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An improved correction algorithm for number density measurements made 
with the Forward Scattering Spectrometer Probe 

James A. Lock 

Physics Department, Cleveland State University, Cleveland, Ohio 44115 

Edward A. Hovenac 

Sverdrup Technology Inc., NASA Lewis Research Center, Cleveland, Ohio 44135 

(Received 27 October 1988; accepted for publication 8 February 1989) 

A correction factor to the number density measured by the Forward Scattering Spectrometer 
Probe (FSSP) which compensates for dead time and coincidence errors was determined by 
calculating the probabilities of and the average number of partick'S in the six possible types of dead 
time and coincidence events. These probabilities and averages were calculated by means of a 
probabilistic model based on Poisson statistics. A Monte Carlo computer simulation ofthe FSSP 
operation was also carried out and the number density correction factor was compared with the 
Monte Carlo data. For an actual number density of2000/cm3

, it was found that the measured 
number density was of the order of 300/ em'. 

iNTRODUCTION 

The Forward Scattering Spectrometer Probe (FSSP), man
ufactured by Particle Measuring Systems, Inc., is standardly 
employed in measuring number densities and size distribu
tions of atmospheric aerosols in the 2-100 {lm range, such as 
the water particles within clouds. The operation of the FSSP 
is described in many places 1.2 and for aerosol number densi
ties less than a few hundred per cm" the measured values of 
the number density and size distribution are believed to be 
reasonably accurate. However, within clouds and wind tun
nels, the number density may approach values of lOOO/cm3 

or more, and as a result, coincidence and dead time errors in 
the measured number density become important. Dead time 
losses occur when particles enter and leave the optical scat
tering volume during the 2-6 !1S electronics dead time which 
foHows the recording of an earlier particle that has passed 
through the scattering volume. The dead time error causes 
the FSSP to underestimate the number density, but in the 
idealized situation it causes no distortion in the measured 
size distribution. (In actuality, particles whose sizes are be
yond the instrument range and which enter the scattering 
volume saturate the amplifier. This causes baseline drift, 
lengthens the dead time, and thus distorts the measured size 
distribution.) Coincidence losses occur when a particle en
ten; the scattering volume before an earlier particle has left. 
As a result, when several particles are in the scattering vol
ume simultaneously, they are registered as a single larger 
particle. This causes the number density to be underestimat
ed and causes the size distribution to be biased toward larger 
diameters. 

Corrections to the measured number density due to 
dead time losses have been made by Baumgardner3 and 
Cerni4 and have been incorporated into the manufacturer's 
operation manual. 5 This correction factor depends on the 
instrument's activity, i.e., the fraction of the total operation 
time spent in particles traversing the probe volume plus the 
subsequent dead times, and a constant K which varies from 

probe to probe. This constant may either be measured ex
perimentally4 or be predicted from the results of a computer 
program which simulates the FSSP operation.2

,3 A more so
phisticated correction incorporating both coincidence and 
dead time losses has been made by Baumgardner, Strapp, 
and Dye6 and by lulanov et aC'P, This correction is based 
upon: (a) the assumption that the aerosol particles are dis
tributed randomly in space and thus their arrival times at the 
scattering volume are described by Poisson statistics; and 
(2) that all the particles remain ill the scattering volume for 
equal times. We call this the mean transit time model. 

The number density correction proposed in this paper is 
an elaboration of the mean transit time model employed in 
Refs. 6-8. In addition to describing the arrival time by Pois
son statistics, we also consider ( 1) the probability distribu
tion describing the time duration that particles spend within 
the scattering volume and (2) an analysis of coincidence 
events in which some of the coincident particles are within 
the depth offield region oftlle scattering volume (DOF) and 
the remainder are outside the DOF. Feature (]) explicitly 
treats the probability distribution whose average value alone 
was employed in the mean transit time model. Feature (2) is 
important in that the FSSP measures the number density 
using only those particles which it records as passing 
through the OOF, otherwise known as the total number of 
strobes. In a coincidence event where some of the particles 
arc within the DOF and the remainder are outside of it, a 
comparison of the amount of light scattered by each group 
determines whether the group passing through the DOF is 
recorded as a strobe or not. The importance of this class of 
coincidence events was noticed in Ref. 6 and we make a de
tailed analysis of it here. 

Finally, it is of great importance to compare the activity
based number density correction of Refs. 3-5, the mean tran
sit time model correction of Refs. 6-8, and the present cor
rection to actual experimental data or to some suitable 
approximation thereof. Since it is difficult to know before
hand the absolute number density within a cloud or wind 
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tunnel, we have constructed a Monte-Carlo computer model 
of the FSSP operation and compared our corrections to sim
ulated data produced by that modeL The balance of this pa
per proceeds as follows. In Sec. I we describe the features of 
the FSSP scattering volume geometry and electronic circuit
ry which are used in the correction formulas. In Sec. II we 
explain our notation and derive the general form ofthe num
ber density correction. In Sec. III we use a diagrammatic 
approach to calculate the various average values and proba
bilities that appear in the correction formula derived in Sec. 
II. We explain these calculations in detail both because the 
method of calculation is of great generality and because, 
with suitable modifications, it should be valid for the analy
sis of counting errors in the electronic circuitry of other in
struments. In Sec. IV we propose an alternative determina
tion of the actual number density which uses the instrument 
activity alone and which does not involve making any direct 
measurement of the number density. In Sec. V we describe 
the Monte Carlo simulation of the FSSP operation, and fin
aUy in Sec. VI, we compare our correction formula to the 
results of the Monte Carlo calculation. 

