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in hydroclimate andwidely distributed on land (Street andGrove, 1979).
Oxygen isotope record of Owens Lake documents the existence of
millennial-scale hydrologic oscillations during the last glacial termina-
tion (Benson et al., 1997). Holocene records from Walker and Pyramid
Lakes indicate decadal to centennial-scale hydroclimatic variability in
the Sierra Nevada (Benson et al., 2002; Yuan et al., 2004). Stable isotope
records from alpine lakes over the Colorado Rocky Mountains suggest
that the climate shifted from a greater summer precipitation in the
early Holocene to a winter-dominated precipitation regime in the mid-
Holocene (Friedman et al., 1988; Anderson, 2011; Anderson, 2012).
These studies provide us important isotopic data on the past changes
in climate over the American Southwest. However, lake-based δ18O
records spanning the entire Late Glacial and Holocene transition (LGHT)
are scarce in this region.

Here we describe our efforts to reconstruct climatic and environ-
mental changes in the southern Rocky Mountains during the Late Gla-
cial and Holocene. We chose San Luis Lake mainly because it sits at the
southern edge of the annual latitudinal range of the Pacific winter
storm tracks and on the northern limit of the North American monsoon
(NAM) rainfall regime (Metcalfe et al., 1997; Barron et al., 2012; Ellis
and Barton, 2012). Changes in eitherwinter or summer precipitation re-
gime may alter the lake's hydrology, isotope geochemistry and deposi-
tional environment. Past work on this basin has showed that deposits
from certain locations may be appropriate for paleoclimate reconstruc-
tions (Shafer, 1989; Rogers et al., 1992; De Lanois, 1993). We collected
sediment cores from San Luis Lake and carried out a series of physical
and chemical analyses, including magnetic susceptibility, grain size,
total inorganic carbon (TIC), Mg/Ca, δ18O, and δ13C, to indicate climatic
and environmental changes over the last 16.5 ka. Results from radio-
metric dating analyses (C-14, Pb-210, Cs-137 and Ra-226) are obtained
for age control. Our sediment record from San Luis Lake documented a
detailed history of climatic and environmental changes in the southern
Rocky Mountains since the last glacial maximum. We compared our
record from San Luis Lakewith existing paleoclimate data fromColorado
and elsewhere in the American Southwest and distant regions to gain
novel insights into the changes in hydroclimate over the southern
Rocky Mountains during the Late Glacial and Holocene.

2. Study area

San Luis Lake (37.675°N, 105.723°W) is located in a large inter-
mountain basin between the San Juan Mountains and the Sangre de
Cristo Mountains in southern Colorado (Fig. 1). Geologically, this basin
is a structural depression that formed during the Cenozoic stretching
of the Rio Grande rift (Cordell, 1978; Brister and Gries, 1994), with a
drainage area of about 8300 km2 and an average altitude of 2350 m
(Emery, 1979). The flat floor of the basin is now occupied by a complex
array of eolian, fluvial, and alluvial deposits, underlain by a suite of sed-
iment formations with ages from Eocene to Pleistocene which overlies
on the Precambrian basement (Brister and Gries, 1994). The basin had
remained hydrologically closed, disintegratedwith ancestral RioGrande,
and sustained a large freshwater lake called Lake Alamosa (Siebenthal,
1910) for about three million years before it drained back to the Rio
Grande approximately 440 ka (Rogers et al., 1992; Machette et al.,
2007). San Luis Lake is a small closed-basin lake today, with a surface
area of ~3.6 km2, which lies in a topographically low area near the
eastern margin of the basin (Fig. 1b). Saguache and San Luis creeks
are two major streams in the basin but become ephemeral before
reaching San Luis Lake. As many wetlands investigated previously
(Wurster et al., 2003), San Luis Lake is hydrologically affected by the
water table of the basin (Mayo et al., 2007).

The climate of the region is characterized as arid, with an average
annual temperature of 5.5 °C (Emery, 1979). There is an inverse rela-
tionship in precipitation seasonality between the basin floor and the
surroundingmountains (Doesken andMcKee, 1989). Themountain pre-
cipitation (70 cm/yr) is largely from winter storms originating in the

North Pacific Ocean whereas the basin floor precipitation (18 cm/yr) is
dominated by summer rainfall from the NAM (Mitchell, 1976; Doesken
and McKee, 1989). As a result, a bimodal precipitation distribution is
present in this basin (Shafer, 1989). Winter precipitation over the region
is known to be associated with the El Niño Southern Oscillation (ENSO).
The amount of winter precipitation usually increases during El Niño
events and decreases during La Niña events (Redmond and Koch, 1991;
Cayan, 1996). In contrast, the amount of monsoonal rainfall is affected
by the ENSO in opposing circumstances to that of winter precipita-
tion (Higgins et al., 1998; Weiss et al., 2009). El Niño favors a weaker
and more southward-displaced monsoon ridge (Castro et al., 2001)
and tends to reduce the number of monsoonal storms (Webb and
Betancourt, 1992).

