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Paired oxygen isotope records reveal modern
North American atmospheric dynamics during
the Holocene
Zhongfang Liu1,2, Kei Yoshimura2, Gabriel J. Bowen3, Nikolaus H. Buenning4, Camille Risi5, Jeffrey M. Welker6

& Fasong Yuan7

The Pacific North American (PNA) teleconnection has a strong influence on North American

climate. Instrumental records and century-scale reconstructions indicate an accelerating

tendency towards the positive PNA state since the mid-1850s, but much less is known about

long-term PNA variability. Here we reconstruct PNA-like climate variability during the

mid- and late Holocene using paired oxygen isotope records from two regions in North

America with robust, anticorrelated isotopic response to the modern PNA. We identify mean

states of more negative and positive PNA-like climate during the mid- and late Holocene,

respectively. Superimposed on the secular change between states is a robust, quasi-200-year

oscillation, which we associate with the de Vries solar cycle. These findings suggest the

persistence of PNA-like climate variability throughout the mid- and late Holocene, provide

evidence for modulation of PNA over multiple timescales and may help researchers

de-convolve PNA pattern variation from other factors reflected in palaeorecords.
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L
arge-scale teleconnections have a significant influence on
regional weather and climate1. At mid-latitudes in the
North Pacific and North American sectors, the Pacific North

American (PNA) pattern, which exhibits strong interannual
variability and interacts with other climate oscillations and
forcings to produce multidecadal2,3 variability, represents the
most prominent mode of atmospheric oscillation. The PNA is
represented as a standardized index derived from North Pacific
and North American mid-tropospheric geopotential height
anomalies1, with positive PNA (PNAþ ) conditions associated
with enhanced ridge and trough structure and meridional flows
over North America and negative PNA (PNA� ) with more
uniform pressure fields and stronger zonal flows. Similar spatial
signatures of pressure and precipitation fields associated with
interdecadal or century-scale variability may be described as
PNA-like inasmuch as they reflect common, coordinated changes
in the atmospheric circulation, but may arise from distinct
dynamical mechanisms. PNA is associated with variation in the
direction and strength of the prevailing circulation and storm
tracks, affecting moisture sources, temperature, precipitation
amounts and isotopic composition (d2H and d18O), mountain
snowpack and lake levels across North America2,4–6. The PNA is
most strongly expressed in winter, but can affect climate
throughout the year (Fig. 1 and Supplementary Fig. 1).

PNA-like variability is driven by internal atmospheric
dynamics and external forcing. Instrumental records extending
back several decades show an accelerating trend towards PNAþ
conditions and a strong modulation of PNA by sea surface
temperature (SST) variability7,8 associated with the El Niño/
Southern Oscillation (ENSO), Pacific Decadal Oscillation and
Atlantic Multidecadal Oscillation. Palaeoclimate studies have
adopted PNA as a framework for interpretation of century-scale
climate variability in North America, documenting a secular
trend towards PNAþ conditions since 1850 and periodic PNA
oscillations linked to solar forcing and regional drought2,9–13.
Although this work has greatly improved our understanding of
the nature of PNA-like climate variability and associated
dynamics over annual to multidecadal timescales, long-term
variability of the PNA pattern and its relation to external forcing
remain poorly known.

Here we assess multi-millennial reconstructions demonstrating
PNA-like climate variation over a range of timescales. These
reconstructions are based on recently documented anti-phase
variation in precipitation water isotope ratios in western and

eastern North America that is robustly and uniquely associated
with variation in PNA-associated circulation patterns4–6 (Fig. 1
and Supplementary Fig. 1). We compare well-dated, independent
palaeoisotope proxy records situated within the western (Oregon
Caves National Monument (OCNM) speleothem14 and Lake
Jellybean sediment10; sites 2 and 4 in Fig. 1 and Supplementary
Fig. 1) and eastern (Buckeye Creek Cave (BCC) speleothem15 and
Lake Grinnell sediment16; sites 1 and 3) regions of isotope/PNA
correlation. Each time series consists of carbonate d18O
measurements that were re-sampled to a common sampling
resolution (47 years for speleothems, 35 years for lake sediments,
see Methods) and represents local variation in mid-Holocene
(MH) to late-Holocene (LH) precipitation d18O values, likely
overprinted by variation in local temperature, humidity and soil
or lake water balance. Our results demonstrate anti-phase
variability in the eastern and western regions, consistent with
the expected expression of variation in the PNA pattern, over
both millennial and centennial timescales. These results,
supported by analysis of isotope-enabled general circulation
model output and independent palaeo-precipitation proxy data,
suggest that the PNA pattern may be a persistent pattern of
climate system variability that has been modulated by other
forcings and feedbacks over timescales of hundreds to thousands
of years.