I. FSSP OPERATION 

The optical scattering volume of the FSSP is the focal 
waist of a focused laser beam. It is taken to cylindrical with 
the diameter d. We assume that the light is of uniform inten
sity throughout the entire scattering volume. In actuality the 
scattering volume of an individuai FSSP instrument may be 
somewhat different than this idealized geometry. We em
ploy this geometry both because it is a zeroth-order approxi
mation to the shape of the actual scattering volume and be
cause results may actually be analytically calculated with 
this geometry using only a few input parameters. The final 
justification for its use depends on a comparison between the 
results of Sec. VI and actual FSSP data. We consider a rec
tangular coordinate system whose origin is at the center of 
the scattering volume and whose Z axis coincides with the 
cylinder axis. The FSSP is mounted beneath the wing of an 
airplane and is flown so that the direction of the airspeed 
vector v is along the scattering volume's X axis. This is shown 
in Fig. 1. Forward scattered light from particles traversing 
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FIG.!' The geometry of the FSSP optical scattering volume. The depth of 
field is denoted by the dashed lines, Particle "a" passes through the widest 
part ofthe scattering volume and particle "b·' passes through near the edge, 
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the optical scattering volume is passed through a beam split
ter and is incident on two photodiodes. Their output voltages 
are calledl

•
2 the signal voltage gs (z) and annulus voltage 

go (z). The purpose of the two voltages is to determine the 
extent ofthe OaF. This is indicated in Fig. 1 and we take its 
length to be Lo. Particles in the region beyond the OOF also 
scatter light into both the signal and annulus photodiodes, 
and trigger the instrument activity counter. The farther a 
particle is from the OOF, the less light it will send into the 
photodetectors. The end of the region of activity measure
ment is different for different size particles. We approximate 
the end of the scattering volume by the average of the loca
tions of activity cutoff obtained for all the different size parti
cles that are expected to be within the aerosol being mea
sured. We take the total length of the scattering volume to be 
L. The length outside the OOF is then 

(1) 

We define ns to be the total number of strobes and nf to 
be the number of events occurring outside the OOF in the 
scattering volume. Then the total number of events regis
tered is 

(2) 

The total operation time of the instrument is T. The number 
densityJVs (particles/cm3) measured by the FSSP is given 
by 

(3) 

If N is the total number of particles that ent~r the entire 
scattering volume in the time T, the actual number density 
./Va (particles/cm3) is given by 

./Y~a = N /dLvT. (4) 

Correspondingly, the average rate at which particles enter 
the scattering volume is 

A=N/T. (5) 

The major reason ns is incorrectly measured by the 
FSSP is that it takes the instrument a finite amount oftime to 
analyze particles passing through the scattering volume. 
Whenever a strobe occurs, immediately after the particle or 
particles leave the scattering volume the electronics spend an 
amount of time 7 s , the slow reset time, analyzing the event. 
During this time, additional particles entering the scattering 
volume are not detected. When a particle passes through the 
scattering volume outside the OOF, immediately after it 
leaves, the electronics spend an amount of time 7f' the fast 
reset time, analyzing the event. The purpose of the number 
density correction is to relate.ffs tOfl~, or equivalently, to 
relate the total number of strobes to the total number of 
particles entering the entire scattering volume. 

II. THE NUMBER DENSITY CORRECTION: GENERAL 
CONSIDERATIONS 

The connection between ./Vs and A/a is derived by con
sidering the six different types of events that can occur in the 
FSSP scattering volume. These are shown in Figs. 2(a)-
2(0. These figures show the signal photodiode voltage trav
eling down the electronics as a function of time toward the 
instrument's analysis circuitry. A voltage pulse begins when 
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FIG. 2. (a), (b) Complete events following fast and slow resets; (el, (d) 
dead time events within fast and slow resets; and (e). (f) incomplete cvel1ts 
starting in fast and slow resets. 

a particle enters the scattering volume and begins to scatter 
light. It ends when the particle leaves the scattering volume 
and ceases to scatter light. If a second particle enters the 
scattering volume before the first one leaves, they scatter 
light simultaneously, their two voltage pulses overlap, and 
they constitute a coincidence event. An event begins when 
the first particle in an m~particle coincidence cluster enters 
the scattering volume and the event ends when the last parti
cle in the cluster leaves. The analysis circuitry records only 
the number of events. It cannot resolve a given event into the 
individual voltage pulses produced by its constituent parti
cles. 

The first two types of events we call complete events. 
These events correspond to particles which enter the probe 
volume after either a fast reset as in Fig. 2(a) or a slow reset 
as in Fig. 2 (b) has been completed. A complete event may 
contain one or more particles. The average numer of parti
cles per complete event is (a c ) and the total number of part i
des contained in all the complete events recorded in the op
eration time is l(. 

The second two types of events we call dead time events. 
These events correspond to particles which completely pass 
through the scattering volume during a fast reset as in Fig. 
2 ( c) or a slow reset as in Fig. 2 (d). Again dead time events 
may contain one or more particles. The average number of 
dead time particles in a fast reset is (afd ) and the average 
number in a slow reset (a sd ) where, in general, 
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(6) 

since more particles can slip through undetected in a longer 
dead time than can in a shorter one. The total number of 
particles hidden in aU the dead time events is N d' 

The last two types of events arc events that leak out the 
back of dead time intervals. We call these incomplete events. 
These events correspond to particles which enter the scattcr
ing volume during the dead time and are still within it when 
the dead time ends and the electronics reset. These events 
originate either in fast resets as in Fig. 2 (e) or in slow rescts 
as in Fig. 2 (f). The average number of particles in an incom
plete event that originates in a fast reset is (a ji ), the average 
number that originate in a slow reset is (as;), and the total 
number of particles contained in all the incomplete events is 
N i • We have 

N=N" +Nd +Ni • (7) 

