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Abstract 

Nonlinear and non-Gaussian processes with constraints arc commonly cncourucrcd in dynamic estimation problems. Methods for solving 
such problems eilher ignore the constraints or rely on crude approximations of the model or probability distributions. Such approximations 
may reduce lhe accuracy of the estimates since Ihey often fail \0 capture the variety of probability distributions cncountcred in constrained 
linear and nonlinear dynamic systems. This article describes a practical approach that ovcrcomes thcse ~hortcomings via a novel extension of 
sequential MonIC Carlo (SMC) sampling or particle filtering. Inequality constrai nts are imposed by acceptireject stcps in the algorithm. The 
proposed approach provides samples representing the posterior distribution at each time point. and is shown to satisfy the same theoretical 
properties as unconstrained SMC. Illustrative examples show that results of the proposed approach are at least as accurate as moving horizon 
estimation. but computationally more efficient and in addi tion. the approach indicates the uncertainty associated with these estimates. 

KeYII"<Jrll,.: Constraine{] estimation: Extcn{]c{] Katm~n tiller: Purtir[e tiller: Moving horizon estimation: Data rectification 

I. Introduction 

Estimation of dynamic processes is generally expressed as 
follows. Given measurements Yt,k = IYt . )'2, .. . • Yk}, process 
models. 

( I ) 

(2) 

and initial guess p(..\"(). est imate the current state. Xk. Here. 
Xk E '.H"" is the state vector and Ik : 91".< x 91"'·' ~ 91"" is 
the system equation. Measurements, Yk E 91"y are related to 

the state vector through the measurement equation Ilk : 91"" x 
91"· ~ 91")· . System and measurement errors are represented 

by Wk and I'k, respectively, and p(x) denotes the probability 
density funct ion (pdt) of a random variable x. 

This nonlinear dynamic estimation problem has received sig­
nificant attention over the decades and many techniques have 
been developed including extended Kalman fil tering (EKF) 
(Jazwi nski. 1970), unscented Kalman filtering (U KF) (Julier 
& Uhlmann, 2004), and movi ng-horizon based least-squares 
estimation (M HE) (Robertson, Lee. & Rawl ings. 1996). EKF 
lineari zes the nonlinear mode l at each time point and implic itly 
assumes the noi se and variable distributions to be Gaussian. 
It is computationally effi cient, but often fail s to provide accu­
rate estimates and may even diverge. UKF avoids the use of 
linearization and can perfonn better than EKF. but the deter­
mini stic choice of sigma points severely limits nexibility in the 
shape of the distri butions. Also. this approach does not accom­
modate constraints. MHE form ulates a nonli near programming 
problem under possible constraints, which it solves in overlap­
pi ng moving windows, usually of a fixed size. The Objective 
function is usually formu lated to find the least-squares solu­
tion and the approach has been shown to outperform EKF 
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Fig. 1. Evolution of the prior of a McKeithan reaction network. In each subfigure the x-axis represents the variable’s range while the y-axis is the density value. 

(Haseltine & Rawlings, 2005). However, two significant short­
comings of MHE are that it is not recursive in nature, and it 
has to rely on multivariate Gaussian or other fixed shape distri­
butions to represent the prior knowledge or arrival cost at the 
beginning of each moving window. These characteristics may 
increase the computational cost and reduce estimation accu­
racy. Fig. 1 shows typical prior distributions encountered in a 
reaction network example, which is discussed in Section 4.2. 
These distributions are truncated, unimodal or multimodal, and 
change shape over time. Any method that requires fitting of 
such arbitrary shapes is not likely to be practical, and has to 
rely on approximations such as Gaussian and give up some of 
its accuracy. 