3. Methods

3.1. Core acquisition, magnetic susceptibility, and grain-size distribution

Two sediment cores were recovered in January 2010, with a land-
based vibracorer and a gasoline powered generator (Thompson et al.,
1991). One was taken from the southwestern side (SL-A/B) of San Luis
Lake at a water depth of ~1 m and the other from a dry wetland site
(BL-01) in Blanca Wetland Area (Fig. 1b, c). Core SL-A/B had a total
length of 261 cm and core BL-01 was 222 cm in length. The two cores
were measured on magnetic susceptibility at 1-cm intervals with a
Bartington MS2C unit, then split lengthwise, described and imaged.
One half of the core was slab sampled at every 1-cm interval for sedi-
mentologic, geochemical and isotopic analyses and the other half was
sampled for radiometric dating analysis. Sediment samples were wet
sieved with deionized water and divided into two portions using a
230 mesh (63 μm) sieve. The coarse portion was air dried, further
sieved with a set of two sieves (250 μm and 2 mm), and weighted
with an Ohaus CS200 compact digital scale. The fine portion was collect-
ed, oven dried overnight at 60 °C, weighted, and then homogenized with
amortar and pestle (Yuan et al., 2006b). Sediment powderwas soaked in
2.5% NaClO for 6–8 h to remove organic matter, vacuum filtered with a
Whatman glass microfiber filter (1.6 μm), rinsed with deionized water
at least five times, and oven dried at 60 °Cwith a petri dish prior to isoto-
pic analyses (Yuan et al., 2006b).

The percentages of four different grain-size fractions (ϕ N 2 mm,
2 mm N ϕN 250 μm, 250 μm N ϕN 63 μm, ϕb 63 μm) were estimated
by weight. Grain-size distribution for each sediment sample was
evaluated with the weight percentages. A 3-point log-linear interpo-
lation was used to estimate the effective grain size (d10), the mean
grain size (d50), and the grain size that is 60% finer by weight (d60).
The uniformity coefficient of a sediment sample, as an indicator of
sediment sorting, was calculated by the ratio of d60 to d10 (Fetter,
2000).

3.2. Elemental and isotopic analysis

The molar ratio of Mg/Ca was determined on acid extracts of sedi-
ment samples with 10% HNO3, using an inductively coupled plasma
optical emission spectrometer and the %TIC content was determined
through coulometric analysis of CO2 produced after acidifying sediment
samples with 2 N HClO4 (Engleman et al., 1985), using a UIC CM5014
coulometer at CaseWestern ReserveUniversity. Oxygen and carbon iso-
topic analyses were performed simultaneously on a Micromass Optima
gas source mass spectrometer with a MultiPrep automated sample
preparation device at University of Albany, New York. The isotopic re-
sults, calibrated against NBS-19, are reported in the delta (δ) notation
as permil (‰) relative to the Vienna Pee Dee Belemnite (PDB) standard.
The overall precision for internal and external standardswas±0.1‰ for
δ18O and δ13C.



3.3. Radiometric analysis

Thirty eight samples from the topmost section of core BL-01 were
measured on Pb-210, Cs-137, and Ra-226 at Flett Research Laboratory
in Canada. There is a distinct peak at a depth of 15 cm in the Cs-137
activity profile (Fig. 2), corresponding to the 1963 maximum in Cs-
137 atmospheric fallout (Ritchie et al., 1973). Pb-210 activity in this
core has an essentially vertical profile in the interval of 0–15 cm and
then generally decreases as a function of depth (Fig. 3). The Ra-226 ac-
tivities measured in four depths indicate that the background Pb-210
activity level has been achieved at the bottomof the core, and that back-
ground levels of Pb-210 vary with depth in this core. The unsupported
Pb-210 activity values were deduced and the constant rate of supply
(CRS) model was used to derive ages for sediments in the topmost
15 cmsection (Appleby andOldfield, 1978). A second-order polynomial

fit was used to extrapolate the calendar age of the sediments at a depth
of 49 cm (Fig. 4), at which sediments were also radiocarbon dated
(Table 1).

Seven radiocarbon ages from core BL-01 and two from core SL-A/B
were determined on the total organic carbon (TOC) fraction of the
bulk sediments by the Accelerator Mass Spectrometry Laboratory at
the University of Arizona (Table 1). Past work on this basin suggested
that radiocarbon ages of lake sediments were subject to reservoir cor-
rections due to the inputs of radiocarbon-free dissolved inorganic car-
bon from weathering of carbonate-bearing formations (Shafer, 1989).
The reservoir effect may be estimated by the radiocarbon age of surface
sediments, assuming that the carbon dynamics remained more or less
constant in the past. Based on the difference between the radiocarbon
age (1280 yr BP) and the extrapolated calendar age (280 yr BP) of the
sediments from core BL-01 at a depth of 49 cm (Table 1 and Fig. 4),
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we deduced that the reservoir effect was about 1000 yr for core BL-01,
comparable with the reservoir effect of San Luis Lake, as previously
reported (Shafer, 1989).
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Fig. 2. Sediment profile of Cs-137 activity from core BL-01. Note the peak in 137Cs at a depth of
15 cm, corresponding to the 1963maximum in 137Cs atmospheric fallout (Ritchie et al., 1973).
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Fig. 3. Plot of total Pb-210 (filled circles) and Ra-226 (open circles) activity against cumulative dry weight for the topmost section of core BL-01.
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3.4. Core correlation and age control

On the basis of downcore variations in magnetic susceptibility, the
two cores were stratigraphically correlated, particularly the upper sec-
tions of the cores (Fig. 5). Owing to a lack of organic carbon for reliable
radiocarbon dating, we depended largely on the peak to peak correla-
tions between the two cores to deduce the radiocarbon ages of the top-
most four major peaks for core SL-A/B. The radiocarbon ages were
converted into calendar ageswith the CALIB radiocarbon calibration pro-
gram (Stuiver and Reimer, 1993). Togetherwith the basal date from core
SL-A/B,five ageswere gathered and used to develop our agemodel using
a second-order polynomial fit (Fig. 6).

