectively.
In this section only, the scattering angle is denoted

by a lowercase 0.
The Aden-Kerker expression for the far-field inten-

sity of the light scattered by the coated sphere is7 14,15

l~r,0, 4 = 0
2 1

I(r, 0 ) = 2 -° [I S2 () 12 COS24+ + I S 1(O) 12 sin 2 4,

(4)

where

2ir
k=-

is the wave number of the incident plane wave, and

(5)

(a)

n 3

232
_g

(b)

Fig. 1. (a) Geometry of a coated sphere and the trajectory of a
geometric light ray through it. (b) Two geometric rays a and a
that dominate the first-order rainbow for a coated sphere. The
flat interface Fresnel coefficients for the various transmissions and
internal reflections are also indicated.

the scattering amplitudes S1(0) and S2(0) are given by

2 21 + 1
S1(O) = 1=FI~,~[aprrj(O) + b(O)J,

21 + 1
S2(0) = [ arrff 0) + bi,(O)].

11 + 1)
(6)

The angular functions are

1
-rr'(O) = ;. n- P1

1(cos 0),

Tj(8) = d P 1 (cos 0). (7)

The partial-wave-scattering amplitudes a, and b6 are
given by the expressions

al N 1
23

p - I
b'j N 2 3 + iD 1

2 3 (8)
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where

N 1
23 = n2x2 3

2 1j(x2 3)j. 1(n2x23 ) - n2jI 1.(X 23)j 1(n2x2 3)

+(n 2
2

- 1)1+ 72X2 1) j(X23)jl(n2X23)l (9)
J1 X2 g1 flX2 1

+ AIn 2x2 32[JI(x23)nI. ,(n2X23 )

- n2jl 1 (x23)n(n 2x23 )

+(n 2
2

- jI(X23)n(n2X23) ' (10)

DI23 = n2x2 3
2 [n(x 23)jl ,(n2x2 3 ) - n2n. 1(x23)j1(n2x23 )

(n2
2

- 1)1 |
+ n2X23 n(X 23)j(n 2X23)

+ Aln 2x2 32[ nI(x 23)nj. 1 (n2 x23 ) - n2 n1 (x2 3)

X nI(n 2x2 3 ) + n 2 ni(X 23 )nI(n2X23)I

N1
12 (11)

N'l2 = nmn2xi22[nsji(n2x12)Ji.. (nlx,2) - nlj1. ,(n2x,2)

x j1(nix,2) + nJXi(n2 x, 2 )i(nhx, 2 )t 

(12)

D1
12 = nln2x122[n2nI(n2x12)Ji.-(nixi2) - nlnl-,(n 2x,2)

X jl(nlX, 2) + n -n n 1(n2X12 )jI(nhX12)]

(13)

for a,, and

23 = n2X23 [n2j 1(x2 3 )jI-(n2 x2 3 ) - j1(X23)jI(n2X23)]

+ Bjn 2x23
2 [n2j 1(x23)n1 . (n2X2 3 )

(14)- j- 1(X23 )n1(n2 X23 )],

DI = n 2 x 2 3
2[n 2 n1 (x 2 3 )jI .(n 2 X2 3 ) -nI_(X23)jj(n2X23)1

+ Bln 2x23
2[n2nI(x 23 )nI. ,(n2x23 )

(15)

N 1
1 2

DI 1 l2'

N 12 = njn 2 x12
2[nljl(n2 x12 )jl- (nIx 2 )

- n 2 j1l (n2 1 2 )j1 (n 1X12 )],

D=2 = n 1n2 X, 2
2[njn 1 (n2 x12 )jI-1 (n1x 12 )

- n 2n1 .,(n 2x1 2)jj(n 1x 12 )]

(16)

(17)

(18)

for b, and where j and n are spherical Bessel
functions and spherical Neumann functions, respec-
tively. The principal goal of this paper is to obtain a
physical understanding of some of the rainbow phe-
nomena hidden in these complicated expressions.

We first consider the situation in which x12 is of the
order of a few thousand so that the ray theory is
expected to be a good approximation 6 to Eqs. (4)-(18).
We wish for the coating to act as a thin film on the
surface of the core. As is proved in Section 3, the
thin-film assumption corresponds to /aI 2 < 2 x
10-3. The two dominant Descartes rays for the
first-order rainbow for this situation are shown in
Fig. 1(b). The ray that we label a has its internal
reflection at the core-coating interface, and the ray
that we label ,B has its internal reflection at the
coating-air interface As the core is large, the core-
coating-air geometry in the vicinity of the internal
reflections is locally flat compared with the wave-
length of light. This is illustrated in Fig. 2(a). As a
result, the transmissions and the internal reflections
may be parameterized by the flat interface electric-
field Fresnel coefficients17 Tgij and RgiJ, where first
superscript i denotes the initial medium, second
superscript j denotes the final medium, and subscript
g denotes that this is for a geometric light ray. For
reflections within the coating, Rg232 and Rg212 denote
reflection from medium 2, off medium 3 or 1, respec-
tively, and back into medium 2. As the coating is
thin, the a and the , rays exit the sphere in the same
direction and interfere with each other on the way to
the observer.

