Cleveland State University EngagedScholarship@CSU

Undergraduate Research Posters 2017

Undergraduate Research Posters

2017

Spurious grain formation due to convection at cross-sectionchanges during directional solidification

Noah Weber Cleveland State University

Masoud Ghods

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2017

Part of the Chemical Engineering Commons How does access to this work benefit you? Let us know!

Recommended Citation

Weber, Noah and Ghods, Masoud, "Spurious grain formation due to convection at cross-section-changes during directional solidification" (2017). *Undergraduate Research Posters 2017*. 56. https://engagedscholarship.csuohio.edu/u_poster_2017/56

This Book is brought to you for free and open access by the Undergraduate Research Posters at EngagedScholarship@CSU. It has been accepted for inclusion in Undergraduate Research Posters 2017 by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Spurious grain formation due to convection at cross-sectionchanges during directional solidification

Washkewicz College of Engineering

Student Researchers: Noah Weber and Claudine Lacdao

Faculty Advisor: Surendra Tewari

<u>Abstract</u>

Turbine blades are a critical component in high powered gas turbine engines. These components are directionally solidified to have a single grain orientation, which allows them to operate under high temperature and stress conditions. Spurious grain formation is a major concern when forming these turbine blades. The purpose of this study was to study the effect convection has on forming these defects within turbine blades. Two alloys, Pb-5.8%Sb (solutally unstable) and Al-19%Cu (solutally stable) were directionally solidified upward in a positive thermal gradient (thermally stable) in a graphite crucible having abrupt cross-sectional area change from 3.2 mm diameter to 9 mm diameter. In the Lead alloy after the cross-section-expansion there is no observable new grain formation. However, in the Aluminum alloy there is extensive new grain formation after the expansion.