Recently, Bayesian estimation of dynamic processes through 
sequential Monte Carlo (SMC), also known as particle filter­
ing, has been the subject of extensive research (Arulampalam, 
Maskell, Gordon, & Clapp, 2002; Doucet, Godsill, & Andrieu, 

2000; Gordon, Salmond, & Smith, 1993). Our previous work 
(Chen, Bakshi, Goel, & Ungarala, 2004) introduced SMC for 
estimation in dynamic chemical process systems and compared 
it, for the first time, with MHE for unconstrained estimation. 
It showed that SMC can not only provide more accurate re­
sults than MHE but can also be more computationally effi­
cient. This paper extends our work to deal with constraints, 
and compares its performance with EKF and MHE via pop­
ular case studies from the literature. Using sampling based 
methods for solving this type of problem does not seem to 
have received any attention to date. For imposing constraints 
within SMC, a novel acceptance/rejection algorithm is devel­
oped. This approach is equivalent to truncating or modifying 
the appropriate constrained distribution (prior or likelihood) to 
satisfy the constraints, which ensures that the posterior also 
satisfies the constraints. This approach is shown to possess 
the same theoretical properties as the traditional unconstrained 



SMC approach. Furthermore, SMC readily provides insight into 
the quality of the estimates via regions of highest probability 
density (uncertainty) at each time point. Case studies demon­
strate better accuracy and smaller computational cost of SMC 
over MHE. 

In the following sections, introduction of the generic SMC 
is first provided. Then the proposed approach for extending 
sequential Monte Carlo to constrained nonlinear dynamic sys­
tems is described. Theoretical analysis of convergence proper­
ties of SMC methods is also introduced. Finally, performance 
of the proposed approach is compared with existing methods 
via simulation. 

2. Sequential Monte Carlo 

Using Monte Carlo sampling to solve estimation problems 
requires an approach for generating samples from the posterior. 
This may be accomplished via sequential importance sampling, 
since direct drawing from the posterior distribution is not feasi­
ble. For example, one can draw samples {x(i), i =1, 2, . . . , N}
from a convenient importance function n(x), and the estimate 
of E[<(x)] regarding a distribution, say, p(x), is given by  f 

p(x) 
E[<(x)] = <(x) n(x) dx 

n(x)
 
N
 1 p(x(i)) ∗ ∗≈ <(x(i))q (i) where q (i) = . 

N n(x(i)) 
i=1 

In fact, both p(x) and n(x) only have to be known up to a 
∗constant, in which case q (i) are normalized and we have, 

N ∗ q (i)
E[<(x)] ≈  <(x(i))q(i) where q(i) = . (3)∗ N 

1 q (j) 
i=1 j=

Here, information about the relevant distribution is contained 
in the pairs of samples and weights, {x(i), q(i)}, known as 
particles. A basic requirement on the importance function is that 
its support should include the support of the true distribution 
(Geweke, 1989). 

For dynamic processes, the same operation is used, though a 
recursive mechanism is needed to update the particles over time. 
Generally, a prediction step is applied recursively by passing 
each sample through the state equation (1), to obtain samples 
corresponding to the prior at time k, p(xk|y1:k−1). This pre­
diction step utilizes information about process dynamics and 
model accuracy without making any assumptions about the na­
ture of the dynamics and shape or any other characteristic of 
the distributions. Once the measurement, yk is available, it can 
be used to recursively update the previous weights by the fol­
lowing equation (Arulampalam et al., 2002): 

p(yk|xk(i))p(xk(i)|xk−1(i)) ∗ ∗ q (i) ∝ qk−1(i) . (4)k n(xk(i)|xk−1(i), yk) 

This updating step utilizes the measurement model and infor­
mation about the measurement error. Again, no assumptions 
about the type of model or distributions are required. The re­
sult of these prediction and updating steps is the particles and 

weights at time k, {xk(i), qk(i)}. Any posterior moment may 
then be calculated via Eq. (3). The resulting algorithm is fully 
recursive and computationally efficient since it avoids integra­
tion for obtaining the moments at each time step, nonlinear 
optimization in a moving window, or restrictive assumptions 
about the nature of the error or prior distributions and models. 

2.1. Convergence properties 

Convergence properties of SMC have been studied by Del 
Moral and Miclo (2000), Crisan (2001), Künsch (2005), and 
many references cited in these papers. A survey of some con­
vergence results for SMC is provided by Crisan and Doucet 
(2002). We summarize the state of the art based on the con­
vention of Künsch (2005), followed by a discussion of their 
validity for the proposed constrained SMC algorithm. 