4. Results

4.1. Lithostratigraphy, grain size and magnetic susceptibility

Sediments from core SL-A/B are composed of unconsolidated erosive
sands, silts and clayey minerals. Visual inspection of the split core sur-
face indicates the presence of some laminations and considerable varia-
tions in sediment grainsize distribution throughout the core (Fig. 7a).
Two sediment layers near depths of 75 cm and 110 cm contain some
coarser particles with the grain size over 2 mm, while the bottom
60-cm section lack such coarser particles (Fig. 7f). The sediments
are constituted largely of the medium (0.25–2.0 mm) and, to less
extent, the fine (63–250 μm) grain fractions. There is a complementary
relationship between the medium and fine grain fractions (Fig. 7c, d).

Table 1
Radiocarbon dates from San Luis Lake.

Core # AA lab # Depth
(cm)

Radiocarbon
agea

1-σ
Error

Calibrated
ageb

2-σ
Error

(14C yr BP) (±yr) (cal yr BP) (±yr)

BL-01
AA90470 49 1280 140 286 231
AA90471 79 3310 240 2321 553
AA90472 136 9060 430 8979 960
AA90473 150 2060 120 (961)c 224
AA90474 172 9630 860 9936 2146
AA90475 190 17,800 3100 20,222 7637
AA90476 221 19,100 2600 21,648 6392

SL-A/B
AA90478 100 13,800 1700 (14,477) 4264
AA90479 257 15,400 2100 16,322 5231

a Total organic carbon fraction of the sediments was used for the radiocarbon dating
analyses.

b Calendar ages were calculated through the computer program CALIB Rev 6.0.1
(Stuiver and Reimer, 1993) and reservoir corrections estimated were 1500 yr for SL-A/B
(Shafer, 1989) and 1000 yr for BL-01.

c Ages in parentheses were excluded for age model development.
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The fine grain fraction dominates in four intervals centered at depths of
261 cm, 225 cm, 210 cm, and 118 cm. The very fine (b63 μm) grain
fraction usually accounts for less than 3.5% by weight and changes con-
siderably (trace to over 3%) throughout the core. Sediments from the

middle and bottom sections as highlighted in Fig. 7e have lower per-
centage values of the very fine fraction than those from other sections.

The magnetic susceptibility record of core SL-A/B displays large
amplitude of variability (Fig. 7b). Values of magnetic susceptibility are
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relatively low in the bottom section, reach a maximum at a depth of
180 cm, and then decrease gradually until a depth of 110 cm. There
are two prominent peaks at depths of 100 cm and 65 cm, followed by
an interval with progressive decreases in magnetic susceptibility. There
are some degrees of similarity between the magnetic susceptibility and
the medium fraction records, particularly in the upper section of the
core (Fig. 7b, c).Magnetic susceptibility data from the bottom21-cm sec-
tion are missing due to some technical difficulty while measuring.

4.2. Mg/Ca and TIC

The Mg/Ca molar ratio varies substantially throughout the core
(Fig. 8a). Sediments from the basal section (261–250 cm) of the core
have low Mg/Ca ratios, with an average of 0.02. The ratio increases
abruptly to amaximumof 0.5 at a depth of 245 cm, decreases gradually
before reaching a minimum at a depth of 215 cm, and then increases
progressively until it achieves a maximum at a depth of 175 cm. The
Mg/Ca ratio oscillates moderately in a depth interval between 165 and
100 cm before achieving a maximum at a depth of 80 cm, and then de-
creases stepwise in the upper section of the core.

The TIC as measured by %CaCO3 of the fine grain fraction of sedi-
ments fluctuates greatly throughout the core (Fig. 8b). The TIC values
are exceptionally large (~34%) in the basal section (261–252 cm) and
oscillate considerably in the interval of 229–80 cm, with an average of
7% and a standard deviation of 2.8%. There are two depth intervals
from 190 to 180 cm and from 95 to 80 cm, with large (over 10%) de-
creases in TIC. Although not strongly correlated, some peak-to-trough
correspondences are evident between the Mg/Ca and TIC records
(Fig. 8a, b). A gap of TIC data from 251–230 cm is due to a lack of suffi-
cient fine grain sediments.

4.3. δ13C and δ18O

δ13C and δ18O as determined on the TIC fraction of the fine sediment
material from San Luis Lake are characterized by relatively large vari-
ability, with δ13C ranging from −13 to 2.8‰ and δ18O from −14 to
0.7‰ (Fig. 8c, d). δ13C values remain relatively constant in the bottom
section of the core (depth N250 cm), decrease abruptly to −8‰ at a
depth of 250 cm, and then increase stepwise to −1‰ at a depth of
215 cm. δ13C decreases stepwise from 215 to 175 cmand increases pro-
gressively from 175 to 120 cm. Depth interval from 120 to 65 cm is
featured with increased isotopic variability, in which δ13C decreases
progressively and peaks at 78 and 69 cm. δ13C values increase gradually
in the topmost 65 cm section.

The δ13C and δ18O records exhibit a great deal of similarity, particu-
larly in intervals with pronounced isotopic variations. But there are
some depth intervals with opposing trends. For instance, δ18O increases
gradually while δ13C decreases in the two depth intervals from 170 to
120 cm and from 65 to 2 cm. As highlighted in Fig. 8, minima in δ13C
and δ18O tend to coincide with periods of low TIC and high Mg/Ca
ratio and vice versa.

5. Data interpretation and discussion

5.1. Hydroclimate variability from elemental and isotopic data

The stratigraphic variations in δ18O and δ13C of lacustrine carbonates
can be caused by variations in temperature and the isotopic composi-
tions of lake water (i.e., δ18O of H2O and δ13C of HCO3

−). Changes in
water temperature affect isotopic fractionation between the evaporat-
ing water vapor and lake water and between the carbonate precipitate
and lake water. Every 1 °C increase in water temperature may cause a
0.1‰ increase in δ18O of the water vapor (Benson and Paillet, 2002), a
0.2‰ decrease in δ18O of the lake carbonate (O'Neil et al., 1969), and a
0.035‰ decrease in δ13C of the lake carbonate (Romanek et al., 1992).
Compared to the large (14‰) range of isotopic variations observed in

San Luis Lake (Fig. 9a), the effect of temperature may be rather limited.
Thus, we take the stratigraphic changes in δ18O and δ13C as representing
the temporal variations in δ18O and δ13C of lakewater, as shown by pre-
vious studies from other lakes in the western United States (Li et al.,
1997; Yuan et al., 2006a; Anderson, 2011).

