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Mie scattering in the time domain.
Part 1. The role of surface waves
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We computed the Debye series p ¼ 1 and p ¼ 2 terms of theMie scattered intensity as a function of scattering angle
and delay time for a linearly polarized plane wave pulse incident on a spherical dielectric particle and physically
interpreted the resulting numerical data. Radiation shed by electromagnetic surface waves plays a prominent role
in the scattered intensity.We determined the surfacewave phase and damping rate and studied the structure of the
p ¼ 1; 2 surface wave glory in the time domain. © 2011 Optical Society of America

OCIS codes: 290.1350, 290.4020, 320.2250.

1. INTRODUCTION
Lorenz–Mie theory provides the exact solution for the scatter-
ing of a monochromatic electromagnetic plane wave by a
spherical particle in the form of an infinite series of partial
wave contributions [1–3]. Although the solution is exact, it
is not readily interpretable in terms of intuitive and familiar
scattering processes in the short wavelength limit. This diffi-
culty is partially remedied by the Debye series decomposition
of the partial wave scattering amplitudes an and bn into a
series of contributions corresponding to diffraction, specular
reflection, transmission, and transmission following p − 1 in-
ternal reflections of the partial waves, where n is the partial
wavenumber and p ¼ 0; 1; 2;… [4,5].

There are a number of scattering processes that are not se-
parated by the Debye series, such as morphology-dependent
resonances [6], which require the cooperation of a large num-
ber of Debye series terms in order to produce the phenomen-
on. Such processes are not examined in this study. Another
class consists of two or more geometrical ray contributions
at the same scattering angle that occurs in the same Debye
series term. Examples of this for p ¼ 2 are the two rays whose
scattering angle is slightly larger than the Descartes rainbow
angle and produce the supernumerary interference pattern
[7]. Another p ¼ 2 example for a sphere with refractive index
greater than

p
2 is the central ray and the large impact param-

eter ray, which are both backscattered. In these two exam-
ples, the two scattered rays superpose either constructively
or destructively in the far zone, and their existence can be in-
ferred from the details of their angular interference pattern. In
general, two rays in the same Debye series term with the same
scattering angle have different length paths from the sphere’s
entrance plane to its exit plane. Thus, they can be resolved if a
short electromagnetic pulse is incident on the sphere and the
delay time is measured from when the incident pulse crosses
the entrance plane to the arrival of the scattered pulses at the
detector.

Most previous time-domain studies examined the Mie scat-
tered intensity as a function of time at a single angular position

and were mainly interested in applications of this technique to
optical particle sizing [8–12]. In this paper, we examine the
signature of various scattering processes in the time domain
when only a single Debye series term is used, rather than the
entire Mie scattering sum and when the time-domain intensity
is plotted as a function of both scattering angle and delay time
[13]. This provides a new tool with which to examine the de-
tails of a number of physical processes that were not amen-
able to careful numerical study using the Debye series alone
or by making temporal measurements at only one scattering
angle. Previous time-domain studies recognized the impor-
tance of the radiation shed by electromagnetic surface waves
[14]. Thus, our main focus in this paper is a careful assessment
of surface wave effects in the time domain. The body of this
paper is organized as follows. In Section 2, we outline the cal-
culation of the time-domain intensity for two incident pulse
shapes and interpret the features of the intensity for the Debye
series term for p ¼ 1, corresponding to transmission through
the sphere, and for p ¼ 2, corresponding to transmission fol-
lowing one internal reflection. In Section 3, we determine the
phase of the p ¼ 1 surface wave scattered field, the angular
damping rate of the p ¼ 2 surface wave, and the details of
the p ¼ 1 surface wave glory. Lastly, in Section 4, we summar-
ize our principal results. The time-domain analysis of the p ¼
0 Debye term describing diffraction, specular reflection, and
grazing plus tunneling reflection is presented in a companion
paper [15].

2. SCATTERING IN THE TIME DOMAIN
We consider an incident electromagnetic plane wave pulse
traveling in the z direction with the dominant wavenumber
k0 and linearly polarized in the x direction. Its electric field
magnitude and phase may be Fourier expanded as

Epulseðz; tÞ ¼
Z

∞

−∞

ðdk=2πÞAðkÞ exp½ikðz − ctÞ�: ð1Þ

If Mie scattering field response in the far zone at the angle θ
to an incident plane wave with wavenumber k and unit field
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strength is EMieðk; θÞ, the far-zone time-domain scattered field
is [16–18]

Escattðt; θÞ ¼
Z

∞

−∞

ðdk=2πÞAðkÞEMieðk; θÞ expð−icktÞ: ð2Þ

For the computational results described in this paper, we
used the raised cosine pulse

Epulseðz; tÞ ¼ E0cos2½πðz − ctÞt=2cτ� exp½ik0ðz − ctÞ�ux ð3Þ

for −τ ≤ t ≤ τ. The dominant wavelength and wavenumber are
λ0 ¼ 0:65 μm and k0 ¼ 9:67 × 106 m−1. After Fourier transform-
ing a pulse with τ ¼ 10 fs to a wavenumber space to obtain
AðkÞ, we then truncated jAðkÞj2 at 10−4 of its peak value, giving
the frequency band 6:74 × 106 m−1

≤ k ≤ 12:6 × 106 m−1. In-
verse Fourier transforming the truncated spectrum back to
the time domain, the resulting truncated pulse was found
to be virtually the same as the original pulse for −τ ≤ t ≤ τ,
but possessed weak sideband oscillations for t < −τ and t >
τ with an amplitude less than 10−5E0.