Results
Millennial-scale trends. Each record (Fig. 2) exhibits substantial
isotopic variability through the MH and LH (ranges of values are
1.33% at OCNM and 0.90% at BCC for speleothem carbonate,
and 1.84% at Lake Jellybean and 1.66% at Lake Grinnell for lake
sediment carbonate). Paired values from the re-sampled time
series are significantly anticorrelated for each archive (r¼ � 0.55,
Po0.001 and neff¼ 25 for speleothem and r¼ � 0.13, Po0.1 and
neff¼ 11 for lake sediment, see Methods). Within each region,
d18O values of different archives also exhibit statistically
significant but positive correlations (r¼ 0.18, Po0.005 and
neff¼ 15 for the western records, re-sampled at a common
22-year resolution, and r¼ 0.72, Po0.001 and neff¼ 34 for the
east at a 47-year resolution). Data from both lake sediments
and speleothems show significant (Po0.0001) secular change
throughout the period of record, with opposing trends for records
derived from the western (increasing with time) and eastern
(decreasing with time) sites (Fig. 2 and Supplementary Fig. 2).
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Figure 1 | Correlations between modelled precipitation d18O and PNA index. Maps show long-term (1950–2005) correlations between IsoGSM

precipitation d18O and PNA index (Climate Prediction Center) in the North American (NA) continent. (a) Cool season (December–March) correlation.

(b) Annual correlation. The areas enclosed by the grey line show significance at the Po0.1 level. Both cool season and annual correlations display a

northwest (NW)–southeast (SE) dipolar pattern across the NA continent, with positive correlation in the NW and negative correlation in the SE. Numbers

indicate locations mentioned in the text: 1—BCC speleothem14, 2—OCNM speleothem15, 3—Lake Grinnell16, 4—Lake Jellybean10, 5—Crawford Lake29,

6—Castor Lake25, 7—Little Salt Spring24, 8—Estancia Lake23, 9—Crevice Lake26, 10—Dog Lake27, 11—Felker Lake28.
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A two-sample t-test shows that the long-term mean values for the
MH and LH intervals in each record are significantly different
(Po0.01, see Methods). The anticorrelated change in oxygen
isotope ratios in these two regions is consistent with expectations
for a shift from a climate state dominated by more PNA� -like
circulation conditions during the MH to more PNAþ -like
conditions during the LH4–6.

Variation in the individual d18O records has previously been
attributed to effects of changing local temperature, precipitation,
moisture sources and storm tracks driven by large-scale climate
modes10,14–16. The significant anticorrelated variation identified
here for the western and eastern regions suggests that these
records are responding to a common, large-scale climatic
teleconnection between the regions. We suggest that the
inversely correlated component of isotopic change in the
western and eastern sites may reflect long-term variability of
the mean state of PNA through the Holocene based on the
documented association of anti-phase precipitation isotopic
variation in these regions with PNA. During the MH, relatively
low d18O values in the west coupled with relatively high d18O
values in the east are consistent with dominance of a more
PNA� -like climate pattern over North America (Fig. 2),
supporting enhanced zonal circulation10. By contrast, LH
isotope records suggest a PNAþ -like mean state, characterized
by enhanced meridional circulation17,18 with higher d18O values
in western North America and lower values in the east. The shift
between these states is nearly synchronous with climatic and
hydrological changes recorded in a number of different proxies
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Figure 2 | Palaeoclimate proxy records from the North American

continent. (a) OCNM speleothem d18O. (b) BCC speleothem d18O. (c) Lake

Jellybean sediment d18O. (d) Lake Grinnell d18O. Red and blue lines denote

the records from western and eastern North America, respectively. The

dashed lines show the mean values of each record for the MH and LH

(for the demarcation of the MH and LH, see Supplementary Fig. 2).
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Figure 3 | Precipitation d18O and climate field differences. Results are from IsoGSM and show cool season (December–March) differences.

(a) Precipitation d18O (%, VSMOW) difference between late Holocene (LH) and mid Holocene (MH; LH minus MH). (b) Precipitation (mm day� 1)

and vertically integrated moisture flux (kg m� 1 s� 1) field difference between LH and MH. (c) Precipitation d18O (%, VSMOW) difference between

PNAþ and PNA� . (d) Precipitation (mm day� 1) and vertically integrated moisture flux (kg m� 1 s� 1) field difference between PNAþ and PNA� .

