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salt beds at the base of the Rustler formation were
the primary salt sources of the subsurface brine
seeping into the river near the Malaga Bend. This
led to several salinity alleviation projects at Malaga
Bend that attempted to reduce the amount of the
brine seeping into the Pecos River by lowering the
hydraulic head of the brine aquifer (Hale et al.,
1954; Havens and Wilkins, 1980). The idea of
pumping deep brine into a nearby ‘‘isolated’’
depression has been proved to be costly and unsuc-
cessful due to leakage from the depression (Havens
and Wilkins, 1980).

Dryland rivers are characterized by long period
with low flow, high hydrologic diversity, and extre-
mely large flow variability on seasonal, interannual
and decadal timescales (Davies et al., 1996; Knigh-

ton and Nanson, 1997; McMahon, 1979). In the
Pecos River, for example, stream discharge is on
average below 10 m3/s, but exceeds 1000 m3/s during
some wet seasons. Seasonal variations in stream dis-
charge are largely affected by reservoir operation,
water allocation, and irrigation practices, whilst
interannual and decadal changes in stream discharge
appear to be associated with large-scale climatic phe-
nomena such as the El Niño Southern Oscillation
(ENSO) (Rasmussen and Wallace, 1983) and the
Pacific Decadal Oscillation (PDO) (Gershunov and
Barnett, 1998; Gutzler et al., 2002; Mantua et al.,
1997). For example, reservoirs in the upper Rio
Grande Basin were at high stages when the PDO
was in positive (warm) phase (1930–1946 and
1980–2001) and at low stages when the PDO was
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discussed. (Original base map data from the US Geological Survey).



in negative (cold) phase (1947–1978). Such large-
scale climatic oscillations are believed to be the
dominant sources of long-term variations in river
chemistry of this region (Yuan and Miyamoto, 2004).

Major ion concentrations of river waters are usu-
ally negatively correlated with stream discharge.
During dry periods, perennial dryland rivers com-
monly receive baseflow fed primarily by shallow
groundwater and major ions derived from parent
bedrocks are usually concentrated due in part to
evaporative concentration occurring in rooted,
unsaturated soils. During wet seasons, dryland riv-
ers receive snowmelt from winter storms and/or
runoff from local monsoonal rainfall and thus major
ion concentrations are relatively low, because of the
dilution effect of the meteoric waters. An analysis of
spatial relationships of the total dissolved solids
(TDS) concentration and discharge further suggests
that evaporative concentration and freshwater dilu-
tion are the prevailing processes controlling water
chemistry of the Pecos River (Yuan and Miyamoto,
2005).

Understanding long-term, large-scale variability
in river water chemistry is increasingly important
and commonly needed to develop water resources
management strategies upon changing climate.
Using existing stream flow and water chemical com-
position records, Yuan and Miyamoto (2004)
showed a negative correlation between Cl concen-
tration in the upper Rio Grande (El Paso, Texas)
and the PDO index. However, there exists an
intriguing relationship between the PDO index and
Cl concentration in the lower Rio Grande (Amistad
and Falcon, Texas), in which some Cl concentration
maxima coincide with maxima in the PDO index
and others coincide with minima in the PDO index.
The causes of this complicated relationship have not
been fully explored.

The Pecos River, a major tributary to the lower
Rio Grande, usually contributes less than 10% of
water, but more than 20% dissolved solids to the
lower Rio Grande (Yuan and Miyamoto, 2004).
In this paper, stream flow and water chemical com-
position records from the Pecos River back to 1935
are examined to better understand how stream
chemistry changes over time and what the role of
agriculture practices is in salt export.

2. Pecos River basin

The Pecos River arises in the southern slope of
the Sangre de Cristo Mountains that are the south-

ern extension of the Rocky Mountains. It cuts deep
into inaccessible terrains with a rapid stream flow
until it reaches the western margin of the Great
Plains near the town of Santa Rosa (�1400 m above
mean sea level). The river then flows south across
eastern New Mexico and southeast across western
Texas and eventually joins the Rio Grande that
forms the international boundary between Mexico
and Texas (Fig. 1). The Pecos River has a total
length of 1480 km, with an average slope of �1&.
Most of the tributaries to the Pecos River are situ-
ated on the west side of the river (Fig. 1).