δ18O of lake water is determined largely by δ18O of precipitation and
basin hydrology. In lakes that oscillate between closed and open hydro-
logical states, δ18O of lake water fluctuates greatly with changing resi-
dence time of water in the basin (Benson et al., 1997). When a lake
overflows, the residence time is relatively short and δ18O of lake water
is usually more negative and variable. Under the extreme case when
the residence time approaches zero, δ18O of lake water resembles that
of stream inflows into the lake. In contrast, when a lake remains hydro-
logically closed, the residence time is relatively long and δ18O of lake
water is usually more positive due to preferential enrichment of O-18
during evaporation. For lakes with a fluctuating water balance, δ18O of
lake water increases as the lake contracts and vice versa. Under certain
circumstances (e.g., hydrologic steady-state conditions), lake water
may be highly O-18 enriched in relative to precipitation and changes
in δ18O of lake water is largely induced by variations in δ18O of precipi-
tation due to variable precipitation regimes over the drainage basin
(Gat, 1995; Benson et al., 1997; Li et al., 2008).

δ13C of lake water (mainly bicarbonate) is controlled by three major
components, namely δ13C of stream inflows, CO2 exchange with atmo-
sphere, and primary productivity within the lake (Leng and Marshall,
2004). First, δ13C of stream inflows is largely determined by δ13C of
CO2 from root respiration and microbial oxidation of organic matter in
soils and the subsequent equilibrium fractionation between CO2 and
bicarbonate anion (Ode et al., 1980; Benson et al., 1996). δ13C of CO2

derived from C4 organic matter ranges from −32 to −20‰, while
δ13C of CO2 from C3 plants (arid grasses) ranges from −17 to −9‰.
Bicarbonate anion, the dominant dissolved inorganic species under
weakly alkaline conditions, has δ13C values approximately 10‰ higher
than CO2 (Romanek et al., 1992). Thus, if all the CO2 in the soil zone is
derived from C4 plants, δ13C of bicarbonate anion is estimated to
range from−22 to−10‰. Based on isotopic measurements of stream,
spring, and shallow ground waters (Mayo et al., 2007), δ13C of inflows
into San Luis Lake is −11.5 ± 3.5‰, falling in the high end of the range
estimated. Second, δ13C of atmospheric CO2 is about −7‰ (Keeling,
1961) and the bicarbonate in equilibrium with the atmospheric-derived
CO2 has a δ13C value between +1 and +3‰ (Benson et al., 1996; Leng
and Marshall, 2004). Owing to its slowness in achieving gas-exchange
equilibrium, a higher value of δ13C is indicative of a longer residence
time of lake water and a higher degree of equilibrium of the bicarbonate
anion with the atmospheric CO2 (Benson et al., 1996; Leng andMarshall,
2004). Lastly, changes in the net primary productivity affect the δ13C of
lake water due to a preferential uptake of lighter isotopic species
(i.e., 12C) by aquatic plant communities (Stuiver, 1975).

The TIC as measured on lake sediments can be a useful indicator of
abrupt changes in lake levels because it is related to the lake's hydrolog-
ical conditions. The TIC value is determined by the balance between the
in-lake production of carbonates and siliciclastic dilution of detrital in-
puts from fluvial and eolian processes, provided that detrital carbonate
inputs are minimal (Benson et al., 1997). A lake's primary production is
limited by the amount of dissolved calcium inputwhich is a linear func-
tion of stream discharge. In contrast, the amount of detrital input is an
exponential function discharge (Benson et al., 2002). As a result, the
%TIC tends to decrease as stream discharge increases. But there are
some degrees of uncertainty in this interpretation as the TIC may be
affected by other factors such as changes in lake levels, groundwater
tables, soil moisture conditions, or wind regimes.

TheMg/Ca ratio of lacustrine carbonates has been used as a proxy of
salinity for many lake-based reconstructions (e.g., Chivas et al., 1986;
Holmes, 1996). Ionic data from 27 lakes in western Nebraska showed
an intriguing relationship between Mg/Ca and salinity. Although posi-
tively correlated over a broad range of ionic concentrations, the two



indices are negatively correlated for some lakes with low salinity values
(Gosselin, 1997). A recent study from Jones Lake in western Montana
further attested to the existence of a negative correlation between
Mg/Ca and salinity,whichwas attributed to some common characteristics
of groundwater throughflow lakes, such as high alkalinity, low Mg/Ca,
and low salinity (Shapley et al., 2010). San Luis Lake has some similar
hydrologic and geochemical characteristics, e.g., groundwater-fed, low
salinity, and low Mg/Ca today. Further, we found evidence that San Luis
Lake overflowed occasionally in the past (see discussion below). Thus,
we take an increase in Mg/Ca ratio as representing a decrease in salinity
and a corresponding increase in water balance and vice versa.