LH simulations are based on a 20-year integration forced with modern SSTs and greenhouse gases and the MH simulation is a 20-year integration

using orbital configuration at 6,000 year BP and MH SST forcing (see Methods for the details). The areas enclosed by the grey lines show significant

(Po0.1) precipitation and isotope differences. The arrows in b and d denote vertically integrated moisture flux (kg m� 1 s� 1).
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across North America19–21, and corresponds temporally with the
4.2–3.9 kyr before present (BP) abrupt climate event documented
globally22.

Our result is supported by independent proxy evidence from a
range of sites across the continent. Published MH records suggest
drier conditions in the southwestern United States23 (site 8 in
Fig. 1 and Supplementary Fig. 1) and Florida24 (site 7). For the
same time interval, wetter conditions are reconstructed in the
Pacific Northwest (NW)25 (site 6), southwestern Montana26

(site 9) and British Columbia27,28 (sites 10 and 11), and wetter
conditions and 18O-depleted precipitation have been inferred in
the Great Lakes region29 (site 5). This distribution is generally
consistent with the pattern of precipitation change associated
with the modern PNA� state (Fig. 3d and Supplementary
Fig. 1b), which features enhanced precipitation across the Pacific
NW, Northern Rocky Mountains and upper Midwestern United
States, and reduced precipitation in the southwestern and
southeastern United States and across the central and southern
Great Plains. It is also consistent with expectations30,31 for
circulation patterns associated with independently documented
negative Pacific Decadal Oscillation and/or La Niña-like patterns

in the Pacific18,32 and a positive North Atlantic Oscillation
pattern32,33 during the MH.

General circulation modelling. Results from the proxy data are
further supported by climate model output from the Isotopes-
incorporated Global Spectral Model (IsoGSM34) and the
Paleoclimate Modelling Intercomparison Project Phase III
archive. We evaluated IsoGSM simulations forced with MH and
LH boundary conditions (see Methods), which show a spatially
coherent pattern of winter precipitation d18O change across the
North American continent (Fig. 3a). LH conditions feature higher
d18O values in the NW and slightly lower values in the southeast
(Fig. 3a). Similar patterns of isotope change also exist if this
comparison is conducted for annual average values, but with
weaker spatial coherence (Supplementary Fig. 3). The IsoGSM
results are roughly consistent with results from other isotope-
enabled atmospheric (LMDZ-iso35; Supplementary Fig. 4) and
coupled ocean-atmosphere (ModelE36) models. Comparison of
the IsoGSM results with simulations from non-isotope-enabled
models included in the Paleoclimate Modelling Intercomparison
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Figure 4 | Spectral analysis of speleothem and lake sediment d18O records. (a,b) Power and coherency spectra for (a) OCNM (red) and BCC (blue)

Speleothem d18O records and (b) Lake Jellybean (red) and Lake Grinnell (blue) sediment d18O records. The cross-spectral analysis was performed

using computer package SPECTRUM48 (see Methods). Periods of the main spectral peaks are labelled. The horizontal dashed lines indicate significance

at the 90 and 95% level in the coherence spectra. Grey bars denote significantly strong coherence between paired proxy d18O records. (c) Paired

speleothem d18O time series after 195±5 year band-pass filtering. (d) Paired lake sediment d18O time series after 219±5 year band-pass filtering.

Insets in c and d are the comparisons of BCC speleothem and Lake Grinnell d18O records with independently reconstructed PNA index values12 (pink line)

filtered in the 200±5 year periodicity domain. Note that the d18O records are inverted to express their anticorrelation with the PNA index. All filtering

used a third-order Butterworth band-pass filter.
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Project Phase III shows broad congruence in patterns of
precipitation change between the MH and LH (Supplementary
Fig. 5). Drier conditions dominate across southeastern North
America in all models and half of models simulate slightly wetter
conditions in the NW (HadGEM2-CC, IsoGSM, MIROC-ESM,
MPI-ESM-P and MRI-CGCM3) during the MH, further
supporting the robustness of the hydrological changes simulated
by IsoGSM.