For ease in performing various integrals analytically in this
paper, we used the Gaussian pulse shape

Epulseðz; tÞ ¼ E0 exp½−ðz − ctÞ2=σ2� exp½ik0ðz − ctÞ�ux; ð4Þ

giving

AðkÞ ¼ σE0ðπÞ1=2 exp½−σ2ðk − k0Þ2=4�; ð5Þ

where the temporal pulse width is parameterized by σ. A
time interval of 10 fs between the E ¼ 0:5Emax points, as
in the raised cosine pulse of Eq. (3), corresponds to
σ ¼ 18:01 × 10−7 m. But if the wavenumbers 6:74 × 106 m−1

and 12:6 × 106 m−1 are chosen to be at the 10−4 points of
jAðkÞj2, then σ ¼ 14:65 × 10−7 m. Thus, the value of σ for the
Gaussian pulse varies by about 25% when fitting different
properties of the raised cosine pulse.

We can straightforwardly determine the features of geome-
trical ray scattering in the time domain. For a collection of
initially parallel rays making a given number of internal reflec-
tions within the sphere, the magnitude and phase of the scat-
tered field in some appropriate angular interval takes the form

Erayðk; θÞ ¼ kaBðθÞ exp½ikaΦðθÞ�; ð6Þ

where kaBðθÞ is the field amplitude, kaΦðθÞ is the phase, and
the E0½expðikr − iωtÞ�=ðkrÞ dependence of the outgoing sphe-
rical wave has been suppressed. Substituting Eq. (6) and the
Gaussian pulse of Eq. (5) into Eq. (2) and evaluating the in-
tegrals analytically, the magnitude squared of the time-domain
field is the intensity

Irayðt; θÞ ¼ ðk0aÞ2B2ðθÞ expf−2½ct − aΦðθÞ�2=σ2�g; ð7Þ

where the E2
0=ðk0rÞ2 dependence has again been suppressed.

The temporal Gaussian dependence reaches its peak value at

t ¼ aΦðθÞ=c; ð8Þ

which is identical to the case of monochromatic plane wave
incidence since Eq. (8) is also the relation between the time

delay of a monochromatic scattered ray and its phase. The
angular dependence of the temporal ray intensity peak is also
identical to that for scattering by a monochromatic plane
wave of wavenumber k0.

In order to computationally validate these ray predictions,
Fig. 1 shows a false color graph of the computed Mie theory
time-domain scattered intensity as a function of the delay time
t and scattering angle θ for the raised cosine pulse of Eq. (3)
with the pulse parameters described earlier. The pulse is in-
cident on a spherical water droplet of radius a ¼ 10 μm and
complex refractive index N þ iK ¼ 1:3326þ ið1:67 × 10−8Þ in
a vacuum [19,20]. Dispersion of the refractive index of water
over the pulse’s frequency band has been neglected. The scat-
tered field was obtained for a large number of evenly spaced
wavenumbers in the frequency interval, and was converted to
the time domain using the FFT algorithm. The magnitude
squared of the time-domain electric field was plotted at time
intervals of Δt ≈ 0:54 fs ¼ λ0=4c in Fig. 1, and the detector in-
tegration time has not been taken into account. The delay
times given in Fig. 1 are relative to that of specular reflection
of the central ray at θ ¼ 180°.

The false color graph in Fig. 2 shows the results of Debye
series calculations, showing only the p ¼ 1 term. The ray the-
ory prediction for the p ¼ 1 transmission scattering angle as a
function of the delay time is given parametrically by

θ ¼ 2θi − 2θt; ð9Þ

t ¼ 2a½1 − cosðθiÞ�=cþ 2aN cosðθtÞ=c; ð10Þ

sinðθiÞ ¼ N sinðθtÞ; ð11Þ

Fig. 1. (Color online) Scattered intensity in the time domain calcu-
lated using Mie theory as a function of the delay time t and scattering
angle θ for a raised cosine pulse with k0 ¼ 9:67 × 106 m−1 and τ ¼ 5 fs
incident on a spherical particle of radius a ¼ 10 μm and refractive in-
dex 1:3326þ ið1:67 × 10−8Þ.
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for the range of angles of incidence 0° ≤ θi ≤ 90°, and has been
overlaid on the figure. The scattering angle monotonically in-
creases as a function of the ray impact parameter. The central
ray θi ¼ 0° is scattered at θ ¼ 0° and t ¼ 88:84 fs. The grazing
incidence ray at θi ¼ 90° is the last ray to strike the sphere. It
is classically transmitted into the sphere with zero intensity
and exits at the critical scattering angle θc ¼ 82:75° and
tc ¼ 125:39 fs. The time-domain signal in Fig. 2, however, ex-
tends far beyond that of grazing ray incidence and can be un-
derstood as follows. In wave theory, the edge region for
scattering consists of partial waves with nþ 1=2 ¼
kaþ εðkaÞ1=3;−εmax ≤ ε ≤ εmax and εmax ≈ 4:05 [21]. It corre-
sponds to geometrical rays that either strike the sphere with
grazing incidence or classically just miss striking the sphere
but nonetheless tunnel through the centrifugal barrier sur-
rounding it and weakly interact with the sphere [22]. The in-
teraction of these partial waves with the sphere produces
electromagnetic surface waves that propagate along the
sphere surface and are angularly damped as they shed radia-
tion tangent to the sphere into the far-zone beginning at the
ray optics boundary θc. The smooth transition between the
geometrical ray scattered field for θ ≪ θc and the surface
wave region for θ ≫ θc is known as the Fock transition
[23], whose angular width is approximately 1:5ð2=kaÞ1=3 ≈
24° to each side of center. The extension of the time-domain
intensity of Fig. 2 past tc is due initially to the Fock transition,
and then afterward to the radiation shed by surface waves.
The four surface wave contributions to the p ¼ 1 scattered
field for θ ≈ 180° are illustrated in Fig. 3. Paths A and B con-
tribute to the scattered field at angles slightly less than 180° as

measured clockwise from the forward direction. Similarly,
paths C and D contribute at angles slightly larger than
180°. Together, they interfere to produce the p ¼ 1 surface
wave glory, which is evident in the time domain by the cross-
ing of the surface wave arms in Fig. 4.