The Descartes rainbow ray is incident upon the
coated sphere at the angle

= (ni 2 - 1)1/2 (19)

The a and the , rainbow rays constructively interfere
at the observer, which gives the maximum rainbow
intensity if 18

4'rrn2 8
A cos 02 R +12 + 23 = 2N, (20)

and they destructively interefere, which gives the
minimum rainbow intensity if

4srn28 
4 COS 02 + +12 + +23 = 27r(N + 1/2), (21)
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a,

C

34)C
.0

M:

Imn
0

-y

n3

-~~~~~~.

ni

(c)

n2 n3

2 4 6 0 2 4 6

27rb/ 27r5/ 
(b) (d)

Fig. 2. (a) When the core is large and the coating is thin, the core-coating-air interfaces are approximated by the thin-film geometry.
(b) Comparison between Aden-Kerker wave theory (solid curve) and ray theory employing the a and the ,B rays (dashed curve) for the
rainbow intensity as a function of coating thickness. The Aden-Kerker intensity was calculated for 27r3/X in increments of 0.1. The
arrows denote the coating thicknesses for constructive and destructive interferences in ray theory as predicted by Eqs. (20) and (21),
respectively. (c) Ray y that makes three internal reflections within the coating. (d) Comparison between Aden-Kerker wave theory (solid
curve) and ray theory when the a, P, y, y', and y" rays (dashed curve) are used for the rainbow intensity as a function of coating thickness.

where N is an integer. The angle 02R of the Des-
cartes ray in the coating is given by Snell's law,

n3 sin 0 3 R = n 2 sin 02 R, (22)

and the phase changes on reflection at the 12 (core-
coating) and 23 (coating-air) interfaces are given by

12 =

N23 =

if n2 < n

if n2 > nl

ifn 3 < n2

if n 3 > n2

amplitude of the v rainbow ray is given by

E = Tg 32Tg 21 Tg1 2Rg23 2Tg21 Tg 12Tg 23
= 0.3425 (25)

for the TE polarization. Assuming that the only
difference in the relative strengths of a and a rain-
bows is given by the different sets of Fresnel coeffi-
cients in Eqs. (24) and (25), the maximum rainbow
intensity is

1
Irla, = -io (Em~ + E) 2 = 0.1906,

(23)

As a specific example, we consider n = 1.333, n2 =

1.55, and n3 = 1.0, which describes a thin-wall glass
shell filled with water. The amplitude of the a
rainbow ray is given by

(26)

which corresponds to constructive interference of the
a and the ( rays, and the minimum rainbow intensity
is

1
Imi = -(E. - E )2

= 0.0617, (27)

E= Tg32Tg2tRg Tg=2T 23 0.0941 (24)

for the transverse electric (TE) polarization, and the

which corresponds to destructive interference. This
produces an intensity contrast factor of Imax/Imin =
3.1.
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To verify this ray-theory oscillating intensity predic-
tion, we computed the wave-theory intensity of Eqs.
(4)-(18) for x12 = 3000 and 0 < (2 rb)/k < 7. In
each case the scattered intensity between 1350 < 0 <
1400 was Gaussian low-pass filtered in order to sub-
tract off the high-spatial-frequency fine structure
superposed on the rainbow intensity caused by the
interference of specularly reflected rays with the rays
that make one internal reflection. The peak rain-
bow intensity of the filtered data was then deter-
mined and is shown in Fig. 2(b). The wave-theory
intensity contrast factor is found to be Imax/Imin = 1.6,
which is in disagreement with the ray-theory result
just obtained. The background intensity upon which
the rainbow is superposed was only - 1% of the total
intensity at the rainbow peak, thus not influencing
the value of Imax/Im~n. As a check on our method of
calculation, the intensity in Alexander's dark band,
which is due primarily to specular reflection, was also
calculated both in ray theory and in Aden-Kerker
wave theory. The dominant geometric rays for specu-
lar reflection are parameterized by Rg33 and by
Tg32Rg212Tg23. These rays also alternately construc-
tively and destructively interefere as increases.
The specular reflection intensity contrast factor in
Alexander's dark band was found to have the values
of 3.9 in ray theory and 4.0 in Aden-Kerker theory.
The agreement for specular reflection and disagree-
ment for the first-order rainbow lead us to believe
that the extent of the partial focusing of light rays
that occurs at the first-order rainbow and causes its
enhancement above the geometric optics background
is affected by the presence of the coating.