We may associate the fonowing probabilities with these 
various types of events. We take Pfc andPji to be the probabi
lities that a fast reset is followed by a complete or an incom
plete event, respectively. Similarly we take P,,, and P'i to be 
the probabilities that a slow reset is followed by a complete 
or an incomplete event, respectively. These probabilities sat
isfy 

(8) 

We can estimate the fraction of recorded events that are 
strobes and events that occur outside the DOF as 

ns = (LoIL)I1" - (LoIL)ncH, 

nf = (L 12IL)n e + (LoIL)n"H, 

(9) 

(0) 

respectively. The first term in these expressions contains the 
fraction of the total scattering volume inside and outside the 
DOF. If all the recorded events were one-particle events and 
the particles were randomly distributed along the Z axis, 
these first terms alone would give the number of events oc
curring inside and outside the DOF. The factor H in the 
second term of Eqs. (9) and (10) describes corrections to 
the one-particle event approximation due to the coincidence 
events in which one group of particles in the coincidence is 
within the DOF and the remainder are outside of it. In the 
limit of small number densities, ne is dominated by one-par
ticle events and multipartic1e coincidences are rare. Corre
spondingly, H approaches zero in this limit. 

All these quantities may now be combined to produce 
the connection between A/', and .. 1"·a. The total number of 
particles in complete events may be written as 

Ne = <a~ > (n,Psc + nfPji ) 

=<ac)ne[(~o -- ~OH)P\c+(L{2 + ~O-H)PfC]' 
(11 ) 

Similarly the total number of particles in dead time events 
and in incomplete events may be written as 

Nd = (a,d)n, + (afd)nj 

=ne[<aSd >( ~o - ~o H)+ (afd>(Lt + ~) H)] 
(12) 
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and 

N; = (as; )n,P" + (aft )nfPfi 

= ne [ (0,,>( ~) - ~o H )P'i 

+ (aft > (L~2 + ~(j [J )Pj1 l (13) 

respectively. Combining these with Eqs. (3), (4), and (7) 

we obtain 

JVs = A~a (1 - H) [ (~o - ~o H ) 

X «Osd) + (oc)Ps<' + (asi)Psi ) + (~2 + ~o H) 
X( (afd ) + (a£)Pji' + <Ojj)Pfi)] -! (14) 

as the connection between the measured and actual number 
densities. The calculation of all the quantities appearing in 
this expression is carried out in Sec. III. 

III. THE NUMBER DENSITY CORRECTION: 
PROBABILISTIC CALCULATION 

Since we assume that all the aerosol particles that pass 
through the FSSP scattering volume are randomly distribut
ed in space, the rate at which they enter the scattering vol
ume paranel to the X axis is given by Poisson statistics, i.e., 

(19) 

In order to evaluate the terms appearing in Eq. (14), we 
first consider the complete events. Let P( m) be the probabil
ity that, given a complete event begins at t = 0, it is an m
particle event. The voltage pulses corresponding to one-par
tide, two-particle, and three-particle complete events are 
given in Figs. 3(a)-3(i). Applying Eqs. (15) and (17) to 
every segment of the voltage pulses in Figs. 3(a)-3(c) and 
integrating over all the allowed voltage pulse durations and 
starting times we find that the probabilities of one-particle 
and two-particle events are given by 

I· .! 

I I 
0 

/-
e ~1-e~1 \ .. 

/ I I I 
0 t' 

1--£ 
i--e~1 "\ 

I I the probability that m particles enter the scattering volume (c) 
during the time interval t is given by 

(15 ) 

In particular, the probability that none enter during the in
terval t is e - At and the probability that one enters in the time 
interval dt is A dt, Since the incoming particles are randomly 
distributed in the Y direction as well, those which pass 
through the center of the scattering volume such as particle 
"a" in Fig. 1 remain in the beam for a longer time than those 
which pass through near the edge such as particle "b" in Fig. 
1. If we assume that the scattering volume is the uniformly 
illuminated cylinder described in Sec. 1. and if 

Tmax = diu (16) 

is the maximum time that a particle can spend in the scatter
ing volume, then one can show that 

Q(t)dt={rm .. (i;.,~~~I')>I' fo, 1<7
m

•• (17) 
for t> 7 max 

is the probability that a particle remains within this idealized 
geometry scattering volume for an amount of time between t 
and t + dt after entering it. In this equation and throughout 
the balance of this article corrections to the transit time due 
to the finite size ofthe particles are not included. This proba
bility distribution is normalized as 

(18) 

and the average time a particle spends in the scattering vol
ume is given by 
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0 t' 

I 
1 2 3 l' 2' 3' 

(e) I t 
1 2 3 2' 3' l' 

(f) I I 
1 2 3 3' l' 2' 

(9) t 
1 2 3 l' 3' 2' 

(h) __ ~ __ -L __ ~ __ ~ __ L-~ ______ __ 

1 2 3 2' l' 3' 

(i) _--'--_--'-_--'c=J __ --'-_~----" ______ t 
1 2 3 3' 2' l' 

FIG. 3. (a) A one-particle complete event; (b), (e) the two types of two
particle complete events; (d)-(i) the six types of three-particle complete 
events. The numerals 1, 2, and 3 denote the order in which the particles in 
(d)-Ci) enter the scattering volume and the numerals 1',2', and 3' denote 
the order in which they leave, 
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(20) 

and 

P(2) = 1::' r~of~~·:-" Q(l)dle-
At

' 

xl., dt' Q{l')dl' e- AI' 

+ J::' r=of~:' Q(l)dle-
Xt

' 

xl., dt' Q(l')dl' e - A(/- ") • (21 ) 