Similarly, Fig. 5 shows a false color graph of the computed
p ¼ 2 Debye series time-domain intensity as a function of t
and θ for the same pulse and sphere parameters. It illustrates

Fig. 2. (Color online) p ¼ 1 component of the scattered intensity in
the time domain as a function of the delay time t and scattering angle θ
for the pulse and particle parameters of Fig. 1. The false color scale for
intensity in Fig. 1 has been reset in Fig. 2 to emphasize the low-inten-
sity components. The ray theory scattering angle as a function of delay
time of Eqs. (9)–(11) has been overlaid on the figure. The grid ticks on
the ray theory line correspond to the ray impact parameter b in inter-
vals of Δb ¼ 0:1.

Fig. 3. (Color online) Pictorial representation of the p ¼ 1 surface
waves A and B with θ < 180°, and C and D with θ > 180°. A and D
are the short path length surface waves, and B and C are the long path
length surface waves.
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the effects of partial waves that have been transmitted out of
the sphere following one internal reflection. Again, the ray
theory prediction for the scattering angle as a function of
delay time,

θ ¼ π þ 2θi − 4θt; ð12Þ

t ¼ 2a½1 − cosðθiÞ�=cþ 4aN cosðθtÞ=c; ð13Þ
has been overlaid on the graph. The central ray θi ¼ 0° is scat-
tered at θ ¼ 180° and t ¼ 177:68 fs, and the grazing incidence
ray θi ¼ 90° is scattered at θc ¼ 165:50° and tc ¼ 184:11 fs. The
Descartes rainbow ray is θR ¼ 137:86° and tR ¼ 168:37 fs. In
Fig. 5, two rays for each scattering angle in the interval θR <
θ < θc interfere with each other to produce the supernumer-
ary bows when the scattered intensity is graphed as a function
of θ for a single incident wavelength. But Fig. 5 shows that the
contributions from the two rays are separated in the time do-
main. As was the case for p ¼ 1, the time-domain intensity for
delay times larger than tc corresponds initially to the Fock
transition, and then afterward to the contribution of surface
waves. The p ¼ 2 surface wave glory with the ray theory time
delay t ¼ 192:54 fs also prominently appears in the figure.

3. SURFACE WAVES IN THE TIME DOMAIN
A. Phase of the p�1 Surface Wave Radiation
For p ¼ 1 scattering in the short wavelength limit at angles
θ ≪ θc, the Mie–Debye sum over partial waves produces

the transitional approximation to the geometrical optics fields
in the following way. The Riccati–Bessel and Riccati–
Neumann functions appearing in the partial wave scattering
amplitudes an and bn are approximated by their large-
argument, large-order asymptotic expansions [24]. The angu-
lar functions πnðθÞ and τnðθÞ for θ away from 0° and 180° are
expanded in powers of nþ 1=2 and the leading term is
retained [25]. The sum over partial waves 1 ≤ n ≤ ka−
εmaxðkaÞ1=3 corresponding to geometrical rays striking the
sphere surface below the edge region is approximated by
an integral over an effective impact parameter [26,27]. The in-
tegral is then evaluated using the method of stationary phase
[28]. On the other hand, for scattering at θ ≫ θc and θ away
from 180°, the surface wave field is obtained for partial waves
in the edge region by using the large-argument, large-order
asymptotic expansion of the partial wave scattering ampli-
tudes [29] and retaining the leading term in the expansion
of the resulting partial wave scattering amplitudes in powers
of 1=ka. The first term in the expansion of the angular func-
tions in powers of nþ 1=2 is also used. The resulting sum over
partial waves is approximated by an integral over ε, which is
then extended to a contour integral in the complex plane and
is evaluated using the method of residues [23]. The contribu-
tion of the dominant pole of the integrand in the complex
plane is

Esurface wavesðθÞ ¼ ðkaÞ5=6½−T2ðθÞB2ðk; θÞ cosðφÞuθ
þ T1ðθÞB1ðk; θÞ sinðφÞuφ� exp½ikaΦðk; θÞ�:

ð14Þ

In Eq. (14), the portion of the field magnitude that is inde-
pendent of k is

Fig. 4. (Color online) Similar to Fig. 2, but also showing scattering
for θ > 180°. The surface waves A þ C and Dþ B of Fig. 3 intersect at
θ ¼ 180° to form the p ¼ 1 surface wave glory.