In Fig. 2(b), we also show the ray-theory intensity
that is due to the a and the P rays normalized to the
Aden-Kerker results. The normalized comparison
is generally good except for the double-peak structure
at the constructive interference coating thicknesses
in wave theory. This discrepancy is removed when
we take into account in ray theory the geometric rays
that make three internal reflections within the coating.
There are three distinct ray paths that do this. One
of them, which we call the y ray, is shown in Fig. 2(c).
The other two rays (y' and y") resemble the P ray but
have two additional internal reflections in the coating
immediately after entering the coating for the first
time or immediately before exiting it for the last time.

The normalized comparison between wave theory
and ray theory when the a, ,y, y', and y" rays are
used is shown in Fig. 2(d). The inclusion of the y, y',
and y" rays reproduces the wave-theory double-peak
structure at the constructive interference locations.
But the double peak in ray theory is not as prominent
as that of the Aden-Kerker wave theory. If the y, y',
and y" amplitudes are increased by 18% over the
values given by the Fresnel coefficients, which is the
situation graphed in Fig. 2(d), the agreement is much
improved. This may be taken as additional evidence
that the coating perturbs the degree of partial focus-
ing that occurs for the coated-sphere rainbow beyond
that described by the Fresnel coefficients. As a final

check on the y, y', and y" rays' being responsible for
the double-peak structure in Figs. 2(b) and 2(d),
calculations were also performed for n, = 1.333, n2 =

1.2, and n3 = 1.0. When n2 < n, both in Aden-
Kerker theory and in ray theory with the a, A, y, y',
and " rays, there is only a single peak at the
constructive interference locations for realistic ampli-
tudes of the y, y', and y" rays, which indicates the
appropriateness of including these contributions in
Fig. 2(d).

3. Twin First-Order Rainbows

In Fig. 1(a) the angle 02' is given by

02' = 02
+ as[a i2 + ~ 02(1 -a 23

2 1/2]
+ accos -sin 2O 2 +COS02 1-- Sin2 02

[a12 a122 / 
02 + - sin 03(n2

2 - sin2 03)-/2 + 2 (28)

As the coating grows in thickness, the difference
between the angles 02 and 02' increases as well.
Because the a ray makes two transits through the
coating whereas the CU ray makes four transits, the
two rays leave the sphere at different scattering
angles and thus produce two distinct first-order rain-
bows. Let

(29)e = 02' - 02-

Then the angular deviation of the a ray is

(30)e, = r + 203 - 402 + 2e,

and the angular deviation of the ray is

e= + 203 - 402 + 4. (31)

The derivatives of O and Of were performed with
respect to 03 and then set equal to zero in order to
determine the angle 03 of the incident rainbow ray.
The resulting expressions, however, cannot be solved
in closed form. To obtain an approximate solution,
we Taylor-series expanded all the angles in powers of
8/a12 about their values for the ray path of the
homogeneous-sphere Descartes ray. The results
were then substituted into Eqs. (30) and (31) to obtain
the rainbow scattering angle of the at and the (3 rays:

R(s) =R() + a-[3n2
2 + n12 - 4)

14 - n,21/2] (a 2

(I) + a12 \3n2 + nl - 4)

(04 - I I2 )

(32)

(33)
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where OR(0) is the rainbow-scattering angle for the
homogeneous sphere. For the specific example n1 =
1.333, n2 = 1.2, n3 = 1.0, and x12 = 5000, this
twinning and shifting of the rainbow-scattering angle
is shown in Fig. 3(a) as a function of (27rb)/X. The
thin-film limit examined in Section 2 for (27rb)/X < 7
corresponds to the far left-hand side of the graph,
where the a and the rainbows are shifted by only
minute amounts from the homogeneous-sphere rain-
bow. Thus it was reasonable in Section 2 to consider
the exiting rays as coincident and interfering with
each other. For larger coating thicknesses, the two
rainbow rays no longer spatially overlap and thus can
no longer interfere.

20, .,

1°

0'0

a

CD

00

-10

.30

0

168

c0 6
16

-4

105

50 100

(a)

135 136 137 138 139 146

Scattering Angle (DeSr.es)

(b)

Fig. 3. (a) Comparison between Aden-Kerker wave theory (data
points) and ray theory (solid lines) for the shift in the angular
positions of the twin first-order rainbows as a function of coating
thickness for the o and the f3 rainbows of Fig. 1(b). (b) Scattered
intensity for unpolarized incident light as a function of e for X12 =
5000, (2ir)/X = 175, ni = 1.333, n2 = 1.2, and n3 = 1.0, showing
the twin first-order rainbows a and , of Fig. 1(b).