Consider the general state space model described by 
Eqs. (1) and (2) in the context of a hidden Markov model. 
The state sequence {xk, k  �1} consists of a Markov chain with 
transition densities ak such that 

Pr(xk ∈ dx|x1:k−1) = Pr(xk ∈ dx|xk−1) = ak(xk−1, dx). 

Similarly, given x1, x2, . . .  ,  measurements y1, y2, . . .  are con­
ditionally independent and each follows the distribution 

Pr(yk ∈ dy|xk) = bk(xk, dy). 

For example, in the widely used state space models with inde­
pendent additive noises Wk ∼ pW and Vk ∼ pV, the expressions 
of ak and bk are given by 

ak(xk−1, xk) = pW(xk − fk(xk−1)), 

bk(xk, yk) = pV(yk − hk(xk)). 

Given the measurements y1:k , the posterior density of xk is 
estimated by the empirical distribution based on the N particles 
and weights at time k, {xk(i), qk(i)}, in Eq. (3), 

N 
N p̂ (xk|y1:k) = 6(xk − xk(i))qk(i). 

i=1 

Then Künsch (2005) provides the following theorem. 

Theorem 1. If x → ak(x, ·) is continuous, and if for all k, all 
x and all y, 

0 < bk(x, y) C(k, y) < ∞, 

then for all k and all y1:k , 

NIp̂ (xk|y1:k) − p(xk|y1:k)I1 → 0 

in probability as N → ∞. 

This result states that at each time point, the empirical 
distribution of the particles converges to the underlying true 
posterior density when the number of particles is increased. 



 

�

 

Table 1 
Algorithm for estimation by constrained SMC 

• FOR times k = 1, 2, 3, . . .  
— FOR samples i = 1, 2, 3, . . . , N  

– UNTIL (xk(i), Wk(i)) satisfy constraints, 
- Draw sample, Wk−1(i) from system noise 
- Calculate xk(i) using Eq. (1) 

– END UNTIL 
∗ – Assign a weight, q (i), to  xk(i) k 

— END FOR 
∗ — Normalize q (i) to find qk(i) k 

—Implement resampling if necessary 
• END FOR 

The conditions imposed above are quite weak. Furthermore, it 
is straightforward to verify that these conditions are satisfied 
for the widely used additive Gaussian noise model. 

The convergence of SMC shows that the empirical distri­
bution based on the sampled particles and weights converges 
to the true distribution. However, the availability of a particle 
based approximation to the posterior distribution, though crit­
ical, does not answer the problem of the approximation error 
in the estimate of the parameter of interest. The following cen­
tral limit theorem (Künsch, 2005) shows that under very weak 
conditions, the SMC approximation of the estimate based on 
the empirical distribution p̂N (xk|y1:k) converges to the true es­√ 
timate at the rate of 1/ N . 

Theorem 2. Under the conditions in Theorem 1, for each finite 
k, and all y1:k and functions <(·) that are square integrable 
with respect to the true posterior distribution,   √ N 

N <(xk(i))q(i) − E(<(xk))

i=1 

is asymptotically normal. 

This result is a highly simplified version of the one in Künsch 
(2005). As a practical matter, as time increases, it is important 
that the asymptotic variance of the Monte Carlo estimate stays 
bounded. 

3. Constrained SMC 

3.1. Algorithm 

The proposed approach extends existing SMC algorithms 
to ensure satisfaction of inequality constraints. Equality con­
straints may be imposed by including them in the state or mea­
surement equations (Ungarala & Bakshi, 2001). This approach, 
represented by the pseudo-code in Table 1, extends our previ­
ous work on unconstrained estimation (Chen et al., 2004). This 
implementation of SMC uses a convenient and popular choice 
of importance function as the following equation (Gordon 
et al., 1993): 

n(xk|xk−1, yk) = p(xk|xk−1). 