Our sediment record from San Luis Lake exhibits some degrees of
similarity among four indices of δ18O, δ13C, TIC, and Mg/Ca (Fig. 9a, b,
c, d). In particular, there is a statistically significant correlation between
δ18O and δ13C (r2 = 0.41, n = 257) though the correlation changes
from time to time (Fig. 10). On the basis of the long-term trends and
changes in these proxy values, the San Luis Valley was relatively dry
during the Big Dry (16.5–15.7 ka) (Broecker et al., 2009), the Bølling–
Allerød (B/A: 14.9–12.7 ka), the early Holocene (EH: 10.5–6.7 ka), and
the late Holocene (LH: 2.5–0 ka), and relatively wet during the Big
Wet (15.7–14.9 ka), and the Younger Dryas (YD: 12.7–11.6 ka), the
Pre-Boreal (PB: 11.6–10.5 ka), and the mid-Holocene (MH: 6.7–2.5 ka).
During these dry periods, San Luis Lake was featured with relatively
high values of δ18O, δ13C, and TIC, and low ratios of Mg/Ca. We inferred
that San Luis Lake remained hydrologically closed, received little detrital
input from stream inflows, andwere enrichedwith heavy isotope species
such as C-13 and O-18. These periods are characterized by low isotopic
variations and weak and even negative correlations of δ18O and δ13C
(Fig. 10). We postulated that San Luis Lake might have achieved hydro-
logic steady-state conditions. If so, changes in δ18O of the lake were

largely caused by changes in δ18O of precipitation while changes in δ13C
were induced by varying degrees of equilibriumof gas exchange between
atmospheric CO2 and lake water (Leng and Marshall, 2004). During the
EH, for instance, δ18O of the lake decreased steadily due to a greater
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summer moisture regime shifting toward winter-dominated precipita-
tion,while δ13C increasedprogressivelywith increasing CO2 gas exchange
over the time. This may explain why δ18O and δ13C were negatively cor-
related in this time interval.

On the other hand, San Luis Lake wasmore fluctuating in wet times.
First, the dominant moisture source changed considerably over the
time. Most of the wet events were attributed to an increase in winter
precipitation from the Pacific storm tracks. But the PB wet episode
was characterized by an increase in summer precipitation from the
NAM, as inferred from an increasing trend of δ18O, a minimum in TIC
and a maximum in Mg/Ca (Fig. 9). An increase in δ18O may be induced
byeither an increasingdominance of summermoisture regime fromen-
hanced monsoonal circulations or a decreasing water balance of the
lake. The minimum in TIC and maximum in Mg/Ca suggest a high lake
level in the lake. This interpretation is supported by archeological and
paleobotanical evidence of a higher water table in this basin between
10.9 and 10.5 ka (Jodry and Stanford, 1996). Second, San Luis Lake
may have overflowed occasionally during the Big Wet and MH.
Supporting evidence of this assertion includes extremely low values of
δ18O, δ13C, and TIC, increased variability in δ18O and δ13C, andhigh ratios
of Mg/Ca. Theminimal values of δ18O and δ13C in our record are close to
those observed on modern streams and subsurface waters in this basin
(δ18O = −14‰ and δ13C = −11‰, Mayo et al., 2007), suggesting a
significant reduction in the residence time of water in the lake. The re-
duced residence time from increased water supply and subsequently
lake overflowing resulted in a reduction in carbonate production and
an increase in Mg/Ca ratio. The increased isotopic variability further
attests to lake oscillations between open and closed hydrological states.
Third, the YD wet event is featured by a 3‰ decrease in δ18O and a 2‰
decrease in δ13C, suggesting a decrease in the residence time of water in
the lake.

The correlation of δ18O and δ13C was used to indicate the degree of
hydrological closure of a lake (Talbot, 1990; Li and Ku, 1997; Leng and
Marshall, 2004). As pointed out by Benson et al. (1996), the concept
may be applicable to some lakes but exceptions to this rule exist. Our
results from San Luis Lake show that the degree of δ18O and δ13C
covariance changed considerably from dry to wet hydrological con-
ditions (Fig. 10). Generally, δ18O and δ13C covaried well when the
lake was more fluctuating. The isotopic covariance was previously
ascribed to hydroclimate-driven changes in lake organic productivity
(Talbot, 1990; Drummond et al., 1995). Owing to the large range of iso-
topic variability observed, we attribute the isotopic covariance to varia-
tions in the residence time of water in the lake. A reduction in the
residence time from an increase in overflow/inflow ratio would cause
δ18O and δ13C of the lake to be more negative and vice versa.

5.2. Environmental change from physical property data

Grain size of lake sediments is a function of precipitation, runoff, lake
level, and other factors (e.g., Benson et al., 1991; Conroy et al., 2008).
Coarse material may be transported to the core site when a lake is shal-
low or saline. Sediment-trapping studies showed that suspended coarse
material was transported in several kilometers in plumes of freshwater
over the surface saline water in Pyramid Lake, Nevada (Anderson,
2001). Alternatively, fine to medium-grained material can be carried
into a lake by strong winds (Bui et al., 1989). Because of its proximity
to the Great Sand Dunes, San Luis Lake may have received some of the
sediment material by eolian processes. However, it is quite challenging
to evaluate the relative importance of eolian andfluvial processes. Given
the complexity and uncertainty in the interpretation of the raw grain
size data, we derived d50 and Cu to indicate changes in depositional en-
vironmental conditions such as energy strength and energy constancy
(wind speed and flow velocity), respectively.