The Pecos River basin has a semiarid climate.
Many parts of the basin receive an average annual
precipitation of �30 cm although mountainous
headwater areas receive more than 70 cm (Thomas,
1963). There are basically two major meteoric water
sources. One is snowmelt from winter storms in
mountainous headwater regions, and the other is
runoff from local, intense convective activities
(thunderstorms) in the lower valley. Long-term
average monthly stream discharge displays a con-
trasting pattern of seasonal variability between the
headwater areas and the lower end of the basin
(Fig. 2). The peak flow in May and June is usually
associated with the snowmelt, whilst the peak flow
in September and October is related to local mon-
soonal rainfall in the lower valley. Like many rivers
in the western United States, the Pecos River has
experienced a considerable reduction in stream flow
due to increased irrigation demands and water
impoundments upstream since the late 1930s
(Fig. 3). There are several relatively small dams con-
structed on the river, such as Santa Rosa, Sumner,
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Fig. 2. Seasonal changes in stream discharge (filled circles) at
Pecos, New Mexico and Langtry (open circles), Texas (average
for the period 1959–2001).



Brantley, and Red Bluff. Both Sumner and Red
Bluff dams were constructed in 1936/37, whereas
the Santa Rosa and Brantley dams were completed
in 1976 and 1988.

Geologically, the Pecos River Basin is underlain
by a variety of rocks with ages from the Pre-Cam-
brian to Quaternary. At its headwaters, the Pecos
River contains a relatively low mineral content, as
the parent bedrocks consist of the Pennsylvanian-
aged Magdalena group (conglomerates, sandstones
and limestone, etc) and the underlying Pre-Cam-
brian complex (granites, gneisses and schists, etc)
(Sidwell, 1941). In the vicinity of Santa Rosa down
to Sumner Lake, rocks exposed range in age from
Triassic to Quaternary (McLemore, 1989, 1999).
The Santa Rosa formation consists of conglomer-
ates, mudstones and sandstones with gypsum pellets
(Sidwell and Warn, 1953). Many ‘‘bottomless’’ lakes
in this area are believed to be the result of evaporite
dissolution that started in the Triassic and continues
today (Harrington, 1957; McLemore, 1989). The
Pecos River then flows along the eastern margin
of the Roswell Basin and across the Delaware Basin
until it reaches the Edwards Plateau of West Texas.
The Roswell Basin that lies on the eastern slope of
the San Andres Mountains contains Quaternary
alluvial deposits and underlying San Andres lime-
stones (Bean, 1949; Fiedler and Nye, 1933). The
alluvial aquifer receives recharge from the San
Andres Mountains and discharges a considerable

amount of shallow groundwater to the Pecos River
under natural conditions (Fiedler and Nye, 1933;
Theis, 1965). The Delaware Basin is situated in the
vicinity of Carlsbad and extends to Girvin. The
Pecos Valley in this basin contains a wide and deep
trough filled with Quaternary alluvial deposits and
the underlying Castile and Salado evaporites of
Permian age (Armstrong and McMillion, 1961;
Ogilbee and Wesselman, 1962; Theis, 1965). Most
river water depletion occurs in this section due to
water diversions for irrigation, groundwater
recharges, and evaporative water losses (Grozier
et al., 1966; Slade et al., 2002; Thomas, 1963). In
the lower Pecos Valley, the river incises the Edwards
limestone. The permeable Edwards aquifer receives
local intense monsoonal rainfall and discharges into
the Pecos River with a short retention time (Tho-
mas, 1963).

3. Data and methods

Two sets of stream monitoring data were used.
One was retrieved from the National Water Infor-
mation System (NWIS) of the US Geological Sur-
vey (USGS) and the other was taken from the
Water Bulletin of the International Boundary and
Water Commission (IBWC), United States and
Mexico. Continuous daily stream readings at vari-
ous gauging stations back to as early as 1905 were
stored in the NWIS database. This database also
contains water quality records at major gauging sta-
tions along the Pecos River back to 1959. Table 1
shows the number of chemical measurements at
the major gauging stations within the last half cen-
tury. Water sampling frequency varied from station
to station, on average twice a month for many sta-
tions. The IBWC Water Bulletin has documented
a relatively complete water chemical composition
record from the Pecos River near Langtry since
1935. The original gauging station near the mouth
of the river was constructed at Comstock, 9 km
above the confluence with the Rio Grande. This
gauging station was replaced by the Shumla station
(30 km above the confluence), because the recording
gauge installation and cableway at Comstock were
destroyed by the severe flood during Hurricane
Alice in June 1954 (IBWC, 1954). The Langtry sta-
tion (24 km above the confluence) was operated in
July 1967 (IBWC, 1967). Water sampling frequency
at this site changes over the time. Prior to 1977,
chemical analyses were performed on composites
made up periodically from independent water
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Fig. 3. Changes in stream discharge from the upper basin
downward. Open circles denote average discharge for the period
1925–1937 and filled circles denote average discharge for the
period 1938–2001.