This choice simplifies the recursive weight calculation by Eq. 
(4) to the following equation: 

∗ ∗ q (i) = q 1(i)p(yk|xk(i)). (5)k k−

Updating the prior with the current information then only re­
quires the likelihood value. Other importance functions may be 
readily used, if necessary. 

Enforcement of constraints in SMC is implemented by the 
extra steps shown in bold in Table 1. These accept/reject steps 
evaluate the samples Wk−1(i) and the corresponding xk(i) gen­
erated by the prediction step, via Eq. (1). Only those samples 
of the generated {Wk−1(i), xk(i)} that satisfy constraints are ac­
cepted. Note that, the noise distributions for k 2, or the prior 
distribution at k = 1, itself may be subject to the constraints, 
and therefore drawing samples from these distributions may re­
quire another accept/reject step whenever it is inconvenient to 
sample directly from the underlying distributions. For example, 
in Fig. 1, the first subfigure shows samples from a trun­
cated Gaussian distribution. The steps shown in bold face in 
Table 1 may require a larger number of samples than uncon­
strained estimation, but as shown by the illustrative examples 
in Section 4, the computational complexity still remains rea­
sonable and better than MHE. Usually, the number of rejected 
samples is not large, since most prior samples already satisfy 
the constraints. 

3.2. Convergence properties 

Remark 1. The constrained SMC algorithm in Table 1 satisfies 
the theorems given above. 

The bold lines in Table 1 ensure that the accepted particles 
are truly generated from the correct transition densities under 
the constraints. In other words, the accept/reject operation leads 
to particles that correctly represent the posterior distribution, 
which ensures validity of the three theorems for constrained 
SMC. 

4. Case studies 

Simulations are run on a 2.0 GHz CPU with 512 MB RAM 
personal computer using Matlab and GNU/Octave. MHE is 
implemented by a publicly available package, which uses a 
specially structured solver for computational efficiency (Tenny, 
2002). Allowing for uncertainty, a total of 100 realizations were 
run for each model with each procedure applied to the data sets 
generated by that model. The performance is evaluated by the 
overall mean-squared error (MSE) and, specifically MSER, the k 
MSE averaged over realizations for each time k=1, 2, . . . , Nm, 
where Nm is the number of measurements available in each 
realization. Examining MSER over time is likely to indicate the k 
long-term behavior of the tested method and provide insight 
into the distribution of errors over time. They are defined as 

100 
TMSER = 

1 
(xk,r − x̂k,r ) (xk,r − x̂k,r ), (6)k 100 

r=1 



 

2 

0 

0.5 

1 
Nm 

MSE = MSER 
k . (7)

Nm 
k=1 

In the above equations, xk,r is the true state at time step k of 
the rth realization, and x̂k,r is the point estimate of xk,r . In this 
paper, the posterior mean is chosen as the point estimate for 
SMC. More details are available in Lang, Chen, Bakshi, Goel, 
and Ungarala (2006). 

x 10−4 

4.1. Constrained adiabatic CSTR 

In this section, a popular process engineering problem, an 
adiabatic CSTR, is studied (Jang, Joseph, & Mukai, 1986; 
Henson & Seborg, 1997). Governing equations are as follows: 

dC q −EA/T= (C0 − C) − kC e ,
dt V 

dT q AH UA−EA/T −= (T0 − T )  − kC e (T − Tc),
dt V pCp pCpV 

where C is the concentration, T is the temperature, q is the 
flow rate, V is the volume of the reactor, C0 and T0 are inflow 

C
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1 

concentration and temperature, kC e−EA/T is the reaction rate, 
AH is the heat of reaction, p is the density, Cp is the specific 
heat, Tc is the temperature of the cooling fluid, and U and A are 
the effective heat transfer coefficient and area. Discretization 
of continuous differential equations is implemented by finite 
difference with At = 0.005. The operating conditions are listed 
in Lang et al. (2006). The system noise at the scale of the 
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normalized state variables is p(W) ∼ N(0, (2 · I2), where W 
(2 = 2.5 × 10−7 and Im is an m × m identity matrix, and W 

EKF MHE SMC	 the measurement noise is p(V) ∼ N(0, (V 
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0.0025. The initial guess is p(x1) ∼ N(J , (V
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in each realization. A non-negative constraint is enforced on 
the concentration Ck at each time step, k. 