Again, to test the ray theory result, we calculated
the wave-theory intensity from Eqs. (4)-(18). A
typical example is shown in Fig. 3(b). The a rainbow
occurs at 0 = 135.50, and the (3 rainbow occurs at
e o 139.5. For 25 < (2rr8)/X < 175, the computed
angular positions of the a and the 3 rainbows ob-
tained from the Aden-Kerker equations were deter-
mined and are shown as the data points in Fig. 3(a).
The error bars correspond to the uncertainty in
determining the maximum rainbow intensity. The
comparison between ray theory and wave theory is
quite good. However, the rainbow-intensity con-
trast factors for ray theory and wave theory again
disagree, with Ip/Ia = 13.24 in ray theory and Ip/Ia =
4.8 in wave theory. This is again presumably due to
the effect the coating has on the degree of partial
focusing at the rainbow. The y, y', and y" rainbows
are not evident in Fig. 3(b). This is because their
amplitude is much less than that of the a and the P3
rainbows and because they are located in the supernu-
meraries of the rainbow.

Calculations were also performed for nl = 1.333,
n2 = 1.55, and n3 = 1.0. Good agreement for the
rainbow-scattering angles between Aden-Kerker
theory and ray theory was again obtained. Esti-
mates of the angles, however, were more difficult to
obtain because of the larger amplitude interference
structure superposed on the o rainbow for n2 > ni.

4. Debye-Series Analysis of the Coated-Sphere
Scattering Amplitudes

In Mie theory the incident wave, scattered wave, and
interior wave are decomposed into partial waves.
The resulting infinite series solution to the scattering
problem for a homogeneous sphere is exact. But it
gives little clue as to the various physical processes
responsible for the scattering. These physical pro-
cesses are diffraction, specular reflection (p = 0),

150 200 transmission (p = 1), and transmission followingp -
1 internal reflections. They appear naturally in ray
theory but manifest themselves in Mie theory only
when various numbers of interactions of each partial
wave with the particle surface are considered. As it
turns out, each partial-wave scattering amplitude
may be written as a sum of components that corre-
spond to diffraction of the partial wave, specular
reflection of the partial wave, transmission of the
partial wave, and transmission of the partial wave
following p - 1 internal reflections as

a1l 11 _ __Tj 12
141 142 14 = - 1 -R 22.-..

b1J 2 ' 1 - Rl

=- , 1 -R R22 T2IT112 T21RllIT112 . . . ).

(34)

This procedure is known as the Debye-series decompo-
sition of the partial-wave scattering amplitudes.
Expressions for R11i and Tlij, the reflection and the
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transmission amplitudes of the partial wave 1, are
given elsewhere."11 Written in this form, the solu-
tion of the homogeneous-sphere scattering problem is
obtained by summing over both partial waves I and
scattering processes p. The general success of the
ray-theory and the wave-theory comparisons of Sec-
tions 2 and 3 gives hope that a Debye-series analysis
of the coated-sphere problem is not only possible, but
that it provides valuable physical insight into the
details of coated-sphere scattering. We derive the
coated-sphere Debye series in this section.

As a guide for what to expect, we first consider
multiple scattering of geometric light rays within a
coated sphere. The first number of terms in the
multiple-scattering series is pictorially illustrated in
Fig. 4. For a given number of total interactions with
the core-coating and the coating-air interfaces, there
are many possible ray paths. Some ray paths involve
different sets of Fresnel coefficients (for example,
Tg32Tg21Tg12Tg23 and Tg32Rg232Rg232Tg23), and others
involve the same Fresnel coefficients but are taken in
different orders (for example, Tg32Rg212Rg232Tg23 and
Tg32Rg232Rg212Tg2 3). When all the possible ray paths
are included, the multiple-scattering series is analyti-
cally sumable, and the ray-theory scattered electric
field is given by

T 32(Qg + l)Tg
2 3

Eg = D + Rg3 1 Rg2 32 (Qg +l) (35)

where

T 2 1 T 12
Qg = Rg 21 + g g

Il-Rg" (36)

and D symbolically represents diffraction by the
composite sphere. The multiple-scattering series is
recovered by expanding the denominators of Eqs. (35)
and (36). Equation (36) represents the infinite se-
ries of interactions of the ray with the core alone.
The Tg32, Tg23, and Rg232 factors in the last term of Eq.
(35) describe the interaction of the rays with the
coating before they penetrate into the core and after
they exit it. Geometric light rays are allowed to
interact with the coating-air interface a number of
times successively. This is described by the factor of
1 in the Qg + 1 expressions. If diffraction by the core
(which is represented by d) were to occur between
such successive coating-air interactions, the factors
of Qg + 1 in Eq. (35) would be replaced by Qg + d.