samples proportional to river flow when water sam-
ple was taken (IBWC, 1967). Since then chemical
analyses have been conducted on instantaneous
water samples with an average sampling frequency
of once a month.

Most of the chemical determinations were carried
out in chemical laboratories of the US Geological
Survey, using the methods described in Fishman
and Friedman (1989). Most methods used prior to
1950 were gravimetric, colorimetric or titrimetric
(Durum, 1978). The analytical precision (deviation)
usually ranged from 2% to 10%, depending on
methods of determination. Major ion composition
data were extracted and cross checked by compari-
son of the TDS concentration to the electrical con-
ductivity. The quality of water chemical data largely
depends on sampling frequency, completeness, and
consistency. It is noted that significant discrepancies
exist between mean flow of sampling days and
grand mean flow of the entire period. Table 2 shows
that the mean daily flow is usually less than the
mean flow of days having chemical measurements.
The values of ion concentrations measured
appeared to be underestimated, as major ion con-
centrations in stream water are commonly inversely
correlated with stream discharge. A flux-based
approach was employed to estimate average major
ion concentrations under average flow conditions
for the period 1959–2002. In the Pecos River, robust
log-linear correlations exist between major ion
fluxes and stream discharge (Table 3). These empir-
ical log-linear equations were utilized to interpolate
major ion fluxes between observations (Clark et al.,
2003; Hooper et al., 2001). Mean ion flux was an

arithmetic mean of daily major ion fluxes for that
time period which were inferred using daily stream
discharge at various gauging stations. Then mean
major ion concentrations (C) were estimated
through mean major ion flux divided by mean dis-
charge (Q).

The flux-based approach is appropriate for esti-
mates of long-term average ion concentrations, but
not for construction of a TDS concentration record.
The water chemical data of the Pecos River near
Langtry was used to construct a time series of TDS
spanning 1935–2001. This site contains a relatively
complete and reliable water chemical composition

Table 1
Selected gauging stations from the Pecos River Basin, New Mexico and Texasa

Station number USGS gauging station name Chemical measurements Period of record

Discharge Water quality

08378500 Pecos River near Pecos, NM 61 1919–2002 1963–1973
08383000 Pecos River at Santa Rosa, NM 77 1912–1992 1959–1998
08383500 Pecos River near Puerto De Luna, NM 323 1938–2002 1959–2003
08384500 Pecos River below Sumner Dam, NM 1895 1912–2002 1959–1988
08386000 Pecos River near Acme, NM 1414 1937–2002 1959–1998
08396500 Pecos River near Artesia, NM 2031 1905–2002 1959–2003
08401500 Pecos River below Brantley Dam, NM 95 1971–2002 1959–1997
08406500 Pecos River near Malaga, NM 805 1914–2002 1959–2003
08407000 Pecos River at Pierce Canyon Crossing, NM 966 1938–2002 1959–2003
08407500 Pecos River at Red Bluff, NM 1083 1937–2002 1959–1994
08446500 Pecos River near Girvin, Texas 229 1939–2003 1960–1982

a Daily stream discharge and water quality records are from the NWIS database of the US geological survey.

Table 2
Comparison between mean daily flow and that of days with
chemical data at selected gauging stations

Gauging station Mean flow (m3/s) (%)

Daily
(1959–2002)a

Days with
chemical data

Santa Rosa 2.75 9.51 346
Puerto

De Luna
5.34 5.86 110

Sumner Dam 5.13 7.03 137
Acme 4.39 7.97 182
Artesia 4.99 9.44 189
Brantley Dam 4.13 4.04 98
Malaga 2.55 4.94 194
P.C. Crossing 2.56 4.29 168
Red Bluff 2.67 5.81 218
Girvin 0.93 1.64 176
Langtry 7.43 8.76 118

a Except for the Brantley Dam where daily flow record started
in 1971.