The isotope changes simulated in IsoGSM are associated with
enhanced southwesterly moisture flux (delivering vapour more
enriched in 18O) to NW North America and northerly to easterly
moisture flux (more depleted in 18O) to southeast North America
during the LH compared with MH (Fig. 3b). Despite differences
in magnitude, the spatial structure of modelled isotope and
climate field differences between LH and MH is similar to that
between the PNAþ and PNA� states (Fig. 3, Supplementary
Fig. 6), supporting our interpretation that MH to LH shifts in the
proxy records may reflect a change in the mean state of the PNA
pattern. Changes in pressure fields between the two modelled
Holocene states are similar to those associated with modern PNA,
characterized by positive surface pressure anomalies that arc from
the Hawaiian Islands over the western interior of North America
and negative surface pressure anomalies over the southeastern
United States and/or Aleutian Islands during LH (Supplementary
Fig. 7, except GISS-E2-R). Modelled LH conditions are also
characterized by a more negative NAO-like pattern in north
Atlantic pressure (Supplementary Fig. 7, except CCSM4,
HadGEM2-CC and MRI-CGCM3), and a more El Niño-like
pattern in the tropical Pacific SSTs (relative to modelled
MH conditions; Supplementary Fig. 8, except GISS-E2-R
and HadGEM2-CC), consistent with previous palaeoclimate
reconstruction18,33 and modelling37,38.

Centennial-scale variability. The oxygen isotope proxy records
also exhibit substantial short-term (centennial) variation super-
imposed on the millennial-scale trends. Cross-spectral analysis
for paired speleothem or sediment d18O records from the two
regions indicates coherent, statistically significant (490% con-
fidence) variability at periodicities of 195 years for speleothems
and 219 years for lake sediments (Fig. 4a,b). Although similar
coherent periodicities can also be identified in cross-comparisons
of the records from the two regions (that is, speleothem
versus lake sediment) these are not statistically significant
(Supplementary Fig. 9), perhaps due in part to differences in time
averaging and/or resolution of the different archives. Band-pass-
filtered d18O records targeting these frequencies show robust
(r¼ � 0.96, Po0.0001 for speleothem and r¼ � 0.95, Po0.0001
for lake sediment) anti-phase oscillations, consistent with
expected response to PNA pattern variation (Fig. 4c,d and
Supplementary Fig. 10). Filtered records from all sites exhibit
similar patterns of amplitude modulation throughout the period
of record. Although the period of these variations approaches the
limits of uncertainty associated with the proxy record age models,
the common signal in all four records, in terms of both frequency
and amplitude, suggests that they are responding to common,
large-scale forcing. Furthermore, age model errors could only
explain the anti-phase, PNA-like oscillations recorded by both
proxy pairs in the event that there were systematic biases pro-
ducing a common phase-shift in both lacustrine and speleothem
records, an unlikely occurrence. Comparison of the d18O records
from the eastern sites with an independently reconstructed,
1,000-year PNA index12 reveals strong coherence of phase and
amplitude variations within the B200-year periodicity domain
(inset panels in Fig. 4c,d), further supporting the identification
and extrapolation of PNA variability in this frequency domain
throughout the MH and LH.

Discussion
Our results identify similar, spatially structured changes in North
American hydroclimate occurring on two different timescales
during the Holocene. The pattern of change in isotopic records,
climate model simulations and independent proxy data are
similar to that associated with modern PNA, suggesting that these
records may reflect a common pattern of atmospheric variability
reminiscent of, or involving, a change in the mean state of PNA.
If so, PNA may represent a persistent pattern of climate system
variability throughout the MH to LH, which was modulated by
changes in forcing and/or interaction with other dynamical
modes over a range of timescales.

The transition between the MH and LH is characterized by a
substantial change in insolation that affected many parts of the
climate system32. PNA-like changes in North American climate at
this time may reflect the influence of orbitally driven meridional
migration of the intertropical convergence zone (ITCZ) and
ENSO. The MH to LH decrease in summer/annual insolation has
been associated with a southward shift of the ITCZ39. Southward
displacement of the ITCZ induces a PNA-like extratropical
atmospheric response40, with a barotropic ridge over the Rocky
Mountains accompanied by a deepened trough (a southward shift
of the polar jet) in southeastern North America in winter. This
would lead to drier conditions in northwestern North America
and wetter conditions in the southeastern United States during
the LH (Supplementary Fig. 5). This PNA-like response is further
amplified by a warm LH eastern tropical Pacific SST (as during El
Niño; Supplementary Fig. 8) that can produce enhanced Rossby
wave propagation from the tropical Pacific, directly exciting the
PNA pattern41.