Although each light ray travels in a straight line
between interactions with the interfaces, the radial
dependence of a partial wave is hl(')(kr) or hl(2)(kr),
where h, are spherical Hankel functions, which im-
plies that partial waves propagate radially outward or
inward.' 9 This radial motion forbids successive inter-
actions of partial waves with the coating-air interface.
Not surprisingly then and after much algebra, the
Debye-series decomposition of the coated-sphere par-
tial-wave scattering amplitudes is found to be20'2'

aj 1 - T 1
3 2 QT 1

2 3 )
bJ= 2\ - R, 33 1 Q1R1

232 1 (37)

where

D T6 Tg3

212 +T21T12
Q = R + I (38)

T32 232 23

9 g T9

Tg Rg R9 Tg

T32 R212 T23rg 9
2 R232 232 23T9g Rg Tg

T32 R232 R212 r T
2

3' T92 T
2
39 9 9 g a 

Fig. 4. Ray trajectories with up to four interactions with the
interfaces that contribute to geometric ray scattering by a coated
sphere.

The meaning of the transmission and the reflection
amplitudes R 1

3 3 , T 1
3 2, T 2 3, R 1

2 3 2 , R 1
2 12 , T1

21 , T1
12 , and

RI"' for the partial wave I is the same as in the
homogeneous-sphere case of Eq. (34). Equation (38)
is, with the exception of diffraction, the scattering
amplitude of the core in an infinite extent of coating
material. Similarly, with the exception of the Q,
factors, Eq. (37) is the scattering amplitude of a
particle that comprises coating material in an infinite
extent of medium 3. The Q, factors in Eq. (37) give
the influence of the core on composite sphere scatter-
ing. The first few terms in Eqs. (37) and (38) are
pictorially illustrated in Figs. 5. The star symbol
within the core defined in Fig. 5(a) represents the
infinite series of successive interactions of the partial
wave with the coating-core interface before it heads
back into the coating.

In the derivation of the Aden-Kerker equations,
the scattered electric and magnetic fields are obtained
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Similarly, the fields in the core are derived from the
scalar radiation potentials:

Sre = i 21 + 
'core = I 11+1 (njd1 )j1(njkr)P 1(cos O)sin 4),

+ I +

T121t IfT",

(a)

be,} I =) 

'/2

T 
2

' T"

21 +1
r= ( + 1) (njc1 )j1 (njkr)P 1 (cos O)sin X),

(40)

where cl and di are the partial-wave core amplitudes,
and the fields in the coating are derived from the
potentials

T21R ItR 12
2 e eT

-o
'/2 R33

/3 T3
2

a R2
3

2 T23

21 +1
141 ting = i1 1 +1) n2 [LzoUthl)(n2kr) + LIinh1(2)(n2kr)]

1=1 1(1 +1

x Pl'(cos 0)sin 4),

2 21 + 1

coting =1~ L n 2[Kiouthi(1)(n 2kr) + K1 h )(n2kr)]

X Pi'(cos 0)cos i), (41)

where Kjout, Kin Ljout, and Llin are the partial-wave
coating amplitudes. Expressions for the coating and
the core partial-wave amplitudes are given in Ref. 22.
When an algebraic calculation similar to the deriva-
tion of Eqs. (37) and (38) is employed, the Debye-
series decomposition of the core and the coating
partial-wave amplitudes are found to be

Cl - n 3 T 1
32

1

d1 n, 1 -QR23

II = 2 T1- 1

Klin _ n3 T132

Loins 2n2 1 - QI232'

(42)

(43)

(44)

I/2 Te 2a R2g32QR232a r23

(b)

Fig. 5. (a) Debye-series expansion of the core scattering amplitude
Qj of Eq. (38). (b) Debye-series expansion of the coated-sphere
partial-wave-scattering amplitudes a, and b, of Eq. (37). The star
symbol represents the infinite series of successive interactions of
the partial wave with the coating-core interface beafore it heads
back into the coating.

by differentiation of the scalar radiation potentials:

21+1I
= 1(1 + 1) (-bl)hl(')(kr)Pll(cos )sin 4)

4
scattered = EiI( 1) (-a 1)h(')(kr)Pj 1 (cos 6)cos 4).

KiOut} =

LOutJ

n3 T132Q,

2n2 1 - QIRI232 (45)

For scattering by a homogeneous sphere, the I term
of Eq. (43) describes a partial wave that has entered
the core but has not yet exited it.10 It may have
entered the core either immediately after being trans-
mitted into the coating [T1

32 in Eq. (42)] or after
having bounced back and forth within the coating a
number of times [1/(1 - Q1R1

232)]. The amplitudes
Kin and Llin are associated with the radially incoming
Hankel function hl(2)(n2kr) and represent partial waves
that have entered the coating [T1

32 in Eq. (44)] and are
heading radially inward toward the core. The ampli-
tudes Klout and Liout are associated with the outgoing
Hankel function h1(l)(n2kr) and represent partial waves
within the coating that have entered it [T1

32 in Eq.
(45)3, interacted with the core (Qi), and are now

4684 APPLIED OPTICS / Vol. 33, No. 21 / 20 July 1994



It = 

T21

+ (J 
T'2

1
R'

1
RU

2 t 2
(a)