Table 3
Empirical log-linear relationships of stream discharge and solute flux for calculating the total dissolved salt burdena

Caption equation r n Anion equation r n

Santa Rosa, New Mexico

log(Ca flux) = � 0.658 + 0.573(logQ) 0.961 59 log(HCO3 flux) = � 0.850 + 0.971(logQ) 1.000 6
log(Mg flux) = � 1.547 + 0.581(logQ) 0.953 59 log(Cl flux) = � 1.642 + 0.498(logQ) 0.937 56
log(Na flux) = � 1.611 + 0.640(logQ) 0.967 59 log(SO4 flux) = � 0.280 + 0.477(logQ) 0.939 56
log(K flux) = � 2.661 + 0.997(logQ) 0.997 56 log(SiO2 flux) = � 2.015 + 0.823(logQ) 0.982 56

Puerto De Luna, New Mexico

log(Ca flux) = � 0.072 + 0.427(logQ) 0.857 294 log(HCO3 flux) = � 0.868 + 1.025(logQ) 0.982 184
log(Mg flux) = � 0.968 + 0.391(logQ) 0.788 295 log(Cl flux) = � 0.605 + 0.225(logQ) 0.568 295
log(Na flux) = � 0.792 + 0.317(logQ) 0.813 215 log(SO4 flux)= 0.405 + 0.317(logQ) 0.726 295
log(K flux) = � 2.584 + 0.919(logQ) 0.953 215 log(SiO2 flux) = � 1.813 + 0.89(logQ) 0.944 295

Sumner, New Mexico

log(Ca flux) = � 0.497 + 0.975(logQ) 0.989 138 log(HCO3 flux) = � 0.879 + 0.973(logQ) 0.996 96
log(Mg flux) = � 1.404 + 0.948(logQ) 0.987 137 log(Cl flux) = � 1.144 + 0.957(logQ) 0.983 138
log(Na flux) = � 1.245 + 0.958(logQ) 0.987 136 log(SO4 flux) = � 0.079 + 0.965(logQ) 0.984 138
log(K flux) = � 2.553 + 0.99(logQ) 0.995 53 log(SiO2 flux) = � 1.867 + 0.983(logQ) 0.993 137

Acme, New Mexico

log(Ca flux) = � 0.39 + 0.897(logQ) 0.982 759 log(HCO3 flux) = � 0.937 + 0.997(logQ) 0.993 663
log(Mg flux) = � 1.102 + 0.801(logQ) 0.956 758 log(Cl flux) = � 0.479 + 0.670(logQ) 0.860 761
log(Na flux) = � 0.609 + 0.695(logQ) 0.894 653 log(SO4 flux) = 0.101 + 0.865(logQ) 0.979 759
log(K flux) = � 2.356 + 0.884(logQ) 0.988 239 log(SiO2 flux) = � 1.859 + 1.014(logQ) 0.987 758

Artesia, New Mexico

log(Ca flux) = � 0.277 + 0.852(logQ) 0.977 1046 log(HCO3 flux) = � 0.852 + 0.999(logQ) 0.990 929
log(Mg flux) = � 0.813 + 0.696(logQ) 0.885 1046 log(Cl flux) = 0.155 + 0.469(logQ) 0.756 1061
log(Na flux) = � 0.056 + 0.507(logQ) 0.789 901 log(SO4 flux) = 0.232 + 0.804(logQ) 0.958 1046
log(K flux) = � 1.94 + 0.642(logQ) 0.924 502 log(SiO2 flux) = � 1.868 + 1.003(logQ) 0.970 1041

Brantley, New Mexico

log(Ca flux) = � 0.323 + 0.901(logQ) 0.970 71 log(HCO3 flux) = � 0.882 + 0.957(logQ) 0.988 7
log(Mg flux) = � 0.886 + 0.851(logQ) 0.940 71 log(Cl flux) = � 0.049 + 0.808(logQ) 0.878 71
log(Na flux) = � 0.286 + 0.843(logQ) 0.899 71 log(SO4 flux) = 0.168 + 0.904(logQ) 0.968 71
log(K flux) = � 2.221 + 1.002(logQ) 0.945 71 log(SiO2 flux) = � 1.923 + 0.907(logQ) 0.952 68