Sediments from San Luis Lake are composed of clays, silts, sands and,
to less extent, pebbles, with an average d50 of 0.4 mm (Fig. 9e). Values of
d50were relatively lowduringmanydry intervals such as the BigDry, B/A,

EH, and LH. The low values of d50 were likely attributed to increases in
eolian flux and/or decreases in fluvial loading when dry conditions
persisted in the basin. A lowering of groundwater table would promote
the eolian process in this basin (Madole et al., 2008). Values of d50 were
relatively high during wet periods such as the Big Wet, YD, PB, and MH.
It is worth noting that values of d50 are exceptionally high during two in-
tervals centered at 3.1 and 5.9 ka, suggesting the dominance of fluvial
loading when the climate was extremely wet. Whereas low values of
d50 were induced by reduced fluvial loading and/or increased eolian
flux during dry conditions, high values of d50 of sediments in San Luis
Lake were more likely caused by enhanced fluvial loading during ex-
tremely wet conditions. A period of low d50 values at the beginning of
the MH, for example, might be associated with reduced fluvial inputs
due to an increase in effective moisture and an expansion in lake surface
area.

Values of Cu may be indicative of sediment sorting and associated
energy constancy of the environment when sediments deposited. A
sediment sample with a Cu less than 4 is considered as well-sorted
while a sample with a Cu greater than 6 is considered as poorly-sorted
(Fetter, 2000). Most of the sediment samples from San Luis Lake have
a Cu close to or less than 6 (Fig. 9f). This indicates that most of the sedi-
ments in the lake are not well sorted, suggesting a rather variable or
energetic depositional environment with a limited energy constancy
for most of the time over the last 16.5 ka. Two prominent excursions
of high Cu values during the mid-Holocene are likely attributed to en-
hanced fluvial processes.

Magnetic susceptibility, a measure of allochthonous magnetic mate-
rials from erosion of thewatershed or deposition from a volcanic tephra
(Dearing, 1999), is widely used to document changes in the sedimenta-
ry inputs to a lake or bog in the region (e.g., Cisneros-Dozal et al., 2010;
Jimenez-Moreno et al., 2011). The magnetic susceptibility record from
San Luis Lake shares some similar features of variability with the Cu
data (Fig. 9f, g). Values of magnetic susceptibility are relatively low in
the early part of the record (prior to 6 ka). Our magnetic susceptibility
record also displays two prominent excursions in the mid-Holocene
though there is a small age offset between the Cu and MS excursions.
The cause of the age offset remains unknown.

5.3. Late Glacial–Holocene transition (16.5–10.5 ka)

The Late Glacial–Holocene transition (LGHT) represents the largest
climatic and environmental change in the past 100 ka. As expressed in
the δ18O variations of ice cores from Greenland (Svensson et al., 2008),
the LGHT was featured with a series of millennial-scale climatic oscilla-
tions, such as the Heinrich cold event #1 (H1; Bond et al., 1992), the B/A
warming, the YD cooling, and the PB warming (Fig. 11). Our sediment
record documented a detailed history of hydroclimate change in this
region. First, our record documents that a rapid dry to wet transition
occurred at themidpoint of the H1 or theMystery Interval (MI), leading
to an overflowing of San Luis Lake. The Big Wet to Big Dry transition is
essentially concurrent,within the age uncertainty,with lake levelfluctu-
ations in Lake Estancia, New Mexico (Allen and Anderson, 2000) and
Lake Lahontan,Nevada (Benson et al., 1990) (Fig. 11). Our results further
attest to a large-scale two-phase hydrological response to the H1 event
(Broecker et al., 2009; Broecker and Putnam, 2012). Second, dry condi-
tions prevailed in the San Luis Lake basin during the B/A warm period.
At high elevations, widespread tundra and parkland in the cold Big
Wet period transitioned into open subalpine forest in the B/A warm
dry period, based on pollen and charcoal data from Lily Pond in central
Colorado (Briles et al., 2012). Pluvial lakes in the American Southwest
(e.g., Lake Lahontan, Lake Estancia and Lake Cochise) lowered or desic-
cated during this period (Waters, 1989; Benson et al., 1990; Allen and
Anderson, 2000). Third, the basin was wetter due to increased winter
precipitation during the YD interval. Finally, the LGTH was concluded by
a rapid change in precipitation regimes, i.e., from a winter-dominated



moisture regime in the YD period shifting to a greater summer precipita-
tion in the PB interval.

The δ18O record of San Luis Lake shows some degree of similarity
with the isotopic record of ice cores from Greenland (Fig. 11). Particu-
larly, there was a 5‰ increase in δ18O during the PB in the two records.
We interpret this as representing a 5‰ increase in δ18O of precipitation
in the basin because the lake system appeared to be under hydrologic
steady-state conditions. This interpretation is consistent with the Fort
Stanton speleothem data that indicate a 6‰ range of variability during
the Pleistocene–Holocene transition (Asmerom et al., 2010). Similarly,
we attribute one half of the observed increase in δ18O to temperature
change and the other half to changes in precipitation seasonality. If
the Dansgaard (1964) relationship between air temperature and δ18O
of precipitation (0.5‰ per °C) is applicable to this region, it can be read-
ily inferred that a 5 °C warming occurred during the final stage of the
LGHT. This contrasts the treeline-based estimate made by Reasoner
and Jodry (2000) but is in line with the moderate temperature change
inferred from noble gases in groundwater in Texas (Stute et al., 1992).
Further, using a simple binary mixing model (Yuan and Miyamoto,
2008; Asmerom et al., 2010), we inferred that a 0.25 fractional increase
in summer rainfall is required to account for the half of 5‰ increase
during the PBwarming interval.We attributed the changes in precipita-
tion seasonality to enhanced monsoonal circulation, a conclusion in
agreement with the plant macrofossil data from packrat middens in
the Mojave Desert which provided evidence for increased temperature
and summer rainfall during this interval (Spaulding and Graumlich,
1986).