Ce I =~~T~ 1di C

Tf32II

T2111+ XYeRt

22 f* 

(a )
T2 R 22 e

32 232 232

(b)

Fig. 6. (a) Debye-series expansion of the partial-wave interior
function I, of Eq. (43). (b) Debye-series expansion of the core
partial-wave amplitudes cl and di of Eq. (42). The filled square
represents the infinite series of successive interactions of the
partial wave with the coating-core interface before it finally ends
up in the core.

heading radially outward toward the coating-air inter-
face. Because the partial waves within the core have
the standing-wave radial dependence j(n1kr), they
represent a superposition of radially incoming and
outgoing waves. The first few terms in Eqs. (42)-
(45) are pictorially illustrated in Figs. 6 and 7. The
filled square within the core defined in Fig. 6(a)
represents the infinite series of successive interac-

L n] = X )+)

-T" T
32

0 aR 
232

To2 2 22t

(a)

K out

~~t3 20 T3 2 R2320
L°Ut~~~ ~~~~~ } f 

Tb O2Re of
(b)

Fig. 7. (a) Debye-series expansion of the partial-wave coating
incoming amplitudes K in and Liin of Eq. (44). (b) Debye-series
expansion of the partial-wave coating outgoing amplitudes Kout
and LioUt of Eq. (45).

)++-

32 R232 R 2Tf Rt Rf

T3aR2320 R2320

( C )

Fig. 8. Ray trajectories corresponding to the Debye-series term
T

3 2
RI

2 12
R,

2 3 2
RI2

212
T

2 3 for (a) a small core that permits rainbow
formation, (b) a core that begins to obstruct the Descartes
rainbow ray, causing a rainbow extinction transition, (c) a large
core for which no rainbow can occur. The dashed lines in (a)
indicate the partial-wave reflection coefficient R1

212 1.
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tions of the partial wave with the coating-core inter-
face before it finally ends up in the core.

As a final check of these results, the generalized
Lorenz-Mie theory describes scattering of an arbi-
trary incident wave by a spherical particle. 2 ,"3 If the
scalar radiation potential in the coating were written
as the sum of a distorted incident standing wave plus
an outgoing scattered wave, the coating and the core
fields should represent the incident, scattered, and
internal fields for scattering of the distorted standing
wave in the coating by the spherical core. To test
this idea, we rewrite Eq. (41) as

coating = 1 + n2[Viincji(n2kr) - Vscatthill)(n2kr)]

x P1
1(cos 6)sin ),

coating
2221+ 1

- E i' n2[Uincj(n 2kr) - Uiscatthi(l)(n2kr)]x l(1 + 1)

x P1
1(cos O)cos 4,(46)

U~inc
n 3 T132

n 2 1 - QIR 1
2 3 2

Ulscatt = /2 ULinc( - Q),

Vlscatt = 1/2Vinc(1 - Q1), (48)

where Vlincjil and Ulincjl represent the distorted inci-
dent standing wave in the coating, and -Vls-tthl() and
-Ulscath(l) represent the outgoing scattered wave in
the coating. Equations (46)-(48), along with the

core partial-wave amplitudes rewritten as

CIl = - U,,cII,

nl (49)

are of the form required by the generalized Lorenz-
Mie theory.

5. Rainbow-Extinction Transitions

When the far-field scattered intensity is calculated
with the Aden-Kerker equations, subtle physical
effects that are due to multiple internal reflections
are often masked by much stronger background-
scattering mechanisms such as specular reflection
and transmission. The Debye series is invaluable in
subtracting off the unwanted large background in
order to examine in detail the subtle physical effect
under consideration. We adopt this subtraction
method in this section when studying rainbow-
extinction transitions. Consider, for example, the
ray trajectories of Figs. 8. When the core is small,
the Descartes rainbow ray propagates through the
coating and misses the core, which permits rainbow
formation [Fig. 8(a)]. As the core grows while the
composite radius a23 stays constant, the core eventu-
ally blocks the Descartes ray, extinguishing the rain-
bow [Fig. 8(b)]. When the core is large and the
coating is thin, the coating acts as a waveguide for the
incident rays, and rainbow formation is impossible
[Fig. 8(c)].