Malaga, New Mexico

log(Ca flux) = � 0.333 + 0.816(logQ) 0.890 779 log(HCO3 flux) = � 0.823 + 0.939(logQ) 0.901 563
log(Mg flux) = � 0.788 + 0.717(logQ) 0.845 779 log(Cl flux) = 0.161 + 0.561(logQ) 0.785 776
log(Na flux) = � 0.056 + 0.560(logQ) 0.785 780 log(SO4 flux) = 0.191 + 0.769(logQ) 0.873 777
log(K flux) = � 1.705 + 0.584(logQ) 0.883 488 log(SiO2 flux) = � 1.82 + 0.871(logQ) 0.928 780

Pierce Canyon Crossing

log(Ca flux) = � 0.296 + 0.834(logQ) 0.979 957 log(HCO3 flux) = � 0.81 + 0.951(logQ) 0.988 726
log(Mg flux) = � 0.654 + 0.673(logQ) 0.923 957 log(Cl flux) = 0.582 + 0.448(logQ) 0.773 958
log(Na flux) = 0.370 + 0.455(logQ) 0.767 957 log(SO4 flux) = 0.273 + 0.764(logQ) 0.961 957
log(K flux) = � 1.202 + 0.542(logQ) 0.564 557 log(SiO2 flux) = � 1.870 + 0.913(logQ) 0.920 957

Red Bluff, New Mexico

log(Ca flux) = � 0.387 + 0.87(logQ) 0.801 736 log(HCO3 flux) = � 1.000 + 1.088(logQ) 0.856 622
log(Mg flux) = � 0.769 + 0.73(logQ) 0.729 736 log(Cl flux) = 0.507 + 0.560(logQ) 0.644 733
log(Na flux) = 0.286 + 0.568(logQ) 0.635 736 log(SO4flux) = 0.145 + 0.780(logQ) 0.737 589
log(K flux) = � 1.315 + 0.599(logQ) 0.486 281 log(SiO2 flux) = � 2.047 + 1.075(logQ) 0.916 589

Girvin, Texas

log(Ca flux) = � 0.188 + 0.749(logQ) 0.930 215 log(HCO3 flux) = � 0.983 + 1.221(logQ) 0.932 216
log(Mg flux) = � 0.456 + 0.589(logQ) 0.774 215 log(Cl flux) = 0.658 + 0.625(logQ) 0.813 225
log(Na flux) = 0.473 + 0.643(logQ) 0.865 188 log(SO4flux) = 0.443 + 0.674(logQ) 0.875 225
log(K flux) = � 1.329 + 0.789(logQ) 0.926 109 log(SiO2 flux) = � 2.450 + 1.050(logQ) 0.646 211

(continued on next page)



record, particularly for the early part (prior to 1977)
of the record in which variations in stream discharge
were already taken into account during sampling
and chemical measurements. Yearly volume-
weighted major ion concentration was calculated
using the following expression

C ¼
Pn

i¼1CiV iPn
i¼1V i

ð1Þ

where C is the yearly volume-weighted mean major
ion concentration (mg L�1), Ci is the individual ma-
jor ion concentration measured (mg L�1), Vi is the
volume of stream discharge in a given month for
composite samples or in a given day for instanta-
neous samples (m3), and n is the total number of
measurements in a given year. The TDS concentra-
tion is a summation of all major ion concentrations
considered.

4. Results

The chemical composition of the upper Pecos
River is dominated by the ions of Ca2+ and SO2�

4 ,
and characterized by relatively low mineral content
(Table 4). There is a steep increase in salt load in the
reach between Santa Rosa and Puerto De Luna

which is mainly ascribed to increase in CaSO4. In
contrast, the increase in salt load between Acme
and Artesia is mainly attributable to an increase in
NaCl. There are salt losses and gains in the reaches
above and below Malaga, which is probably associ-
ated with stream flow losses and gains. Although the
annual salt load maintains the level of around 350
thousand tones in the middle basin, the TDS con-
centration increases substantially and exceeds
10 000 mg L�1 at Girvin with the stream decreasing
downstream. From Santa Rosa to Girvin, the river
water changes from Ca and SO4 dominated fresh-
water to Na and Cl dominated saline water, but
the relative abundance of Mg remains almost
unchanged (Fig. 4). In the lower end of the river,
the TDS concentration is relatively low due to the
dilution effect of local freshwater inputs.