These equations may be understood as follows. Consider, for 
example, Fig. 3(b). The probability that a voltage pulse of 
duration I begins at t = 0 is Q(l)dl. The probability that no 
other pulse begins in the next time interval t' is e - AI'. The 
probability that the second voltage pulse of duration l ' begins 
within the time interval dt' centered about t' is 
A dt' QU' )dl'. The probability that no other pulse begins in 
the next time intervall' is e- AI'. These factors give the inte
grand of the first term ofEq. (21). The duration of the first 
pulse may take on any value between 0 and r m,,'" Assuming 
the second particle enters before the first particle leaves, its 
entering time t ' can take on any value between 0 and I. As
suming further that the second particle leaves after the first 
one, then I ' can be no shorter than I - t' and may be as long 
as r max' These considerations give the limits of integration of 
the first term of Eq. (21). Using these rules to associate a 
probability with each segment of the appropriate voltage 
pulse diagram, the probability of any type of m-partide coin
cidence event of arbitrary complexity may be calculated in 
principle. This method of calculation is similar to the evalua
tion of probabilities and reaction rates in high energy physics 
by the use of Feynman diagrams.9

•
JO 

Using these diagrammatic rules, one can see that P(3) 
consists of six, fivefold integrals as in Figs. 3(d)-3(i) and 
that things become quite complicated even for relatively low 
values of m. Assuming that all these integrals could be per
formed, one would find that 

'" I. P(m) = 1 (22) 
171:-::-:1 

and that the average number of particles contained in a com
plete event is given by 

00 

(ac > = I. mP(m). (23) 
m=l 

If one is lucky enough to have P( m) being the elements of a 
geometric series, then 

P( m) = PO )[ 1 - P(1 )] In 1 (24) 

and 

(25) 

The biggest difficulty in using the diagrammatic ap
proach is that none of the P( m) integrals can be analytically 
evaluated using Eq. (17) for the probability distribution 
QU)dl. Even the simplest of them, PC 1), can be evaluated 
only when the integrand is expanded in powers of Ai. Em
ploying the expansion parameter 
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(26) 

and the results of Ref. 11, we find that Eq. (20) with Eq. 
( 17) inserted into it becomes 

17" 2 a 2 31T a 3 8 a 4 51T as 
PO) = l--a+-----+-----

4 3 21 16 31 15 41 32 5! 

16 a 6 3517 a 7 128 a"" 
+ 35 6! - 256 71 + 315 81 - 0", (27) 

As an alternative, one may approximate the Y-axis distribu
tion ofEq. (17) as 

Qa(t)dt= {(4/r~lax)t3dt for t<;rmax} (28) 
o for t> 'T max • 

This approximate probability distribution has roughly the 
same shape as Q(t)dt of Eg. (17), is properly normalized, 
and has an average value of 0.8 rather than 1T/4 = 0.7854. 
Physically its use is justified by the fact that the actual FSSP 
scattering volume geometry might deviate somewhat from 
the idealized scattering volume geometry ofEq. (17). Using 
this form for Qa (l) dl in Eqs. (20) and (21 ), aU the integrals 
can be performed analytically with the results 

1 a a 2 a 3 a 4 as 
pel) =41,;::;;---+---+-----· 

- 4 5 12 42 192 1080 

and 

4 74 2 246 3 727 4 
;::;;-a--a +--a ---a + <", (30) 

5 75 385 2520 . 

where 

1 iT""" 1k = -- IKe-A! dl. 
k 1-1 

T'max 0 

(31) 

Last, in the mean transit time model, Baumgardner et 
al.6 and lulinov et a1.7

<8 chose the Y-axis distribution as 

Qm" (t)dt = o(t - rave )dt. (32) 

Using this distribution. the P(m) may be calculated exactly 
for any m;;. 1 and they form the geometric series 

P(m) = e- f3 (1 - e fJ)'" - 1 , (33) 

where 

(34) 

This result is also given in Eq. (24) of Ref. 8. 
It is of great interest to see whether the more realistic 

Q" (/)dl ofEq. (28) also gives rise to a geometric series for 
the P( m) because if it does not, we will be hard pressed to 
evaluate the infinite series of Eq. (23) given the fact that the 
calculation of the PC m) for large values of m becomes pro
hibitively laborious. As a test whether Eqs. (29) and (30) 
might behave as the first two terms of a geometric series, a 
comparison between P( 2) and P( 1 ) {l - P( 1 )] of Eqs. 
(29) and (30) shows the two quantities to be identical for 
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small a and to be in agreement with each other to within 5% 
for a as large as a = 1.69 or f3 = 1.33. Thus we believe that 
the geometric series approximation is reasonably accurate 
up to this value of a, and that in this region <ac ) is given by 
Eq. (25) withP(l) evaluated from Eq. (27). 

This diagrammatic method of calculation may be ap
plied to the other averages and probabilities appearing in Eq. 
(14). For example, let S( m) be the probability that m parti
cles pass completely through the scattering volume during a 
single dead time of duration 7. Voltage pulse diagrams corre
spondingtoS( 1) andS(2) are given in Figs. 4(a)-4(e). The 
average number of particles that pass through undetected 
during the dead time is then 

(35) 

Using Qa (i)dl and Qmtt (/)dl of Eqs. (28) and (32), the 
terms S( m) can be evaluated analytically for all values of m 

with the results 

(c) 
,'-"-'u.'-'-'-'--'-.~Ull~"-L\C'-'--_. __ t 

I~-·-I 'E-~max -'[ 
I~ 

(e) _ ~~~~-,-"J'--~ ___ t 

I_H_C- -;.~~'[ma~1 
FIG. 4. (a), (b) The two types of one-particle dead time events. The proba
bility S ( 1) is the sum of these two diagrams; (c)-( c) the three types of two
particle dead time events. The probability S(2) is the sum of these three 
diagrams. 
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and 

{
A (T - ~T max) 

(a-d) = .' 4 
' (Ad5)(r/7max ) for T< 7 max 

(37) 

for Qa (i)dl ofEg. (28) and 

{
CAT-AT )"'(e-A1/m!) 