Fig. 5. (Color online) p ¼ 2 component of the scattered intensity in
the time domain as a function of the delay time t and scattering angle θ
for the pulse and particle parameters of Fig. 1. The ray theory scatter-
ing angle as a function of delay time of Eqs. (12) and (13) has been
overlaid on the figure.
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TjðθÞ ¼ expðiπ=12Þ21=6Kjξ=f½πðN2
− 1Þ sinðθÞ�1=2½Ai0ð−XÞ�2g;

ð15Þ

the portion of the magnitude that depends on k is

Bjðk; θÞ ¼ expf−ξ½31=2XðkaÞ1=3=24=3 − Kj=ðN2
− 1Þ1=2�g; ð16Þ

and the phase is kaΦðθÞ with

Φðk; θÞ ¼ 2þ 2ðN2
− 1Þ1=2 þ ξf1þ X=½24=3ðkaÞ2=3�g: ð17Þ

In Eqs. (15)–(17),

ξ ¼ θ − θc ð18Þ

and X ¼ 2:3381 is the magnitude of the argument of the first
zero of the Airy function [30], which occurs in the residue of
the dominant pole of the integrand. The polarization depen-
dence is given by K j ¼ 1 for j ¼ 1, the TE or perpendicular
polarization, and K j ¼ N2 for j ¼ 2, the TM or parallel polar-
ization. The factor of ðkaÞ5=6 in Eq. (14) indicates that the
strength of the surface waves is below that of the ray optics
background of Eq. (6). The transitional approximation to the
surface wave field of Eq. (14) can be made more accurate by
including higher-order Taylor series contributions to
Eqs. (15)–(17) and by including the residues of a larger num-
ber of poles of the integrand in the complex plane (22), (23),
and (28). A more accurate (but more complicated) uniform
approximation to the scattered field was considered in [31,32].

One of the goals of this study is to assess the accuracy of
Eqs. (14)–(17). Although this may be done for either a single
incident monochromatic plane wave or an incident plane
wave pulse in the time domain, we now show that the
time-domain analysis provides an interesting approach to
the determination of the surface wave velocity. We consider
the beam and particle parameters p ¼ 1, λ ¼ 0:65 μm,
a ¼ 10 μm, and N þ iK ¼ 1:3326þ ið1:67 × 10−8Þ. First, the
p ¼ 1 portion of the scattered electric field for unpolarized
monochromatic plane wave incidence was calculated for a
dense grid of scattering angles in the surface wave region.
We then determined kaðΔΦ=ΔθÞ, the change in the phase
of the scattered field per degree of change in scattering angle.
If the surface wave acquires phase at an angular rate faster
than if it were traveling on the sphere surface at the speed
of light, its effective velocity v on the sphere surface would
be given by

v=c ¼ ðΔΦ=ΔθÞ−1 < 1: ð19Þ

The results for monochromatic plane wave incidence are
shown as the blue lines in Fig. 6. The quantity v=c monotoni-
cally decreases for θ < 120° in the angular regime of the Fock
transition; it is slowly varying with the value v=c ≈ 0:96 in the
narrow angular region 120° < θ < 140° of surface wave dom-
inance, and it becomes increasingly oscillatory for θ > 140° in
the angular regime of interfering counterpropagating surface
waves. This agrees well with the theoretical prediction of
Eq. (17):

ðΔΦ=ΔθÞ−1 ¼ f1þ X=½24=3ðkaÞ2=3�g−1 ¼ 0:958: ð20Þ

The agreement is noteworthy, considering the narrowness of
the angular region in which ðΔΦ=ΔθÞ−1 is only very roughly
constant.

The quantity v=c can also be measured in the time domain.
Referring to Fig. 2 for p ¼ 1, the slope of the graph multiplied
by the sphere radius gives the effective velocity of the surface
wave. We thus determined v=c in the time domain in the fol-
lowing way. For each θ in 5° increments in the interval 80° ≤
θ ≤ 180° and for the time interval pixel width Δt ¼ 0:54 fs, the
temporal peak of the time-domain curve was determined to
subpixel accuracy by fitting the four data points nearest
the temporal intensity peak with a cubic function and then
differentiating to find the peak position. The slopes were then
determined and then the least-squares fit, giving v=c ¼ 0:9827.
The same procedure was also applied to the p ¼ 2 time-
domain graph of Fig. 5 in Δθ ¼ 1° increments for 190° ≤ θ ≤

300° and gave v=c ¼ 0:9850. These results, at first appearance,
are in seemingly poor agreement with the theoretical predic-
tion of Eq. (20). In attempting to find the reason for the dif-
ference, we decreased the p ¼ 1 time interval pixel width
by a factor of 128 to Δt ≈ 0:004 fs and repeated the fitting pro-
cedure. The results are graphed as the red (top) curves in
Fig. 6, which show (i) decreasing v=c in the Fock transition
region, (ii) a much wider and flatter plateau in the surface
wave region with v=c ≈ 0:9840, and (iii) an increasing oscilla-
tory structure in the region of counterpropagating surface
wave interference. The same procedure was applied to each
polarization individually with similar results. The result still
seemingly differs from Eq. (20) despite the fact that v=c in
the time domain is more nearly constant over a substantially
larger angular interval than it was for monochromatic plane
wave incidence.