Fig. 5a shows temporal changes in TDS concen-
tration of the Pecos River near Langtry for the per-
iod 1935–2001. The most striking feature of the
TDS concentration record is that it contains a dis-
tinct pattern of decadal to multi-decadal variability.
For example, the TDS concentration is generally
above average (2000 mg L�1) between 1935 and
1952 and between 1985 and 1995, and below aver-
age between 1953 and 1984. More importantly, this

Table 4
Mean flow and major element hydrochemistry of the Pecos Rivera

Gauging
station

Flow
(m3/s)

pH
S.U.

Ca
(mg/l)

Mg
(mg/l)

Na
(mg/l)

K
(mg/l)

HCO3

(mg/l)
SO4

(mg/l)
Cl
(mg/l)

SiO2

(mg/l)
TDS
(mg/l)

Salt burden
(103 ton/yr)

Santa Rosa 2.75 8.0 99 13 12 2.2 132 214 9 7 488 42
Puerto De Luna 5.34 7.8 286 34 46 2.2 144 726 62 12 1312 221
Sumner Dam 5.13 7.7 298 34 51 2.7 123 759 64 13 1345 218
Acme 4.39 7.7 311 48 117 3.3 115 890 150 14 1649 228
Artesia 4.99 7.6 374 78 319 5.3 140 1086 489 14 2506 394
Brantley Dam 4.13 8.0 395 99 388 6.0 121 1230 630 10 2879 375
Malaga 2.55 7.7 323 99 450 10.3 131 1006 743 12 2773 223
P.C. Crossingb 2.56 7.7 363 127 1107 31.7 139 1209 1793 11 4780 385
Red Bluff 2.67 7.6 312 104 977 25.3 127 914 1614 11 4083 344
Girvin 0.93 7.4 610 327 2781 44.4 118 2593 4254 4 10730 314
Langtry 7.43 7.9 121 48 311 7.4 176 304 515 12 1494 350

a Flow-weighted mean of the chemical data at each station during the period 1959–2002.
b Pierce Canyon Crossing, New Mexico.

Table 3 (continued)

Caption equation r n Anion equation r n

Langtry, Texas

log(Ca flux) = � 0.858 + 1.003(logQ) 0.922 294 log(HCO3 flux) = � 0.822 + 1.083(logQ) 0.984 162
log(Mg flux) = � 1.096 + 0.875(logQ) 0.853 293 log(Cl flux) = � 0.066 + 0.876(logQ) 0.831 294
log(Na flux) = � 0.293 + 0.886(logQ) 0.835 294 log(SO4 flux) = � 0.321 + 0.904(logQ) 0.836 294
log(K flux) = � 2.102 + 0.991(logQ) 0.939 286 log(SiO2 flux) = � 1.924 + 1.035(logQ) 0.951 256

a Fulx units in kg/s, Q: discharge in m3/s; r: correlation coefficient; n: number of measurements.



TDS concentration record shows a great deal of
similarity with the PDO index, especially in the early
parts (prior to 1975) of the record (Fig. 5b). This
contrasts with the pattern of decadal variability in
river chemistry of the upper Rio Grande, where
Cl� concentration at El Paso, Texas is negatively
correlated with the PDO index (Yuan and Miyam-
oto, 2004).

5. Discussion

The chemical composition of stream waters
inland is derived primarily from weathering of par-
ent rocks and soils (Lasaga et al., 1994), as the air-
borne component is relatively insignificant
compared to the bedrock weathering (Van Den-
burgh and Feth, 1965). In the Pecos River, most
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of dissolved salts contributed to the river are from
the upper valley, specifically in the reaches between
Santa Rosa and Sumner and between Acme and
Artesia. The dominant process is dissolution of
evaporites such as gypsum, anhydrite and halite
occurring in various geological formations, as wit-
nessed by numerous sinkholes and bottomless lakes
in this area (Harrington, 1957).