Centennial-scale North American climate variability during the
Holocene has previously been linked to variations in solar
radiation42. The 195- and 219-year periodicities identified and
associated with modulation of palaeo-PNA variability here are
similar to that of the 210-year de Vries (Suess) solar cycle43,
which may suggest a persistent link between PNA-associated
North American climate changes and solar variability during the
MH and LH. Previous studies have demonstrated that variation
in solar ultraviolet radiation can lead to shifts in regional
atmospheric circulation patterns and the polar jet through
heating and ozone chemistry in the middle atmosphere44.
North American circulation patterns for low and high solar
activity winters during the period of instrumental record show
strong associations with PNAþ and PNA� circulation patterns,
respectively45 (Supplementary Fig. 11). A recent 275-year
PNA reconstruction further supports this association, with
two prominent solar minima (Dalton and Damon) being
characterized by strong PNAþ conditions2.

Hydroclimatic variability in continental North America is
closely linked to the large-scale circulation, and a large number of
studies have previously related regional palaeoclimatic change to
storm tracks and moisture transport10–15,17,25,29. Our work
suggests strong, continental-scale coherency in these changes at
centennial to millennial scales throughout the past 8,000 years.
The association of MH to LH isotopic and climatic variability
with PNA-like shifts in atmospheric circulation suggests that the
PNA pattern was a persistent feature of the North American
climate. Given demonstrated links between other major climatic
modes and the PNA pattern, modulation of PNA variation offers
a unifying and consistent framework for translating large-scale
climate system trends (for example, MH to LH shifts in
ENSO18,32) and variability (for example, in response to solar
cycles43,44) into regionally coherent climatic change across North
America. This framework could be further tested as transient
climate model simulations spanning this period of Earth history
become available. The proposed associations may provide an
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indication of the spatial structure of future continental
hydroclimatic impacts expected under shifting climatic regimes
(for example, Fig. 3). In addition, our work indicates systematic,
regional variation in moisture sources and precipitation d18O
values throughout the MH to LH, and recognition of these
patterns will be important for de-convolving these large-scale
changes from variation in other regional or local climatic
variables reflected in palaeoclimate proxy archives.

Methods
Selection of palaeoclimate proxy records. Two pairs of palaeoclimate proxy
records were selected for analysis, including speleothem records from West
Virginia (BCC) and Oregon (OCNM) and lake sediment records from New Jersey
(Lake Grinnell) and Yukon (Lake Jellybean). With the exception of Lake Grinnell,
the records were retrieved from the NOAA World Data Center for Paleoclima-
tology (http://www.ncdc.noaa.gov/paleo/data.html). The records were chosen
based on two primary selection criteria: proximity of the study site relative to the
two poles of correlation between modern isotopes in precipitation and PNA index,
and high temporal resolution (average sampling interval of 50 years or better)
throughout the MH and LH.

Age model and re-sampling of time series data. Age models for all sites are
derived from the original data source and are fully described in the primary
references. The BBC age model was based on linear interpolation between U/Th
ages for each speleothem. Average analytical uncertainty (2s) for the individual age
determinations was 49 years15. The OCNM speleothem age model was derived
from 29 high-precision U/Th dates using Markov Chain Monte–Carlo sampling
and Bayesian statistics14. The average uncertainty (2s) for the individual age
determinations through the period of record used here was 140 years. The Lake
Grinnell sediment core was dated using seven accelerator mass spectrometry 14C
determinations on terrestrial plant macrofossils, with an average uncertainty
(2s, calibrated age) throughout the period of record used here of 49 years16. Ages
were assigned using a fourth-order polynomial curve fit to these data, with a fixed
surface age (� 55 cal year BP¼ 2005 AD). The chronology of the Lake Jellybean
sediment core was determined based primarily on seven accelerator mass
spectrometry 14C measurements of terrestrial macrofossils and pollen, supported
by 210Pb and 137Cs data from shallow sediments and identification of an
independently dated ash layer10. Uncertainty (1s) in the calibrated radiocarbon
ages varies from 80 to 157 years (average¼ 120 years). All ages discussed in this
paper are reported using calendar years BP, where present is defined as 1950 AD.
Ages post-dating 1950 are reported as negative.

For speleothem records, BCC is derived from records from three speleothems:
BCC2, BCC4 and BCC6, with an average time resolution of 35, 46 and 47 years,
respectively. The three raw BBC speleothem chronologies were combined to yield a
composite representative of the underlying climate variability. To this end, each
speleothem record was re-sampled at common, 47-year intervals, using linear
interpolation between data points. A composite time series was calculated by
averaging values from the three interpolated BCC time series. OCNM has an
average time resolution of 3 years, but to facilitate analysis this record was also
re-sampled at the same time points (47-year interval) as BCC by linear
interpolation between adjacent data points. For lake sediment records, the Lake
Grinnell and Lake Jellybean records have an average resolution of 35 and 22 years,
respectively. Both records were re-sampled at a common 35-year interval by linear
interpolation.