The difference is due to the relatively wide wavenumber
spectrum of the pulse. Since the function Φðk; θÞ of Eq. (17)
is not independent of k, the surface wave speed depends
weakly on k. When one has a pulse with a spectrum of differ-
ent k values, one adds together Fourier components whose
speeds are both slightly slower and slightly faster than aver-
age. But the effect is not symmetric about k0. Thus, when the
unevenmix of faster and slower surface wave speeds are aver-
aged together over the spectrum, the final effective surface
wave speed is shifted from what it was for k0 alone. This
can be demonstrated mathematically as follows. Substituting
Eqs. (5) and (14) into Eq. (2), the time-domain scattered
field is

Escatt
j ðt; θÞ ¼ ½σTjðθÞ=2π1=2�

Z
∞

−∞

dk expf−½σ2ðk

− k0Þ2=4�gðkaÞ5=6Bjðk; θÞ exp½ikaΦðk; θÞ − ickt�:
ð21Þ

Assuming ðkaÞ5=6Bjðk; θÞ with the implicit 1=kr dependence
and Φðk; θÞ are both slowly varying functions of k in the vici-
nity of k0, their Taylor series expansions about k0 can be writ-
ten as

Bjðk; θÞ ¼ Bj0ðk0; θÞ þ Oðk − k0Þ; ð22Þ

Φðk; θÞ ¼ Φ0ðk0; θÞ þ ðk − k0ÞΦ1ðk0; θÞ þ O½ðk − k0Þ2�: ð23Þ
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If the phase were linear in k, i.e., if Φðk; θÞ were indepen-
dent of k, Φ1 would vanish. Substitution into Eq. (21) gives

Escatt
j ðt; θÞ ¼ ½ðk0aÞ5=6σT jðθÞBj0ðk0; θÞ=2π1=2�

×
Z

∞

−∞

dk exp½−σ2ðk − k0Þ2=4�

× expfika½Φ0ðk0; θÞ þ ðk − k0Þ
×Φ1ðk0; θÞ − ickt�g; ð24Þ

which can be integrated analytically. Multiplying the result by
its complex conjugate, the time-domain intensity is

Iscattj ðt; θÞ ¼ ðk0aÞ5=3½σT jðθÞBj0ðk0; θÞ=2�2½ðσ2=4Þ2 þ ðΦ1aÞ2�−1=2
× expf−2σ2ðct − aΦ0 − k0aΦ1Þ2=
× ½ðσ2=4Þ þ ðΦ1aÞ2�g: ð25Þ

The Gaussian time dependence reaches its peak value at

ct ¼ aΦ0 þ k0aΦ1; ð26Þ

indicating that the nonlinearity of the surface wave phase
kaΦðkÞ, expressed via a nonzero value of Φ1, shifts the peak
of the time-domain intensity. For the magnitude and phase
functions of Eqs. (16) and (17), we have

Bj0ðk0; θÞ ¼ expf−ξ½31=2Xðk0aÞ1=3=24=3 − K j=ðN2
− 1Þ1=2�g;

ð27Þ

Φ0ðk0; θÞ ¼ 2þ 2ðN2
− 1Þ1=2 þ ξþ ξX=½24=3ðk0aÞ2=3�; ð28Þ

Φ1ðk0; θÞ ¼ −ð2=3ÞξXa=½24=3ðk0aÞ5=3�; ð29Þ

giving

v=c ¼ f1þ ð1=3ÞX=½24=3ðk0aÞ2=3�g−1 ¼ 0:9855; ð30Þ

which is in good agreement with the time-domain results
obtained from Fig. 6.

If the Oðk − k0Þ term of ðkaÞ5=6Bjðk; θÞ=ðkrÞ were evaluated
and substituted into Eq. (24), the integral can also be evalu-
ated analytically [33] and the temporal peak of the time do-
main intensity for a given θ is shifted to a slightly earlier
time than predicted by Eq. (26). When the O½ðk − k0Þ2� term
of Φðk; θÞ is also substituted into Eq. (24), an estimation of
the value of the resulting integral produces a comparable shift
to a slightly later time. These two corrections nearly cancel,
and Eq. (30) is a reasonable estimate of the surface wave ve-
locity. The value of 1 − v=c from Fig. 6 deviates from its value
in Eq. (30) by 10%. As a test to see whether this difference is
attributable to k0a not being far enough into the short wave-
length limit, we determined the time-domain maximum in-
tensity when a ¼ 100 μm and Δt ¼ 0:54 fs, and obtained
v=c ¼ 0:99622. Equation (30) for these conditions gives
v=c ¼ 0:99685, and the time-domain result for 1 − v=c now de-
viates from Eq. (30) by 20%. This deviation agrees almost ex-
actly with the value for a ¼ 10 μm and the original temporal
pixel width Δt ¼ 0:54 fs. Since the difference appears not to
be related to the value of k0a, the contribution of less domi-
nant poles in the integrand of the contour integral warrants
further consideration [31]. Returning to Eq. (25), Φ1 also
broadens the temporal response for a given scattering angle.
However, for the beam and particle parameters used here, the
broadening is minimal since ðΦ1aÞ2 < 0:01ðσ2=4Þ2.

The fact that v=c differs from 1 does not necessarily imply
that the speed of the surface wave on the sphere surface is a
few percent less than c. One could claim instead that the sur-
face wave travels at the speed of light slightly above the
sphere surface [34] at the radius

r ¼ af1þ X=½24=3ðkaÞ2=3�g ¼ a½1þ 0:928=ðkaÞ2=3�: ð31Þ

This interpretation may be motivated in the following way.
For partial waves in the edge region, the near-zone scattered
field is approximately proportional to the Riccati–Bessel func-
tion ψkaðkrÞ, which is derived from the Bessel function
Jkaþ1=2ðkrÞ, which in turn is related to the Airy function
Aið−21=3zÞ when the order and argument are nearly equal
[29], i.e.,