5.4. Holocene hydroclimate variability

The Holocene climate is characterized by gradual changes in the EH
and LH and rapidfluctuations in theMH, comparable to the δ18O records
from two alpine lakes in northern Colorado (Fig. 12). All of the three
lake-based studies exhibit a long-term decreasing trend of δ18O from
the EH to MH, indicating a reduction in summer precipitation from a
weakening of the NAM through the Holocene (Friedman et al., 1988).
The gradual shifting trend of precipitation seasonality was interrupted
by an abrupt 2.0‰ decrease in δ18O and δ13C at 6.7 ka, a 5% decrease
in TIC, a 0.3 increase in Mg/Ca, and a 0.4 mm decrease in d50, signaling
a rapid expansion of the lake from enhanced winter precipitation at
the beginning of the MH. The inferred change in effective moisture
corresponded to an expansion of the spruce zone in the La Plata Moun-
tains in southwestern Colorado (Petersen, 1988) and a downslope
movement of subalpine forest in central Colorado (Briles et al., 2012).
The San Luis Valleywas overallwet in theMHbut punctuated by several
centennial to millennial-scale dry episodes. San Luis Lake overflowed
again during an exceedinglywet period centered at 3 ka, nearly concur-
rent with the pronounced negative excursions of δ18O in Bison and
Yellow Lakes (Fig. 12). The timing of this pluvial event or so called
Neopluvial (Currey, 1990) is consistent with reconstructions of
paleolakes in theGreat Basin and elsewhere in the American Southwest,
e.g., the highest Holocene stand of Mono Lake (California) occurred
3.7 ka (Stine, 1990), and high stands of Lake Cochise (Eastern Arizona)
at 3–4 ka (Waters, 1989).

Themost striking feature of the three lake δ18O records fromColorado
is a noticeable shift in the mode of isotopic variability from theMH to LH
(Fig. 12). Variability in δ18O of San Luis Lake reduced considerably after
the Neopluvial, whereas variability in δ18O of Bison and Yellow lakes in-
creased concurrently. Such a marked shift in isotopic variability across
Colorado suggests that a northward displacement of atmospheric circula-
tions (i.e., the PJS) may have occurred about 3 ka, leading to a sizeable
reduction in precipitation and stream inflows into San Luis Lake. As a
result, San Luis Lake underwent a rapid 10‰ increase in δ18O, suggesting
a hydrological closure of the lake system. The timing of this change is
consistent with a rapid contraction of the spruce zone in the La Plata
Mountains (Petersen, 1988). The ratio of summer to winter precipitation
increased steadily until it reached its maximum during the Medieval
Climate Anomaly, as indicated by an increasing trend of δ18O. Although
we cannot completely rule out a possible resurge of monsoonal rainfall,
evidence of widespread dry lakes across the desert American Southwest
indicates that the observed increases in δ18O during the LHwere induced
largely by decreases in winter precipitation instead of increased mon-
soonal rainfall. Lastly, San Luis Lake received slightly more winter precip-
itation, as indicated by a pronounced negative isotopic excursion during
the Little Ice Age. Our interpretation of a dry LH climate is broadly consis-
tent with vegetation data which indicate the prevalence of more arid
conditions in much of the American southwest (Van Devender, 1987;
Thompson et al., 1993).

5.5. Linkages to climate change in distant regions

To develop a context of climate variability in the southern Rocky
Mountains, we compared our δ18O record with the δ18O record of
Laguna Pumacocha in the Peruvian Andes (Bird et al., 2011), the %Ti
record of the Cariaco Basin (Haug et al., 2001), and the δ18O record of
Greenland ice cores (Svensson et al., 2008) (Fig. 13). First, our sediment
chronology is consistent with the ice core record from Greenland, par-
ticularly during the LGHT. Second, our δ18O record exhibits some similar
features of hydrologic variabilitywith theCariacoBasin data. For example,
δ18O of San Luis Lake and%Ti of the Cariaco Basin decreased in the YD cold
interval and subsequently increased in the PBwarm interval, followed by
a concurrent long-term decreasing trend in the Holocene before it was
interrupted about 3 ka. Third, our record contains some shared features
with the LagunaPumacochadata. For example, the two lakes experienced
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a 4–5‰ increase in δ18O during the PB warm period and subsequently a
long-term decreasing trend in the Holocene. The decreasing trend of
δ18O in San Luis Lake reflects a long-term weakening of the NAM in the
Holocenewhile the decreasing trend of δ18O in Laguna Pumacocha rep-
resents a long-term strengthening of the South American monsoon
(Bird et al., 2011). This antiphased relationship between the two mon-
soons over the time can be best explained by southward migration of
the ITCZ through the Holocene.

Like other lakes in the American Southwest, San Luis Lake underwent
rapid and large changes in climate during the LGHT. These changes were
previously attributed to alternations between stadial and interstadial con-
ditions in the North Atlantic region (Benson et al., 1997). But little is
known about the link between the two regions. Today, changes in the
mid-latitude and subtropical atmospheric circulations are important fea-
tures that affect hydroclimate in the American Southwest as it usually re-
ceives more precipitation from winter storms when the PJS is displaced
southward and vice versa (Redmond and Koch, 1991). Moreover, onset
of the NAM is associated with the retreat of the Westerlies and the ad-
vance of the subtropical high-pressure ridge over the region (Sheppard
et al., 2002). Our record indicated that the winter (summer) storms
were stronger (weaker) during the cold periods (e.g., the YD and LIA)
and weaker (stronger) during the warm periods (e.g., the PB and B/A).
This provides evidence that on millennial time scales the changes in the
ITCZ and PJS are globally orchestrated.