For all time series data d(t), the linear interpolation procedure estimated
d-values for an element t of an evenly spaced time vector based on the two

neighbouring measurements d(ti) and d(tj): d tð Þ ¼ d tið Þþ t� tið Þ dðtjÞ� d tið Þ
tj � ti

where

tirtrtj. All interpolation was conducted in Matlab R2012b.

Statistical analysis. To determine the correlation of paired proxy records, the

Pearson coefficient rxy of two time series was calculated as rxy ¼
Pn

i¼1
xi � �xð Þðyi � �yÞ
ðn� 1ÞSx Sy

,

where n is the sample size, �x and �y are the sample means, and Sx and Sy are the
sample s.d. To account for autocorrelation within individual time series, we
computed the ‘effective’ sample size46: neff ¼ n

1þ 2
Pn� 1

l¼1
rxl ryl

, where rxl and ryl are the

autocorrelation at lag l for paired time series. The Student’s t-value for assessing

significance was calculated as t ¼ rxy
ffiffiffiffiffiffiffiffiffiffiffi
neff � 2
p
ffiffiffiffiffiffiffiffiffiffi
1� r2

xy

p .

The difference between MH and LH d18O values for each record was evaluated
using the two-sample t-test47 with a correction to calculate effective sample
numbers accounting for autocorrelation in each record (neff¼ n(1�r)/(1þ r),
where n is the number observations in a record before correction and r is the lag 1
autocorrelation in the time series). Mean values were found to be different with
Poo0.01 for all records. The OCNM record has mean d18O values of
� 8.78±0.18% and � 9.11±0.23% for LH and MH, respectively (T¼ 4.19,
neff,1¼ 14, neff,2¼ 14, dfeff¼ 26). The BCC record has mean values of
� 6.10±0.08% and � 5.81±0.09% for LH and MH, respectively (T¼ � 4.52,

neff,1¼ 4, neff,3¼ 3, dfeff¼ 5). The Lake Jellybean record has mean values of
� 19.44±0.36% and � 19.67±0.26% for LH and MH, respectively (T¼ 2.52,
neff,1¼ 25, neff,2¼ 24, dfeff¼ 47). The Lake Grinnell record has mean values of
� 7.93±0.20% and � 7.39±0.25% for LH and MH, respectively (T¼ � 4.81,
neff,1¼ 8, neff,2¼ 9, dfeff¼ 15).

Time series analysis. Cross-spectral analysis of each paired d18O time series was
performed using the computer package SPECTRUM48. We used a Welch-type
spectral window, with a number of overlapping (50%) segments (nseg) of 5.
Considering the 47- (for speleothem) and 35-year (for lake sediment) resolution of
our records, we disregard spectral peaks below the Nyquist period of 100 years
(0.01 year� 1).

Climate model simulations. IsoGSM34 was run with a horizontal resolution of
T62 (about 180 km) and 28 vertical layer to generate the simulations used in this
study. We have run three separate sets of simulations. First, for the historical run,
that is, 1871–2009, IsoGSM was nudged towards NOAA-20C re-analysis
atmospheric data49 (wind speed, surface temperature and surface pressure) with a
spectral nudging technique for large scale (larger than 1,000 km) waves34. Second, a
LH (present day) simulation was conducted where monthly climatologies of SST
and sea-ice distribution for the period 1979–2007 obtained from the Atmospheric
Model Intercomparison Project (AMIP) were averaged and used to force the
IsoGSM atmosphere. Third, the MH (6 kyr BP) IsoGSM run was performed similar
to the LH simulation, but with changes to the surface forcing, orbital parameters
and greenhouse gas concentrations. The MH IsoGSM simulation was forced with
monthly mean SSTs and sea ice fractions from a 400-year Institute Pierre Simon
Laplace atmosphere ocean general circulation model simulation of the MH50. We
first calculated the SST and sea-ice difference between the MH and pre-industrial
simulations by the Institute Pierre Simon Laplace model. Then we added these
differences to the SST and sea ice observed for the present-day conditions, as
detailed in Risi et al.35 For the MH IsoGSM simulation, the solar orbital parameters
were adjusted (eccentricity¼ 0.018682, precession ¼ 0.87 and obliquity¼ 24.105)
and the greenhouse gas concentrations were lowered ([CO2]¼ 280 p.p.m.,
[CH4]¼ 650 p.p.b. [N2O]¼ 200 p.p.b., [CFC-11]¼ 0 p.p.t. and [CFC-12]¼ 0 p.p.t.).
Both LH and MH simulations were run with a 100-s time step, and neither
simulation was spectrally nudged. Both IsoGSM simulations were run for 30 years
and the last 20 years were used for analyses.