kr ¼ ðkaþ 1=2Þ þ zðkaþ 1=2Þ1=3 ≈ kaþ zðkaÞ1=3 ð32Þ

with ka ≫ 1. The Airy function reaches its peak value [30] not
at z ¼ 0, but rather at 21=3z ≈ 1:02, giving

r ¼ a½1þ 0:810=ðkaÞ2=3�; ð33Þ

which is in reasonably close agreement with Eq. (31).
It should finally be noted that, in [8], surface waves were

qualitatively modeled as traveling along the sphere surface

Fig. 6. (Color online) The quantity v=c, where v is the effective sur-
face wave velocity on the sphere surface, as a function of the scatter-
ing angle θ obtained [blue (bottom) curves] from the angular
advancement of the phase of the p ¼ 1 component of the scattered
field when a monochromatic plane wave with k ¼ 9:67 × 106 m−1 is
incident on a spherical particle with the parameters of Fig. 1, and from
the temporal maximum of the p ¼ 1 scattered pulse [red (top) curves].
The pulse and particle parameters are the same as in Fig. 1 except that
the temporal pixel width is Δt ≈ 0:004 fs.
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for the entirety of their path, and the refractive index of the
sphere surface was allowed to be variable. In order to match
the computed time delay and the time delay predicted using
this model, a value of the surface refractive index was ob-
tained that was intermediate between that of the sphere inter-
ior and the exterior medium. A more mathematically detailed
interpretation of the surface wave path that includes short
cuts through the sphere, however, was presented and physi-
cally motivated in [22] and is used in this paper to interpret our
results.

B. Magnitude of the p � 2 Surface Wave Radiation
Since the angular extent of the p ¼ 2 surface wave region in
Fig. 5 without the intrusion of the glory region is much larger
than for p ¼ 1 surface waves in Fig. 2, we examine here the
angular damping rate of the p ¼ 2 surface wave intensity. The
derivation of the expression analogous to Eqs. (14)–(17) for
the p ¼ 2 surface wave proceeds exactly as for p ¼ 1, except
that the poles of the p ¼ 2 integrand of the contour integral
are of a higher order than for p ¼ 1. The only change in
Eqs. (14)–(17) made by this more complicated residue is that
T jðθÞ is proportional to a mixture of ξ2 and ξ rather than to ξ
alone. This slightly changes its behavior for θ ≈ θc where the
surface wave expression is dominated by the Fock transition,
but it will not change the exponential attenuation for θ ≫ θc.
Since ðΦ1aÞ2 ≪ ðσ2=4Þ4 and the resulting broadening of the
time-domain response is minimal, a comparison of the magni-
tude squared of Eq. (14) with Eq. (25) shows that the value of
the peak intensity as a function of θ in the time domain is iden-
tical to the value of the scattered intensity as a function of θ
for monochromatic plane wave incidence. Thus, it should
make no difference whether the surface wave damping rate
is measured in the time domain or for monochromatic plane
wave incidence.

The maximum time-domain intensity multiplied by j sinðθÞj
is graphed for p ¼ 2 in Fig. 7 as a function of θ for the TE and
TM polarizations. The intensity was multiplied by j sinðθÞj in
order to compensate for the geometrically expected
½sinðθÞ�−1 dependence [35] in the vicinity of backscattering,
leaving only the expected exponential attenuation of the sur-
face wave radiation. The figure clearly shows the rainbow re-
gion for 140° < θ < 160°, the relative maxima and minima of
the counterpropagating surface waves in the glory region for
175° < θ < 185°, the Fock transition between the rainbow and
glory regions, and the exponentially damped surface wave re-
gion for 185° < θ < 240°. An indication that the Fock transi-
tion extends between the rainbow and the glory regions is
provided by the fact that Iðtmax; θÞj sinðθÞj is not an exact con-
tinuation of the surface wave curve that began beyond the
glory region.

According to Eq. (16), the TE surface wave intensity should
fall off faster than for the TM surface wave intensity, and
should decay as expð−ΓjξÞ where Γ1 ¼ 0:2178 per degree
for TE and Γ2 ¼ 0:1871 per degree for TM. Similarly, the
TM surface wave intensity should be larger than that of the
TE surface wave intensity by a factor of N4 ¼ 3:15. The at-
tenuation coefficients of Fig. 7 were determined to be Γ1 ¼
0:157 per degree and Γ2 ¼ 0:138 per degree, which are each
about 73% of the expected value, and the TM intensity is larger
than the TE intensity by about a factor of 10. In order to see
whether there is any refractive index dependence of the decay

rates, the maximum time-domain intensity was also computed
for a ¼ 10 μm and N ¼ 1:5. For this refractive index, Eq. (16)
gives Γ1 ¼ 0:2249 per degree and Γ2 ¼ 0:1859 per degree,
while the time-domain graph gives Γ1 ¼ 0:165 per degree
and Γ2 ¼ 0:132 per degree. Again, each measured value is
about 72% of the expected value. The difference between
the obtained and expected damping rates and the TM/TE in-
tensity ratio may be attributable to the fact that k0a is not very
far into the short wavelength limit.