SCm) = ave 

o 
for 7';PTavc 

(38) 
for 7 < 7 ave 

and 

{
A(7- T ) for 7';P7ave ( ) = ave (39) 

aed 0 fi or 7 < 7 ave 

for Q"'fl (/)dl of Eg. (32). The dead time interval T is re
placed either by the fast reset time 7 f or by the slow reset time 
7s in order to evaluate the dead time averages appearing in 
Eg. (14). 

The calculation of the fraction of events that are com
plete and incomplete events proceeds in a similar way. Con
sider the last 70 of a particular dead time interval. If the 
entire dead time intervalT is longer than 7 max and To = 7 max , 

all particles entering the scattering volume before this cutoff 
time must leave before the dead time is over and cannot initi
ate an incomplete event. Particles entering the scattering 
volume during the last 70 mayor may not leave before the 
dead time is over. Thus they mayor may not initiate an 
incomplete event. The probability that no particles enter 
during the last To of dead time is egual to the probability that 
one will enter after the dead time is over and initiate a com
plete event. This is given by e -iTo. Thus the probability that 
one or more enter during the last To of dead time is 1 - e - ATo. 

But according to the form of Qa (t) dt ofEq. (28), the proba
bility that m particles enter and leave during the last To of 
dead time is (AToI5)m(e - ATo/ m !). Summing this over m 
gives e - (415)""0 - e - "To as the probability that one or more 
enter during the last To and all leave before the electronics 
resets. Thus the probability of an incomplete event is 
(1- e-.1r,,) - (e-' (4/5)47" - e ),70 ). As a result, the frac-

tion of all the events that are complete events and incomplete 
events is 

PToC=e "ro/(l+e ATo _ e -(4/5)-tro ) (40) 

and 

( 41) 

respectively. The time interval 70 is replaced by T max for ei
ther the fast or slow resets if 7, > 7rnax or Tf> Tmax and it is 
replaced with the reset time itself and the e- (4/5)""0 factors 
are replaced by 

e--"To exp _0 _0_ 
[
/t7 ( 7 )4] 

5 7 max 

if 7s < 7 max orrr < 'max' respectively. In the mean transit 
time model these probabilities are 

Forward scattering spectrometer 1148 

Downloaded 23 Feb 2012 to 137.148.11.31. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



(42) 

and 

(43) 

where again 70 is replaced by 'Tave if the reset time is longer 
than 7 ave and it is replaced by the reset time itself if the reset 
time is shorter than r avo • 

Computing the average number of particles in an incom
plete event is difficult because a simple voltage pulse dia
gram such as Fig. 5(a) represents a two-particle complete 
event but Fig. 5 (b) does not represent a two-particle incom
plete event. Rather Fig. 5 (b) is interpreted as a one-particle 
incomplete event plus one dead time particle. As a result, the 
average number of particles per incomplete event should be 
slightly lower than the average number per complete event. 
However, diagrams such as Fig. 5 (b) have a low probability 
of occurrence because the dead time particle in Fig. 5 (b) is 
unlikely to remain within the scattering volume for times 

I 

much shorter than rave' This low probability is reflected in 
the slow increase of Q(t)dt from 0 as t increases from zero. 
As a result, if these low probability diagrams such as Fig. 
5 (b) are double-counted, once as a twooparticle incomplete 
event and once as a single dead time particle, then the aver
age number of particles in complete and incomplete events 
will be identical and 

(44) 

In the mean transit time model, the problematic diagrams 
such as Fig. 5 (b) do not occur since all particles remain 
within the scattering volume for the same time Tave and thus 
they must leave in the order in which they arrived. In this 
model, these averages are 

(aft) = (as;) = efJ, (45) 

exactly as was found in Eq. (25) of Ref. 8. 
At this point, all the averages and probabilities may be 

combined in Eq. (14) to give 

(46) 

where we have assumed that 'Ts > r max , 7 f > 'T max' and where we have replaced aU factors of 4'Tmax/5 by 'Tave in order to try to 
compensate for our approximation of Q(t)dtby Qa (t)dt. In the mean transit time model, Eq. (14) becomes 

,,/Va e - (1(1 - H) 
./Y's = ----------::.--------------

1 + (3e- f3 [.!5L~ + L12l_ 1 _ H.!5L (7.,. - 7f)] 
(47) 

L 1'ave L 7 ave L rave 

The factor H in Eqs. (9) and ( 10) describes the number 
of coincidence events that are judged to be within the DOF 
when some of the coincident particles are in the DOF and the 
remainder are not. Consider the one-particle, two-particle, 
and three-particle events of Figs. 6-8. For the one-particle 
events of Figs, 6(a) and 6(b), if the particles are distributed 
randomly along the Z axis and n ( 1) is the total number of 
single-particle events, then [LolL J n( 1) of them are within 
the DOF as in Fig. 6(a) and [L 12IL ]n (1) of them are out
side the DO F as in Fig. 6 (b). These correspond to the first 
term in Eqs. (9) and (10) discussed previously. For the two
particle events of Figs. 7 (a)-7 (d); if n (2) is the total num
ber of two-particle events, then [LolL ]Zn(2) of them as in 
Fig, 7(a) are registered as strobes, some fractionfz, of the 
2 [LoLI2IL 2]n(2) events of Figs. 7(b) and 7(c) are regis-