In the Debye series, the wave-theory version of the

0

6

S18

.14

103

10

I
is

la a

13-

0
.2

0

la

Scattering Angle (Degrees)
(a)

105

18

. . . . . . . .85 95 105 115 125 135

Scattering Angle (Degrees)

(C)

I . . . . . . .85 95 105 115 2s5 135

Scattering Angle (Degrees)

(b)

145 1
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Fig. 9. Scattered intensity I 1(0) 12 of Eq. (50) as a function of 8
--i forx 2 3 = 900, n1 = 1.333, n2 = 1.2, n 3 = 1.0, and (a)x12 = 600 where'

i165 rainbow formation occurs, (b) X12 = 700 near the rainbow extinc-
tion transition, (c) X12 = 750 where rainbow formation does not
occur.
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ray trajectories of Figs. 8 is described by

= T1
32RI212R,232R 212T1

23 . (50)

When the core is small and the Descartes ray misses
it, partial waves with I >> x12 reflect off the core23 ,24/ with R1212

-_ 1. In Figs. 9 we show the Aden-Kerker-
Debye scattered intensity with the partial-wave scat-
tering amplitudes given by Eq. (50) for x23 = 900, n1 =
1.333, n2 = 1.2, n3 = 1.0, and for x12 = 600, which
corresponds to Fig. 8(a), x12 = 700, which corresponds
to Fig. 8(b), and x12 = 750, which corresponds to Fig.
8(c). In ray theory, the Descartes ray touches the
core when Eq. (19) is satisfied and when

a23 sin 03 R

a 12 -

( C )

Fig.10. Ray trajectories that correspond to the Debye-series term
T1

3 2
T,

2 1
R

11
T, 1

2
T1

2 3 for (a) particlelike scattering for a large core,
which permits rainbow formation, (b) the transition between
particlelike and bubblelike scattering where rainbow extinction
occurs, (c) bubblelike scattering for a small core where no rainbow
can occur.

(51)

For the coated-sphere parameters of this example,
the transition should occur at x12 = 692.82. The
results of Figs. 9 verify that in wave theory, the
transition occurs for nearly the same value of x12.
Wave theory also verifies that just below the transi-
tion, one of the two supernumerary rays is blocked,
greatly decreasing the amplitude of the supernumer-
ary interference pattern while preserving the partial
focusing of the rays in the immediate vicinity of the
Descartes ray. The supernumerary interference pat-
tern is not completely obliterated, however, because
of interference with the surface waves created at the
core-coating interface by the blocked supernumerary
ray.

A more subtle transition is illustrated with ray
theory in Figs. 10. Consider the oa ray of Fig. 1(b) for
the special case of n, = 1.333, n2 = 1.5, and n3 = 1.0.
Let the core radius and the coating thickness be

1800

00 90

03 (degrees)

Fig. 11. Scattering angle 0 as a function of the angle of incidence
03 for the ray trajectories of Fig. 10. The curves labeled a, b, and c
correspond to the situations of Figs. 10(a), 10(b), and 10(c),
respectively. Point R denotes the rainbow, and point S denotes
total external reflection. The two curves labeled a correspond to
two different coating thicknesses in the particlelike scattering
regime.
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varied while the composite particle radius a23 is held
constant. If the core is large and the coating is
small, as in Fig. 10(a), scattering by the coated sphere
resembles scattering by a homogeneous particle that
comprises core material. We saw in Section 2 that a
first-order rainbow occurs for this situation. If the
core shrinks in size while the coating correspondingly
grows, one eventually reaches the situation of Fig.
10(c), in which scattering by the core resembles
scattering by a bubble that comprises core material
embedded in a large volume of coating material. For
scattering by a spherical bubble, the scattering angle
of the rays that make one internal reflection is a
decreasing function of the impact parameter, and no
first-order rainbow occurs.25-27 The behavior of the
scattering angle as a function of the impact param-
eter was computed for a number of different coating
thicknesses and is illustrated in Fig. 11. The two
graphs labeled a correspond to two different coating
thicknesses for the particlelike thin-coating case of
Fig. 10(a), the graph labeled b is the transition case of
Fig. 10(b), and the graph labeled c is the thick-coating
bubblelike case of Fig. 10(c). The point labeled R is
the relative minimum scattering angle that corre-
sponds to the rainbow. As the coating thickness is
increased, the angle of incidence for the rainbow also
increases, reaching 0 3 R = 900 at the transition. To
show the migration of the relative minimum of the
scattering angle clearly, two type-a curves are shown
in the figure. The transition between particlelike
scattering and bubblelike scattering thus occurs in
ray theory when the Descartes rainbow ray is incident
upon the coating-air interface at grazing incidence,
and the refracted Descartes ray enters the core at

Fig. 12. Scattered intensity Sl(O)12 of Eq. (54) as afunction of O
for X23 = 900, nj = 1.33, n2 = 1.5, n3 = 1.0 and (a) X12 = 850 in the
particle-like scattering regime, (b) X12 = 712.5 near the rainbow
extinction transition, and (c) X12 = 630 in the bubblelike scattering
regime.

grazing incidence with 0 1 R = 900. This occurs when

1
a12 = - a2 3 . (52)

As the rainbow-extinction transition occurs for
grazing incidence rays, other interesting scattering
effects accompany it. Because 0 3 R = 900 at the
transition, electromagnetic surface waves that shed
radiation9 into the angular region 0 > OR on the
illuminated side of the rainbow are created at the
coating-air interface. These surface waves interfere
with the geometric rays that are incident with 03 <

100.