References
1. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field

during the Northern Hemisphere winter. Mon. Weather Rev. 109, 784–812
(1981).

2. Trouet, V. & Taylor, A. H. Multi-century variability in the Pacific North
American circulation pattern reconstructed from tree rings. Clim. Dyn. 35,
953–963 (2010).

3. Overland, J. E., Adams, J. M. & Bond, N. A. Decadal variability of the aleutian
low and its relation to high-latitude circulation*. J. Clim. 12, 1542–1548 (1999).

4. Liu, Z., Kennedy, C. D. & Bowen, G. J. Pacific/North American teleconnection
controls on precipitation isotope ratios across the contiguous United States.
Earth Planet. Sci. Lett. 310, 319–326 (2011).

5. Liu, Z., Bowen, G. J., Welker, J. M. & Yoshimura, K. Winter precipitation
isotope slopes of the contiguous USA and their relationship to the Pacific/
North American (PNA) pattern. Clim. Dyn. 41, 403–420 (2012).

6. Liu, Z., Yoshmura, K., Bowen, G. J. & Welker, J. M. Pacific North American
teleconnection controls on precipitation isotopes (d18O) across the contiguous
United States and adjacent regions: a GCM-based analysis. J. Clim. 27,
1046–1061 (2014).

7. Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena
associated with the southern oscillation. Mon. Weather Rev. 109, 813–829
(1981).

8. Yu, B., Shabbar, A. & Zwiers, F. W. The enhanced PNA-like climate response to
Pacific interannual and decadal variability. J. Clim. 20, 5285–5300 (2007).

9. Moore, G., Holdsworth, G. & Alverson, K. Climate change in the North Pacific
region over the past three centuries. Nature 420, 401–403 (2002).

10. Anderson, L., Abbott, M. B., Finney, B. P. & Burns, S. J. Regional atmospheric
circulation change in the North Pacific during the Holocene inferred from
lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat. Res. 64,
21–35 (2005).

11. Edwards, T. W. D., Birks, S. J., Luckman, B. H. & MacDonald, G. M. Climatic
and hydrologic variability during the past millennium in the eastern Rocky
Mountains and northern Great Plains of western Canada. Quat. Res. 70,
188–197 (2008).

12. Hubeny, J. B., King, J. W. & Reddin, M. Northeast US precipitation
variability and North American climate teleconnections interpreted from late
Holocene varved sediments. Proc. Natl Acad. Sci. USA 108, 17895–17900
(2011).

13. Kirby, M. E., Mullins, H. T., Patterson, W. P. & Burnett, A. W. Late glacial–
Holocene atmospheric circulation and precipitation in the northeast United

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4701

6 NATURE COMMUNICATIONS | 5:3701 | DOI: 10.1038/ncomms4701 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.ncdc.noaa.gov/paleo/data.html
http://www.nature.com/naturecommunications


States inferred from modern calibrated stable oxygen and carbon isotopes. Geol.
Soc. Am. Bull. 114, 1326–1340 (2002).

14. Ersek, V., Clark, P. U., Mix, A. C., Cheng, H. & Edwards, R. L. Holocene winter
climate variability in mid-latitude western North America. Nat. Commun. 3,
1219 (2012).

15. Hardt, B., Rowe, H. D., Springer, G. S., Cheng, H. & Edwards, R. L. The
seasonality of east central North American precipitation based on three coeval
Holocene speleothems from southern West Virginia. Earth Planet. Sci. Lett.
295, 342–348 (2010).

16. Zhao, C., Yu, Z., Ito, E. & Zhao, Y. Holocene climate trend, variability, and shift
documented by lacustrine stable-isotope record in the northeastern United
States. Quat. Sci. Rev. 29, 1831–1843 (2010).

17. Fisher, D. et al. The Mt Logan Holocene—late Wisconsinan isotope record:
tropical Pacific—Yukon connections. Holocene 18, 667–677 (2008).