(a) --..is\\:s:iS\:S:\\;:S:\SSS\\SS\SS\S:S:\\;:S:\\SS\lL~.-JClL_~ ____ -.l ___ t 

FIG. 5. Cal A two-particle complete event; (b) a one-particle incomplete 
event accompanied by one dead time particle. 
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I 

tered as strobes, and none of the [L 12IL Fn(2) events of 
Fig. 7 (d) are registered as strobes. The three-particle events 
of Figs. 8(a)-8(h) are handled similarly. Ifn(3) is the total 
number of three-particle events, then [ LolL] 3n (3) of them 
as in Fig. 8(a), some fraction!."z of the 3 [L02L 1 21L 3Jn (3) 
events of Figs. 8(b)-8(d), some fraction of hi of the 
3 [LoLl/I L 3]n(3) events of Figs. 8(e)-8(g), and none of 
the [LI2IL ]3n(3) events of Fig, 8(h) are registered as 
strobes. The total number of strobes is then 

Lo (L ~ '/; Lo£12) n =-n(l)+ -+2- 1-- n(2) 
s L L2" L2 

+ _0 + 3' ~+ 3+:. _(jL'_1_2 n(3) + .... (
L 3 L2L L ' 2 ) 

L3 :132 L3 :1:,1 L3 

(48) 

(J ) 
... 

\ ) \ 

(a) • I 
I 

~ 
I 

(b) 0 ) ) • ) 
FIG. 6. One-particle events (a) inside and (b) outside the DOF. 
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(a) (J :\ -" 1 o! , , ) 

(b) (J , -) ) (c) () ) 0) ) 1 0 -I , 

(d) (1 ::: 
, • ) I 
/ 0 

FIG. 7. Two-particle events with (a) both particles within the DOF, (b), 
(e) one particle within the DOF and; (d) no particles within the DOF. 

But the number of m-particle events is given by 

n(m) = neP(m) . (49) 

If we employ Eq. (33) for P(m) using the mean transit time 
model and Taylor series expand the result in powers of [3 we 
obtain 

- Lo [1 a L
I2 (1 2'j') [32 LI2 tis -Tne -f.JT - 21 - L 

x( ~o (2 - 3hz) + Lt (1 - 3hl) - ~(1 - 2/21 ») 

(50) 

or 

H = fJ Ll2 [ (1 - 2/21) + fJ (~o (2 - 3h2) 

+ L~2 (1 - 3fH) - i(l- 2j ;])) + ... ] . (51) 

The determination of the fractions fmn of the various 
types of coincidence events that are registered as strobes de
pends on the signal voltage and annulus voltage factors gs (z) 

and ga (z) and on the sizes of the particles participating in 
the coincidence events. Thus a precise determination of the 
Imn is a very complicated undertaking. Baumgardener et al. () 
assumed thatfmn = nlm, giving H = 0 identically. This as
sumption is equivalent to saying either that one completely 

) ~.-,,~ (e~_~J~ 

(a)(L .-.l.~ . :' .~ 

' '. (}"~'-'8 (h) v_.L..l_0_ " 

FIG. 8. Three-particle events with (a) three particles within the DOF; (b)~ 
(d) two particles within the DOF; (e)~(g) one particle within the DOF 
and; (h) no particles within the DOF. 
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ignores the effect of m-particle coincidence events on deter
mining the total number of strobes, or that whenever m par
ticles are coincident within the scattering volume, one is al
ways larger than the rest and always dominates the situation. 
If the larger particle is within the DOF, the event is always 
counted as a strobe no matter where the other particles are. 
On the other hand, if the larger particle is outside the 001', 
the event is never counted as a strobe no matter where the 
other particles are . 

We choose to approximatelmn in a different way. For 
particles in the 5 ,urn-50 ,urn range, the near forward scat
tered light intensity is roughly proportional to the square of 
the particle radius. 12 We consider an m-particle coincidence 
event where n particles are within the DOF and rn-n parti
cles are outside it. We choose to ignore the signal and annu
lus voltage factors and merely ask which cluster scatters 
more light. If the n particles do, the event is registered as a 
strobe and if the m-n do, the event is not registered as a 
strobe. Using this oversimplification to determine whether 
or not an event is recorded as a strobe, we find for a monodis
persion that 

121 =1, 
j;1 = 0, 132 = 1 , 

hi = 0, hz =!, h, = 1 , 

j;1 =/s2 = 0, 1s3 =/s4 = 1, 

and that as a result 

Hm = fJ2 Ll2 ( L12 -; Lo) (1 - fJ + ... ) 

~L~2 (L12 -; Lo) 1~2fJ' 

(52) 

(53) 

Similarly, for a random distribution of sizes we find that 

f21=~' 
j;1 = 1T/12, h2 = 1 - fll , 
hi = 1T/24, j~2 =~, ~3 = 1 - hI , 

and that as a result 

~O,2146 LI2 (LIZ - Lo) fJ2 . 
L L 1 + 0.2146{3 

(54) 

(55) 

Equations (53) and. (55) require two comments. The first 
concerns our generalization from a two-term Tayior series 
expansion of H to a rational function representation of H. 
Certainly for small [3 this is justified and little error is intro
duced since the Taylor series expansion ofEq. (51) is rapid
ly convergent. For large [3 the higher order terms of the 
Taylor series expansion become increasingly difficult to cal
culate and the convergence of the series becomes increasing
ly slow, Thus all we can do is hope that all of the complicated 
higher order terms add up to something simple and can be 
approximately described by the rational functions of Egs. 
(53) and (55). Whether this hope is justified or not can only 
be determined by a comparison ofEq, (46) with experimen
tal data. The second comment is that since H is dependent on 
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the width of the particle size distribution, the connection 
between, AI's and A/'a is also distribution dependent. This 
adds an additional ambiguity to the determination of the 
actual particle number density, since from the FSSP data, 
one knows only the measured size distribution width and not 
the actual size distribution width. 