U-

-J

50 ae

a 20 40 60 00 100 120 140 l6e 180

Spatial Frequency (inverse degrees)

Fig. 13. Magnitude squared of the Fourier transform of the
Aden-Kerker scattering amplitude S1(O) of Eq. (6) as a function of
spatial frequency for X12 = 10,000, (2'Tr8)/X = 300, nI = 1.333, and
n2 = 1.5. The scattering amplitude was computed over a 3°
interval centered on 0 = 137°. The center of the coated sphere
corresponds top = 0, and the outer edge corresponds top = 174.53
deg-'. The p peaks are due to the 13 supernumerary rays of Fig.
1(b), and the a peak is due the a rays of Fig. 1(b).
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900 to produce the familiar supernumerary interfer-
ence pattern. This effect is novel in that for both the
homogeneous sphere and for the coated sphere with

a12 1-12 >-2 1 (53)
a23 ni

the supernumerary pattern is formed, at least in
part,1" by the interference of geometric rays incident
upon the sphere with 03 < 0 3R and geometric rays28

that are incident with 03 > 0 3R. In addition, as 0 1R =
900 in the core, electromagnetic surface waves are
also set up at the core-coating interface. But, as
n1 < n2 , these surface waves propagate in the direc-
tion opposite to the coating-air interface surface
waves.929 Thus the core-coating interface surface
waves shed radiation into the angular region 0 < OR
on the unilluminated side of the rainbow. This is
the region where normally only the complex ray
contributes to the rainbow, and the scattered inten-
sity falls off as exp[ - 2/3(OR - 0)3/2] as one progresses
into Alexander's dark band.5 Because the intensity
of the core-coating surface waves fall off as
exp[-K(OR - 0)], where K is a constant, the surface-
wave mechanism should provide the dominant contri-
bution to the intensity in Alexander's dark band.

To test these ideas, we computed the wave-theory
intensity of Eqs. (4) and (6) for the Debye-series
contribution to the partial-wave-scattering ampli-
tudes:

al
= - T1

21R 11T 1
2T 23,

b,

which corresponds to the ray trajectory of Figs. 10.
The composite size parameter is x23 = 900. Figure
12(a) shows the scattering in the particlelike regime
for x12 /x2 3 = 0.944; Fig. 12(b) shows the scattering for
x12 /x2 3 = 0.792, which is just above the expected
transition value of (X12/X23)transition = 0.75; and Fig.
12(c) shows the scattering in the bubblelike regime
for x12/x23 = 0.70. The Aden-Kerker-Debye results
confirm that the particlelike bubblelike transition
occurs near the ray-theory prediction of Eq. (52).
Further, in Fig. 12(b) the rainbow intensity decreases
exponentially rather than faster than exponentially
in Alexander's dark band, which indicates surface-
wave dominance for 0 < OR.

6. Experimental Observations

Perhaps the greatest difficulty in experimentally test-
ing the results of Sections 2-5 is the preparation of a
suitable coated spherical particle. As a first attempt
at an experimental confirmation, we filled an 18.4-cm-
diameter thin-walled spherical glass globe with water
and illuminated it with a slide projector, 10 m away,
whose lens had been removed. A photograph of the
first-order rainbow glare spots2'30'3' on the globe is
shown in Plate 47. The locations of the glare spots
correspond to peaks in the magnitude squared of the

Fourier transform of the scattering amplitudes.3 2 33

The glare spots in Plate 47 are consistent with the
Fourier-transform calculation shown in Fig. 13. In
addition to the usual two rainbow glare spots that are
due to the f3 supernumerary rays, there is a third
glare spot slightly closer to the center of the globe
that corresponds to the a ray trajectories. This
multiple internal reflection effect that is due to the
finite thickness of the coating is familiar in reflection
off flat thin slabs of material.34' 35

In summary of the results presented here, the
behavior of the first-order rainbow in scattering by a
homogeneous spherical particle is well understood
when the wavelength, particle diameter, and particle
refractive index are varied. A new and rich set of
rainbow phenomena, however, occurs when the homo-
geneous particle acquires a coating. We have found
that for three different ranges of the coating thick-
ness, /a12 < 10-3, 8/a1 2 10-2, and 6/a12 0.33,
three new rainbow phenomena become important.
These results reinforce our belief that the rainbow
represents an incredibly fertile source of interesting
optical phenomena. It is amazing that even though
the rainbow has been continually studied since Theod-
oric of Freiberg discovered the correct ray-theory
mechanism nearly 700 years ago,36'37 people are still
learning new things about it.

This work was supported in part by the National
Aeronautics and Space Administration grant NCC
3-204.
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