Nevertheless, the concept of a globally-orchestrated atmospheric
modulation has exceptions. First, San Luis Lake underwent a drastic
hydroclimatic change during the H1 cold event. Broecker and Putnam
(2012) compiled a range of paleoclimate records of paleolake levels,
the Asian monsoons, and Antarctic CO2, δ13C, and dust rain, showing

that a globally significant hydrologic change occurred at the midpoint
of the H1 event. Our results from San Luis Lake support the existence
of such a large-scale hydrologic change in the middle of the MI.
Broecker and Putnam(2012) proposed three drivingmechanisms to ac-
count for the observed change, namely a sea-ice expansion in the North
Atlantic, anorographic influence of Laurentide ice sheet on the PJS, and a
possible change in the Southern Ocean. Here, we put forward an idea
that a change in the North Pacific may be sufficient to explain this
dilemma. A cooling of the North Pacific from a reduction in poleward
heat advection may have displaced the thermal equator, PJS and ITCZ
southward, leading to the rise of lake levels in the American Southwest.
This idea is supported by evidence that the rise of paleolake levels in the
American Southwest coincided with a rapid cooling of the North Pacific
at the midpoint of the MI, as revealed by the dinocyst SST record from
the Northeast Pacific (de Vernal and Pedersen, 1997; Okazaki et al.,
2010).

Second, the Neopluvial episode seen in our San Luis Lake and other
lake-level reconstructions across the American Southwest is extraordi-
nary (Fig. 14). Enzel et al. (1989) documented the existence of such a
pluvial event in the Mojave Desert between 4 and 3 ka and suggested
a climatic link to winter atmospheric conditions over the North Pacific.
Recently, Anderson (2011) noted that variability in δ18O of Bison Lake
increased dramatically after 3.5 ka and attributed the inferred changes
in hydroclimate to the coupled ocean-atmosphere system such as
ENSO. However, it is debatable whether the mechanisms that operate
at interannual time scales are applicable to climatic anomalies over
the millennial and longer time scales (Wagner et al., 2010). It is worth
noting that there was a corresponding increase in the variability of %Ti
in the Cariaco basin about 3.8 ka but no such change in Laguna
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Pumacocha, highlighting the role of the North Pacific in regulating pre-
cipitation regimes over the southern Rocky Mountains and adjacent
regions. In fact, theMH pluvial episode started as early as 6.8 ka, nearly
coincidingwith the onset ofNeoglaciation, e.g., theGaribaldi Phase from
6.9 to 5.6 ka in western Canada (Clague et al., 2009), and a Holocene
cooling of the North Pacific from an alkenone SST reconstruction off
the northern California coast (Barron et al., 2003).

Lastly, the BigWet and Neopluvial highstands shared some interest-
ing features. First, the two pluvial events were widespread and had a
similar spatial coverage in the desert southwest (Fig. 14). Second, the
two extreme wet episodes corresponded well with a cooling of the
North Pacific and a southward displacement of the PJS and ITCZ. Third,
the two events occurred in periods without a significant change in the
North Atlantic region. Also, we noted that the two episodes occurred
under completely different background climate states (glacial vs. inter-
glacial) and that, based on SSTs reconstructions (Barron et al., 2003;
Okazaki et al., 2010), the cooling of the North Pacific during the H1
was much greater than that during the Neopluvial. Collectively, the
results of this work along with others provide evidence for a strong cli-
matic link between the North Pacific and southwestern North America
on millennial and longer time scales (Enzel et al., 1989; Herbert et al.,
2001; Yuan et al., 2004).

6. Conclusions

Sediments from San Luis Lake were recovered and analyzed to in-
dicate climatic and environmental changes in the southern Rocky
Mountains over the last 16.5 ka. San Luis Lake was hydrologically
closed most of the time but overflowed during the Big Wet and the
Neopluvial intervals. Our results are broadly consistent with existing
lake-level reconstructions, paleobotanical data and other paleoclimate
records from the southern Rocky Mountains and adjacent regions.
Over the course of the last glacial termination, San Luis Lake underwent
a series of millennial-scale dry/wet oscillations such as the Big Dry, the
Big Wet, the B/A dry, and the YD wet, corresponding to interstadial/
stadial alternations in the high-latitude North Hemisphere. There was
a 5‰ increase in δ18O of San Luis Lake during the PB interval, close to
that seen in the Greenland ice core and the Fort Stanton speleothem
δ18O records. In agreementwith other Colorado lake records, our record
from San Luis Lake exhibits a long-term decreasing trend of δ18O in
the Holocene, indicating a greater summer moisture regime in the
EH transitioning to a winter-dominated precipitation regime in the
MH.

Our sediment record fromSan Luis Lake documents a detailed history
of Late-Glacial andHolocene changes in hydroclimatewhich allows us to
compare climatic records from distant regions to gain novel insights into
themajor mechanisms for millennial-scale oscillations in the region. San
Luis Lake underwent a rapid dry to wet transition at the midpoint of the
MI, coinciding with a cooling of the Northeast Pacific. Our data indicate
that the NAM waxed in the PB and waned in the EH, corresponding to
the latitudinal shifts of the ITCZ. The San Luis Valley was relatively dry
during the EH and became wet but quite variable during the MH. Onset
of the wet MH period was nearly concurrent with the advance of the
Neoglacial in western Canada and a cooling of the North Pacific as in-
dicated by the SSTs record from coastal northern California. Although
hydroclimatic oscillations are broadly tied to conditions in the North
Atlantic region, the wettest episodes of the southern Rocky Mountains
and elsewhere in the American Southwest (i.e., the Big Wet and
Neopluvial) are more closely linked to features in the North Pacific. Our
results indicate that the changes in hydroclimate are determined primar-
ily by features of large-scale atmospheric circulations over the region.
Cold/warmoscillations in the high-latitudeNorthernHemisphere change
the mean position of the low-latitude features such as the ITCZ and the
thermal equator, which, in turn, modulate Pacific winter storms and
summer monsoonal circulations.
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