18. Barron, J. A. & Anderson, L. Enhanced Late Holocene ENSO/PDO expression
along the margins of the eastern North Pacific. Quatern. Int. 235, 3–12 (2011).

19. Zhang, Q. B. & Hebda, R. J. Abrupt climate change and variability in the past
four millennia of the southern Vancouver Island, Canada. Geophys. Res. Lett.
32, L16708 (2005).

20. Li, Y.-X., Yu, Z. & Kodama, K. P. Sensitive moisture response to Holocene
millennial-scale climate variations in the Mid-Atlantic region, USA. Holocene
17, 3–8 (2007).

21. Salzer, M. W., Bunn, A. G., Graham, N. E. & Hughes, M. K. Five millennia of
paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 42,
1517–1526 (2013).

22. Booth, R. K. et al. A severe centennial-scale drought in midcontinental North
America 4200 years ago and apparent global linkages. Holocene 15, 321–328
(2005).

23. Menking, K. M. & Anderson, R. Y. Contributions of La Niña and El Niño to
middle Holocene drought and late Holocene moisture in the American
Southwest. Geology 31, 937–940 (2003).

24. Alvarez Zarikian, C. A., Swart, P. K., Gifford, J. A. & Blackwelder, P. L.
Holocene paleohydrology of Little Salt Spring, Florida, based on ostracod
assemblages and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 225,
134–156 (2005).

25. Nelson, D. B. et al. Drought variability in the Pacific Northwest from a
6,000-yr lake sediment record. Proc. Natl Acad. Sci. USA 108, 3870–3875
(2011).

26. Whitlock, C. et al. Holocene seasonal variability inferred from multiple proxy
records from Crevice Lake, Yellowstone National Park, USA. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 331, 90–103 (2012).

27. Hallett, D. J. & Hills, L. V. Holocene vegetation dynamics, fire history, lake level
and climate change in the Kootenay Valley, southeastern British Columbia,
Canada. J. Paleolimnol. 35, 351–371 (2006).

28. Galloway, J. M., Lenny, A. M. & Cumming, B. F. Hydrological change in the
central interior of British Columbia, Canada: diatom and pollen evidence of
millennial-to-centennial scale change over the Holocene. J. Paleolimnol. 45,
183–197 (2011).

29. Yu, Z., McAndrews, J. H. & Eicher, U. Middle Holocene dry climate caused by
change in atmospheric circulation patterns: evidence from lake levels and stable
isotopes. Geology 25, 251–254 (1997).

30. Yu, B. & Zwiers, F. The impact of combined ENSO and PDO on the PNA
climate: a 1,000-year climate modeling study. Clim. Dyn. 29, 837–851 (2007).

31. Honda, M., Nakamura, H., Ukita, J., Kousaka, I. & Takeuchi, K. Interannual
seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence
and life cycle. J. Clim. 14, 1029–1042 (2001).

32. Wanner, H. et al. Mid-to late Holocene climate change: an overview. Quat. Sci.
Rev. 27, 1791–1828 (2008).

33. Rimbu, N., Lohmann, G., Kim, J.-H., Arz, H. & Schneider, R. Arctic/North
Atlantic oscillation signature in Holocene sea surface temperature trends as
obtained from alkenone data. Geophys. Res. Lett. 30, 1280 (2003).

34. Yoshimura, K., Kanamitsu, M., Noone, D. & Oki, T. Historical isotope
simulation using reanalysis atmospheric data. J. Geophys. Res. 113, D19108
(2008).

35. Risi, C., Bony, S., Vimeux, F. & Jouzel, J. Water-stable isotopes in the LMDZ4
general circulation model: Model evaluation for present-day and past climates

and applications to climatic interpretations of tropical isotopic records.
J. Geophys. Res. 115, D12118 (2010).

36. Schmidt, G. A., LeGrande, A. N. & Hoffmann, G. Water isotope expressions of
intrinsic and forced variability in a coupled ocean-atmosphere model.
J. Geophys. Res. 112, D10103 (2007).

37. Dietrich, S., Werner, M., Spangehl, T. & Lohmann, G. Influence of orbital
forcing and solar activity on water isotopes in precipitation during the mid-and
late Holocene. Clim. Past 9, 13–26 (2013).

38. Rimbu, N., Lohmann, G., Lorenz, S., Kim, J.-H. & Schneider, R. Holocene
climate variability as derived from alkenone sea surface temperature and
coupled ocean-atmosphere model experiments. Clim. Dyn. 23, 215–227 (2004).

39. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U.
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