Stream discharge is a measure of the net water
yield of a watershed, which is affected by a range
of factors such as precipitation, topography, soil
texture, vegetation cover and temperature, etc.
The Shapiro–Wilk normality test indicates that
annual stream discharge at Pecos, New Mexico is
log-normally distributed (p < 0.05). The z-score of
this log-normally distributed discharge is positively
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correlated with the PDO index (r = 0.45, n = 72)
(Fig. 6). This indicates that the amount of annual
stream discharge of the Pecos River at the headwa-
ters region is essentially an exponential function of
the PDO index. The amount of winter precipitation
in the American Southwest is related to the mean
position of the atmospheric jet stream (Riehl
et al., 1954; Ware and Thomson, 2000) which is
essentially determined by a fairly regular pattern

of high and low pressure systems over the northern
portions of the North Pacific (Mantua et al., 1997).
For example, a warming of the eastern margin coin-
cides with a cooling of the central gyre, a lowering
of sea level pressure (SLP) over the North Pacific
and a heightening of SLP over the western US
(Linsley et al., 2000; Mantua et al., 1997). This pat-
tern of ocean-atmosphere covariability recurs every
20–30 a and forms the PDO.
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Fig. 7 shows log-linear correlations between
stream discharge and TDS concentration in the
Pecos River at three selected stations. The TDS con-
centration is overall negatively correlated to stream
discharge, but the correlation decreases from the
upper basin downward. Specifically, the correlation
coefficient (r2) decreases from 0.90 at Santa Rosa to
0.67 at Pierce Canyon Crossing to 0.44 at Girvin.
Such log-linear correlations have been identified in
many river systems worldwide (Walling and Webb,
1983; Yuan and Miyamoto, 2004). A strong correla-
tion is interpreted to indicate that stream chemistry
is controlled by simple physical processes such as
water dilution and evaporative concentration (Yuan
and Miyamoto, 2004). The reduced correlation at
Girvin suggests that there are other processes (e.g.,
reservoir mixing, groundwater baseflow, and bank
storage) influencing the river chemistry. On the
other hand, TDS flux is positively correlated with
stream discharge at all the stations studied
(Fig. 8). The correlation may be best described by
a log-linear equation (i.e., log (QC) = a + b logQ).
The slope b of this log-linear equation varies from
station to station, but is usually less than one (Table
5). The slope is a measure of the degree to which
TDS concentration responds to change in discharge.
The larger the slope, the less sensitive the TDS con-
centration. In the special case when b = 1, TDS con-
centration is theoretically independent of stream
discharge. There are four gauging stations with rel-
atively large values of slope, such as Sumner, Acme,
Brantley, and Langtry (Table 5). The spatial varia-
tions in the slope are related to changes in lithologic
and hydrologic settings. For example, the relatively
high values of slope at Sumner and Brantley are
ascribed to facts: (1) that stream discharge is largely
determined by reservoir operations or releases and
(2) that the TDS concentration of reservoir outflow
is determined primarily by the amount of inflow and
reservoir storage (Inosako et al., 2005).

To further evaluate the mechanisms controlling
water chemistry, major ion fluxes are plotted against
discharge at two selected gauging stations of Artesia
and Langtry (Figs. 9 and 10). At the two stations,
Na and Cl fluxes have lower slope values than Ca
and SO4 fluxes and the slope values of HCO3 are
close to unity. This suggests that Na and Cl concen-
trations in the Pecos River are more sensitive to
changes in stream discharge than Ca and SO4 con-
centrations. This may be partially explained by the
differences in solubility of NaCl and CaSO4 and
availability of NaCl and CaSO4-bearing minerals.

NaCl is much more soluble than CaSO4 so that
may create NaCl deficit when persistent high flow
occurs. This also explains the scattered nature of
the Na and Cl fluxes against stream discharge (Figs.
9 and 10). However, the slope of Na, Ca, Cl and
SO4 fluxes increases considerably at Langtry. As a
result, the TDS concentration in the Pecos River
near Langtry becomes less sensitive to local dis-
charge, suggesting most of the dissolved salts are
from upstream instead of locally derived.

The TDS concentration record of the lower
Pecos River near Langtry displays a great deal of
similarity with a stream discharge record at Girvin
(Fig. 11). Maxima in the TDS concentration near
Langtry usually coincided with maxima in stream
discharge at Girvin. For example, the two promi-
nent high-flow events occurring in the El Niño years
of 1941 and 1987 were largely caused by snowmelt
from winter storms in the upper basin. Both led to
a huge amount of salt export to and high TDS con-
centration in the lower Pecos River. In particular,
the annual stream discharge of 1941 ranked the sec-
ond highest, but its TDS concentration near Lang-
try was the highest over the last 70 a. The TDS
concentration in the lower Pecos River at Girvin
usually exceeds 10000 mg L�1 which is substantially
higher than that of local runoff (�300 mg L�1). The
TDS concentration in the lower Pecos River near
Langtry is largely determined by the rate of salt
export from the upper valley. The amount of salts
present in the lower Pecos River is largely deter-
mined by the amount of stream discharge upstream,
which appears to be related to the PDO (Fig. 6).
This explains why the TDS concentration in the
lower Pecos River tends to be positively correlated
with the PDO index.