C. p � 1 Surface Wave Glory
We have already seen in Fig. 4 that, for p ¼ 1, the surface wave
radiation region starts at about θ ¼ 140°, is interrupted by the
surface wave glory region, and then continues again for
θ > 180°. This is readily visible in Fig. 8, which shows the p ¼
1 time-domain maximum intensity as a function of the scatter-
ing angle for the surface waves A and C. The damping rate of
the surface waves is the same both below and above the glory
region. There is, however, an asymmetry to the oscillations
in the maximum intensity immediately above and below
180° in Fig. 8. This can be explained by Fig. 9, which is a
fine-resolution view of Fig. 4 in the glory region. In Fig. 4,
the short path length surface wave A arises out of the Fock
transition for θ > θc, damps throughout the glory region,
and continues to 200° and beyond as C. Similarly, the long
path length surface wave D propagating in the opposite direc-
tion damps out from larger scattering angles and passes
through the glory region to 160° and beyond as B. In Fig. 9,
the less damped surface waves for smaller delay times are
the left half of the “X”-shaped intersection and the more
greatly damped surface waves for larger delay times are
the right half. The counterpropagating surface waves of nearly
equal strength interfere for 168° ≤ θ ≤ 192°, giving rise to the
glory structure. Figure 9 also suggests the explanation of the
observation of Fig. 8 that there is less interference struc-
ture for θ < 180° than there is for θ > 180°. For θ < 180°,

Fig. 7. (Color online) Maximum of the p ¼ 2 intensity of the scat-
tered pulse multiplied by j sinðθÞj as a function of scattering angle
θ for the pulse and particle parameters of Fig. 1.
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the center of the stronger short path length surface wave A
superposes with the periphery of the weaker long path length
surface wave B. As a result, their interference pattern has a
relatively small modulation and extends over a relatively short
angular interval. Following what used to be the shorter path
length surface wave through the glory region to θ > 180°, the
center of the now weaker surface wave C superposes with the
periphery of what is now the stronger surface wave D. Since
the two wave amplitudes are comparable, their interference
pattern has a large modulation and extends over a longer an-
gular interval.

A sum over partial waves in the edge region must be per-
formed in order to calculate the surface wave field in the glory
region. As before, the partial wave scattering amplitudes are
formed from the large-argument, large-order approximation to
the Riccati–Bessel functions and Riccati–Hankel functions
and the approximation [36] to the angular functions πnðθÞ
and τnðθÞ appropriate near 180°. The leading term in the par-
tial wave scattering amplitudes in powers of ka is retained,
and the partial wave sum is approximated by an integral over
an effective impact parameter, extended to a contour integral
in the complex plane, and evaluated using the method of re-
sidues. Keeping only the contribution of the dominant pole of
the integrand, one obtains

Escattðπ − δÞ ¼ Saðπ − δÞux − Ssðπ − δÞ
× ½cosð2φÞux þ sinð2φÞuy�; ð34Þ

where θ ¼ π − δ and δ is a small angle. The scattering ampli-
tudes are

Saðπ − δÞ ¼ ðkaÞ4=3ðN2
− 1ÞJ0ðkaδÞTðπ − δÞBðk; π

− δÞ exp½ikaΦðk; π − δÞ�; ð35Þ

Ssðπ − δÞ ¼ ðkaÞ4=3ðN2 þ 1ÞJ2ðkaδÞTðπ − δÞBðk; π
− δÞ exp½ikaΦðk; π − δÞ�; ð36Þ

with

Tðπ − δÞ ¼ expð−iπ=6Þðπ − θcÞ
=f21=3ðN2

− 1Þ1=2½Ai0ð−XÞ�2g; ð37Þ

Bðk; π − δÞ ¼ expf−ðπ − θcÞ½31=2XðkaÞ1=3=24=3
− ðN2 þ 1Þ=2ðN2

− 1Þ1=2�g; ð38Þ

Fig. 8. (Color online) Maximum of the p ¼ 1 intensity of the scat-
tered pulse multiplied by j sinðθÞj for the surface wave A þ C of Fig. 3
as a function of the scattering angle θ for the pulse and particle para-
meters of Fig. 1. The maximum of surface wave A was determined for
θ < 180°, and the maximum of C was determined for θ > 180°.

Fig. 9. (Color online) Fine-resolution view of Fig. 4 in the vicinity of
the p ¼ 1 surface wave glory region.
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Φðk; π − δÞ ¼ 2þ 2ðN2
− 1Þ1=2 þ ðπ − θcÞf1þ X=½24=3ðkaÞ2=3�g:

ð39Þ

Equation (38) has been simplified from that of [37] by re-
placing the different damping rates of the two polarizations
by an average damping rate. Equations (37)–(39) are the glory
region analogs of Eqs. (16)–(18) where the slower angular de-
pendence on ξ in the surface wave attenuation factor and
phase has been evaluated at π − θc and the more rapid angular
dependence of the focusing functions J0ðkaδÞ and J2ðkaδÞ is
retained. The factor of ðkaÞ4=3 in Eqs. (35) and (36) indicates
that the radiation produced by surface waves in all planes of
incidence constructively interferes at θ ¼ 180°, producing par-
tial focusing of the scattered field above the ray optics back-
ground of Eq. (6). It is amplified by a factor of ðkaÞ1=2 above
the surface wave amplitude of Eq. (14) for angles below the
glory region. The glory pattern of Eqs. (34)–(39) for electro-
magnetic scattering by a sphere is substantially more compli-
cated than for scattering of scalar waves. It is an azimuthally
dependent mixture of J0ðk0aδÞ and J2ðk0aδÞ, whereas, for sca-
lar wave scattering by a penetrable sphere, only Saðπ − δÞ oc-
curs, which is proportional to J0ðk0aδÞ.