Equations (53) and (55) along with Eq. (46) is our 
connection between the measured and actual number den
sity while Eg. (47) along with H = 0 is the correction of Ref. 
6. It should be mentioned that these are both complicated 
relations. Since /3 and A/'a are proportional to each other as 
seen in Eg. (34), .1'/:, is not simply proportional to JVu ' It is 
rather a complicated function of j]/'a, or equivalently of /3, 
which will be seen in Sec. VI to be not uniquely invertible for 
all values OLiVs • 

IV. THE ACTIVITY CORRECTION 

If the activity level of the FSSP is measured very accu
rately, one would not have had to go through the develop
ment of Sees. II and III since the activity can itself be written 
as a function of A/a or /3. To do this we consider the mean 
transittime model of Eqs. (32) and (33). Jfwelet ('m> be 
the average duration of an m-particle event and 

_~~ +L12~ 
'reset'- L 's L' f (56) 

is the average reset time after the completion of an event, 
then the activity A is given by 

= 
A = L neP(m)('m) +rrcset)/A/N. (57) 

In"- 1 

Using Eqs. (7) and (11 )-( 13), this may be written as 
00 

e· 2/3I (l_e-r~)'n I(A<'m)+ATre",,) 

A= m~l • (58) 
1 + /3e - /3( 'TreSl,JT"w - 1) 

The average duration of an m-particle event can be calculat
ed in the following way. The total time spent in two-particle 
events may be written as n" PC 2) < T 2)' But as seen by apply
ing the diagrammatic rules to Fig. 9(a), it may also be writ
ten as 

f TUVC ( ') _ Al' 'j d I - ATJ.V~· 
n" ,'c_ 0 rave + t e /. t e . (59) 

Similarly, the total time spent in three-particle events may be 

(a) 
['-(~==:J 

t 
0 tt 

1:8 ." 
t'+ "tave 

(b) I 11 .~-
t 

0 t' t" 'lave t'+ 't ave til + -gave 

FIG. 9. (a) A two-particle complete or incomplete event and (b) a three
particle complete or incomplete event in the mean transit time model. 
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written by applying the diagrammatic rules to Fig. 9(b) as 

ne P (3) (r1 ) = 11,0 iT"'" It t 7,,,, (T
a
." + t")e At' 

t' () [' - [' 

XAdt'e ~(t"'I')Adt"e ATne. (60) 

Generalizing this, performing the integrals, and expanding 
the result in powers 01'/3, we obtain 

and 

A(r >=(m+l)/3 .. .rm-l)/3 2 

m 2 \ 12 

+ (111 -1 )(34 + 0(/36) 
720 

(61) 

(62) 

The first two terms of Eq. (61) were also derived in Eq. (31 ) 
of Ref. 7. Again since /3 is proportional to .1'a' Eq. C 62) 
provides a connection between the activity and the actual 
concentration. However, in contrast to Eqs, (53) and (55), 

this function increases monotonically and poses no ambigu
ity for the inversion process. 

The activity-based number density correction proposed 
by Baumgardner' and Cerni4 employed the probe-depen
dent constant K which could be either measured or comput
er-modeled, This constant may be exactly calculated from 
Eg. (62). For small /3, Eq. (47) for the mean transit time 
model becomes 

and Eq. (62) for the activity becomes 

A = (J( 7 rc,0\ /Tave + 1) . 

Combining these equations and eliminating (J gives 

or 

(63) 

(64) 

(65) 

(66) 

The constant K depends not only on the probe characteris
tics, but also on the airspeed through the factor Tave • For the 
University of Wyoming FSSP, Dye and Baumgardner2 have 
measured that d = 0.178 mm, Ts = 5.6Il8, 'If = 2.1 P8, and 
Lo = 2.65 mOl, If u = 100 m/s and L= 12 mm as well, Eq. 
(66) gives K = 0.67 which is roughly comparable to the val
ues of K '''' 0.54 measured by Cerni4 and K = 0.56 obtained 
by a computer simulation by Dye and Baumgardner. 2 
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v. THE MONTE CARLO SIMULATION 

A Monte Carlo computer simulation was written in or
der to evaluate the performance of the FSSP density correc
tion algorithm. The simulation was chosen over experimen
tal testing for validation of the algorithm for two reasons. 
First, the simulation provided an unlimited number of test 
cases. This allowed rigorous testing ofthe algorithm using a 
variety of situations. Second, the experimental validation of 
the algorithm is difficult because the actual number density 
is not known to a high enough accuracy to effectively evalu
ate the algorithm. 

The simulation program modeled every aspect of the 
operation of the FSSP except for the following simplifica
tions. (1) All the droplets were assumed to be point sources 
of scattered light, (2) the laser beam profile in the simulation 
had only the gross features of the actual beam in the FSSP 
and thus the idealized scattering volume geometry was em
ployed, and (3) the scattered light from the particles in the 
simulation was computed from Mie theory rather than using 
the "damped resonance" behavior seen in experimental test
ing.l Each of these assumptions was studied and it was con
cluded that in most cases they had a minimal effect. 

Modeled into the computer simulation (which was pro
grammed on an IBM PC/ AT) was virtually every aspect of 
the operation of the FSSP. This included the signal and an
nulus voltages as functions of particle position, reset times, 
beam diameter, transit time reject, instrument response to 
high velocity particles, coincidence events, and multiple par
ticle scattering. 