As shown in Fig. 2, SMC consistently requires less computa­
tion time and results in slightly better accuracy than MHE, with 

EKF MHE SMC 
both methods being much more accurate than EKF. The MSER 

k 
values shown in Fig. 3 indicate that EKF performs quite well Fig. 2. MSE and CPU time comparison for the constrained CSTR Model. 
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Fig. 4. MSE and CPU time comparison for the constrained McKeithan network. 
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in the beginning but has an abrupt increase in errors after time 
100. In fact, this process experiences rapid state changes at that 
time and the concentration level drops nearly to zero, which 
is the constraint value. This shows that EKF suffers due to 
linearization and its inability to enforce constraints. In con­
trast, MHE uses the smoothing approach for estimating the 
arrival cost for each window. For this nonlinear problem, the 
smoother does not reduce to EKF, but utilizes information 
about the measurements in each window to estimate a more 
accurate arrival cost than that obtained via filtering (Tenny, 
2002). Compared to EKF and MHE, SMC uses neither lin­
earization nor Gaussian approximation. For SMC, the dynamic 
process is well approximated by the particles that satisfy the 
constraint. 

4.2. Constrained McKeithan network 

The McKeithan reaction network represents the kinetics 
of signaling in a cellular system (Chaves & Sontag, 2002; 
McKeithan, 1995). Compared to the previous model, it is 
nonlinear in both the state and measurement equations. In 
addition, one state component, C, is not present in the mea­
surement equation. The differential form of this model is 
described by 

Ȧ = −k1AB + k3C + k4D, 

Ḃ = −k1AB + k3C + k4D, 

Ċ = k2AB − (k3 + f3)C, 

Ḋ = f3C − k4D, 

y = [AB2 AD]T. 

Details about model parameters and discretization are in Lang 
et al. (2006). The initial value is x1 = (1, 3, 3, 2)T, and the 
constraint is set to Dk such that Dk > 0.7 for all k. The sys­
tem noise is iid Gaussian with covariance Lw = (2 I4, where w 
(2 = 10−4. The measurement noise is also iid Gaussian with w 
covariance Lv = I2. The initial prior distribution is set to be 
N(x1, 0.5I4). There are 1000 measurements. 

The MSE for different methods is shown in Fig. 4. Like 
the previous case, EKF is worse than MHE, which is worse 
than SMC. Furthermore, the MSER values shown in Fig. 5 k 
for EKF and MHE are worse than SMC for most of the time 
steps due to the non-Gaussian distributions shown in Fig. 1, 
which are caused by the complex nonlinearities in the state and 
measurement equations. 

5. Conclusions 

This paper described a practical approach for extending SMC 
sampling or particle filtering based Bayesian estimation to con­
strained dynamic systems. The proposed algorithm is based on 
previous work on estimation of unconstrained nonlinear dy­
namic systems (Gordon et al., 1993). It enforces inequality 
constraints via an acceptance/rejection algorithm that ensures 
that all samples representing the likelihood, prior or posterior 

satisfy relevant constraints. Equality constraints may be read­
ily imposed via the proposed approach by including them in 
the state or measurement equations. The resulting formulation 
is general and may be combined with modifications of SMC 
such as alternate ways of constructing importance functions, 
dealing with poor initial guess, or enforcing constraints. The 
proposed algorithm is also shown to possess the theoretical 
properties of unconstrained SMC. Application of constrained 
SMC to various case studies indicates that the proposed ap­
proach is capable of handling constraints and can provide ac­
curate estimates with efficient computation. Constrained SMC 
easily outperforms EKF in estimation accuracy and also shows 
improvement in estimation accuracy over MHE especially when 
the posterior distributions at each time point cannot be ade­
quately represented by multivariate Gaussian or other fixed-
shape distributions. In terms of computational efficiency, SMC 
consistently requires less CPU time than MHE especially in 
nonlinear dynamic systems. 
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