The largest relative maximum in Fig. 9 is centered on t ¼
182 fs and θ ¼ 180° and is the main focusing peak of the Bessel
function J0ðk0aδÞ. When k0aδ is greater than about 1.0,
J0ðk0aδÞ may be approximated by its asymptotic form
[38], which is proportional to exp½iðk0aδ − π=4Þ�þ
exp½ið−k0aδþ π=4Þ�. The physical interpretation of this repla-
cement is related to the fact that J0ðk0aδÞ describes focusing.
Its oscillatory behavior to either side of the central maximum
is the alternate constructive and destructive interference of
the shorter path length and longer path length surface waves
to either side of the main focusing peak. When a geometrical
light ray crosses a focal line, it acquires a non-path-length
phase shift [39] of −π=2. This phase shift does not occur dis-
continuously at the focal line, but is the continual transition of
the phase of the field from π=4 to −π=4 over the extent of the
central peak of J0, as is indicated in the asymptotic form of the
Bessel function to either side of its central peak. This interpre-
tation can be further motivated by approximating J0ðxÞ with
cos½x − φðxÞ� and determining φðxÞ from the known numerical
values of J0ðxÞ. For x ¼ 0, one has φ ¼ 0°, and, by the time J0
has reached its first zero at x ¼ 2:405, φ has monotonically
increased to the order of 45°.

A sequence of interference minima occurs on or near the
centerline of the “X” shape in Fig. 9 at δ ≈ 1:0°, 3:0°, 5:0°,
6:8°, 8:7°, 10:5°, and 12:3°. The last of these coincides with
the end of the overlap region of the two surface waves.
The locations of the relative minima can be understood as fol-
lows. Consider the portion of the overlap region in which
J0ðk0aδÞ can be approximated by its asymptotic form. This
occurs when δ > 0:6°. The field of the two overlapping surface
waves can then be written as

Escattðπ − δÞ ¼ Tðπ − δ − θcÞBðk; π − δ
− θcÞ exp½ikaΦðk; π − δ − θcÞ�
− iTðπ þ δ − θcÞBðk; π þ δ
− θcÞ exp½ikaΦðk; π þ δ − θcÞ�: ð40Þ

The first term in Eq. (40) is the shorter path length surface
wave and the second term is the longer path length surface
wave. The second term contains an extra factor of −i since
it has crossed the backscattering focal line. When Eq. (40)
and the Gaussian pulse spectrum of Eq. (5) are inserted into
Eq. (2), the Taylor series expansions of B andΦ are truncated
at B0 and Φ0, and the time-domain intensity is obtained from
the time-domain field, the result is

Iscattðt; θÞ ¼ W2
Sðt; θÞ

þ 2WSðt; θÞWLðt; θÞ sinfk0a½Φðk0; π þ δ − θcÞ
−Φðk0; π − δ − θcÞ�g þW2

Lðt; θÞ;
ð41Þ

where

WSðt; θÞ ¼ ðk0aÞ4=3Tðπ − δ − θcÞB0ðk0; π − δ
− θcÞ expf−½ct − aΦ0ðk0; π − δ − θcÞ�2=σ2g; ð42Þ

WLðt; θÞ ¼ ðk0aÞ4=3Tðπ þ δ − θcÞB0ðk0; π þ δ
− θcÞ expf−½ct − aΦ0ðk0; π þ δ − θcÞ�2=σ2g: ð43Þ

Keeping only the dominant portion of Φ0 in Eq. (28),
Eq. (41) simplifies to

Iscattðt; θÞ ¼ W2
Sðt; θÞ þ 2WSðt; θÞWLðt; θÞ sinð2k0aδÞ

þW2
Lðt; θÞ; ð44Þ

which has its relative minima at

δ ¼ ðM − 1=4Þπ=k0a
¼ 1:40°; 3:26°; 5:12°; 6:98°; 8:85°; 10:71°; and 12:57°; ð45Þ

where M is an integer. These values, except perhaps for the
first one where the asymptotic form for J0 may not yet be suf-
ficiently accurate, are in good agreement with the positions of
the relative minima in Fig. 9. They are also the approximate
locations of the zeros of J0ðk0aδÞ for monochromatic plane
wave incidence.

4. CONCLUSIONS
For many years, researchers have examined light scattering of
a pulse of electromagnetic radiation by a small particle in the
time domain. Previous studies have almost always concerned
themselves with the temporal signal at a single angle. In this
paper, we considered time-domain scattering as a function of
both time and scattering angle, and for only a single term of
the Debye series rather than for the entire Mie sum. Our pur-
pose in doing this was to be able to study various scattering
processes from a new point of view. The Debye series sepa-
rates out most, but not all, of the scattering mechanisms. Of
those that remain unseparated, going over to the time domain
separates most, but not all, of them. In this paper, after briefly
studying the contribution of geometrical rays in the short
wavelength limit, we focused on the properties of surface
wave radiation for transmission and transmission following
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a single internal reflection. We found that time-domain scat-
tering by a short pulse provides a better measurement of the
surface wave velocity than is obtained by scattering of a
monochromatic plane wave, after the dispersion effects of
the pulse have been taken into account. We found that the
damping rate of surface wave radiation may be characterized
equally well using either type of incidence. The surface wave
glory, however, takes on a readily interpretable form in the
time domain, and the contributions of the individual surface
waves whose interference creates the glory are easily visible.
The disentangling of various physical processes is not com-
plete at θ ¼ 180° since both counterpropagating p ¼ 1 surface
waves have the same scattering angle and the same path
length, and cannot be separated at that one angle in the time
domain. Despite this, the separation of the surface wave con-
tributions at every other scattering angle may be easily visua-
lized and interpreted in Figs. 4, 5, and 9.
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