Input to the program were instrument parameters and 
environmental variables. The instrument parameters includ
ed the laser beam diameter, fast and slow reset times, instru
ment time-response factors, and a shape parameter for the 
laser beam profile. Environmental variables were the actual 
number density, the actual particle size distribution and the 
velocity ofthe particles. The program took these inputs and 
created a random three-dimensional distribution ofsimulat
ed particles. These particles were allowed to pass through 
the simulated laser beam and the program analyzed how the 
FSSP would respond. The outputs of the computer simula
tion were the measured size distribution (in any of the four 
ranges of the FSSP), the total number of strobes, valid 
counts (which are used to calculate the particle size distribu
tion), and the percent activity. The number density correc
tion algorithm was then applied to the outputs to determine 
if it brought Monte Carlo data into closer agreement with 
the input values. This comparison is described in Sec. VI. 

VI. COMPARISONS WITH THE MONTE CARLO 
CALCULATION 

The number density correction of Eq. (46) was calcu
lated for 

d= 0.023 cm, 

Lo = 0.2 em, 

L = L6cm, 

7f = 2.3 f-ls, 
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(67) 

(68) 

(69) 

(70) 

7s = 6.0 f-ts, 

and 

v = 100.0 m/s. 

This value of the airspeed gives 

7 ave = 1.81 f-ls, 

(71) 

(72) 

(73) 

and as a result, 7, > 7f = 7 max. This correction, as well as the 
mean transit time model correction of Eq. (47) and the ac
tivity-based correction of Eq. (6S) with K = 0.6047 from 
Eg. (66), are shown in Fig. 10. As is seen in Fig. 10, all 
models are identical for .1/"a S SOO/cm3

• Also, for 
A/~ ;::; SOO/cm], there is a significant difference in the cor
rection ofEq. (46) for a monodispersion (m) and for a total
ly random distribution of sizes (r). In Sec. III it was shown 
that for a;:: 1. 7, the probabilities calculated in that section 
cease being accurately approximated by a geometric series. 
As a result, we cannot expect Eq. (46) to be valid past this 
cutoff value ofa. For the geometry of Eqs. (67)-(69) this 
corresponds to an actual number density of2000/em3. 

The measured number density was obtained from the 
Monte Carlo simulation using samples of 250000 particles 
having a gaussian size distribution with an average diameter 

a = 24.5 pm, (74) 

and with the root-mean-square width of the size distribution 
a being in the interval 

1O--3«T/a<O.71. (75) 

The lower end of this interval approximates a monodisper
sion and the upper end approximates a random distribution 
of sizes. The Monte Carlo data are also shown in Fig. 10. 
Neither the activity-based correction nor the mean transit 

o 1000 2000 

He (particles/em 3 ) 

FIG. 10. The measured number density as a function of the actual number 
density for the FSSP parameters of Eqs. (67)-(72). The solid curws la
beled rn and r are the corrections ofEq. (46) for a monodispersiou given by 
Eq. (53) and for a random size distribution given by Eq. (55), respectively. 
The dot -dashed curve is the mean transit time model correction of Eg. (47). 
The dotted curve is the activity-based correction of Eg. (65) with 
K o_c 0.6047. The data points are the results ofthc Monte Carlo calculation 
with the solid circles being a/a = \0 - 3, the open circles being o/a ~~ 0.21, 
the solid triangles being a/a = 0.33, the open triangles being a/a = 0.46, 
and the solid squares being a/ii ~ 0.71. 
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1.2,----,.----,----.-----r----,--......., 

--------.... -
8 

Nil (particles/em 3 ) 

FIG. 11. The activity as a function of the actual number density from Eq. 
(62). The data points are the results of the Monte Carlo calculation with the 
solid circles being o/(i = lW ., and the solid squares being a/a = Ct71. 

time model correction fit the data for ,/Va ~ 500/cm3
. But 

the correction of Eq. ( 46) does fit this data until 
A/'a > 2000/cm', the end of the theoretical region of validity 
of Eq. (46). Thus we claim that the correction of Eq. (46) 
represents a significant improvement over the corrections of 
the mean transit time and activity-based models. As was 
mentioned in Sec. I, the ultimate justification of the present 
probabilistic model rests on a comparison with actual FSSP 
data. Such a comparison is made difficult by the fact that 
actual number densities can only be inferred by a compari
son with the measurements made by other types of instru
ments, each of which has its own biasings and errors. Such 
an experimental program is currently underway. 

In Sec. IV, a relation between the activity and the actual 
number density was derived in the mean transit time model. 
For the parameters of Eqs. (67)-(72) this is shown in Fig. 
11 along with the Monte Carlo data for the size distribution 
of Eqs. (74) and (75). This figure requires three comments. 
First, the activity is a monotonically increasing function of 
JVa and is thus uniquely invertible. However, Eq. (62) be
comes larger than unity for large A"a and fits the Monte 
Carlo data poorly for jVa ~ lOOO/cm3

• Thus it should be of 
great interest to calculate the activity with the more realistic 
models of Eqs. (17) and (28) in order to attemptto improve 
the agreement with the Monte Carlo data. Second, in addi
tion to the unique invertibility of Fig. 11, the activity is 
much more nearly independent of the width of the particle 
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size distribution than is the measured number density of Fig. 
10. This near independence of (J is also an attractive feature 
when attempting to determine the actual number density 
from measured quantities. The last comment is that when 
obtaining ./Y"a from the measured jJ/'s, both Figs. 10 and 11 
should be used together. For most values of ./V~, there are 
two possible values ofA/'<l' one corresponding to a low num
ber density and the other corresponding to a high one. The 
correct value oL/Va is suggested from examining the activ
ity, a low value of A giving the lower value ofA/'a and a high 
value of A giving the higher value oLr". Alternatively, the 
value oCra determined from the activity in Fig. 11 could be 
used as a starting value in an interative algorithm to deter
mine the correct value of.A/'" in Fig. 10. 
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