Table 5
Coefficients describing the log-linear correlation between stream
discharge (m3/s) and TDS flux (kg/s) at the major gauging
stations along the Pecos River

Station a b r

Santa Rosa 0.00 0.62 0.98
Puerto de Luna 0.56 0.49 0.88
Sumner 0.17 0.95 0.96
Acme 0.40 0.83 0.96
Artesia 0.70 0.67 0.92
Brantley 0.55 0.88 0.94
Malaga 0.70 0.67 0.96
P.C. Crossing 0.97 0.58 0.89
Red Bluff 0.94 0.65 0.89
Girvin 1.06 0.69 0.89
Langtry 0.35 0.91 0.88



However, there are some discrepancies between
the PDO and TDS concentration in the lower Pecos
River, especially in the late parts of the record
(1975–1985 and 1992–1998) (Fig. 5). The inconsis-
tencies are induced by a combination of variations
in local monsoonal rainfall and changes in anthro-
pogenic disturbances. The lower Pecos River occa-
sionally received a fair amount of local freshwater
that could dilute the TDS concentration consider-

ably. For example, the prominent high-flow events
in 1954, 1974 and 1997 led to three minima in the
TDS concentration near Langtry (Fig. 11). The
1954 flood induced by Hurricane Alice was very
phenomenal, with a peak discharge of �27000
m3/s (IBWC, 1954). This unique flood not only
destroyed the recording gauge installation and
cableway near Comstock (IBWC, 1954), Texas,
but also led to the lowest TDS concentration in
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the entire record. On the other hand, the rate of salt
export has also been affected by changes in agricul-
tural water withdrawal, reservoir storage, and saline
water intrusion upstream. First, based on the histor-
ical data of irrigated land acreage for individual
crop species planted from the USDA National Agri-
cultural Statistics Service, there were rapid increases
in irrigated land area in three counties (Eddy,

Chaves and De Baca) of New Mexico in the
1970 s (Fig. 12). Increases in irrigated land area
are usually associated with increases in agricultural
water withdrawal. Since the three counties are
located within the Pecos River drainage, the rela-
tively low TDS concentration in the lower Pecos
between 1975 and 1985 appears to be related to sub-
stantial increases in irrigated land acreage upstream
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in middle 1970s. Second, increases in storage capac-
ity of reservoirs upstream would temporarily reduce
the rate of salt export. Many reservoirs were con-
structed in the late 1930s along the Pecos River
(e.g., the Red Bluff, the Sumner and the Avalon
Dams). Constructions of the Santa Rosa and Brant-
ley dams in 1976 and 1988 increased the storage

capacity of reservoirs. This appears to be a factor
that led to the relatively low TDS concentration
between 1975 and 1985 and between 1992 and
1998. Lastly, the US Geological Survey, in cooper-
ation with the Pecos River Compact Commission,
operated the Malaga Bend Salinity Alleviation Pro-
ject between 1963 and 1976 to improve the quality
of water that is delivered to Texas (Havens and Wil-
kins, 1980). As mentioned earlier, this project
attempted to reduce the amount of saline ground-
water intrusion near the Malaga Bend by pumping
groundwater from the saline aquifer and discharg-
ing it into some playa lakes nearby. The operation
might have temporarily alleviated stream salinity
in the Pecos River. This project was terminated,
because leakage from these lakes was identified.

6. Summary and conclusions

A study of a dryland river system has been con-
ducted to develop the context of water chemistry
changes on decadal to multi-decadal timescales.
The results of this study indicate that change in
water chemistry of the Pecos River is dictated pri-
marily by large-scale climatic forcing, as represented
by the PDO index. The Pecos River receives above
average runoff from snowmelt in the Southern
Rocky Mountains and exports above average dis-
solved salts to the lower basin when the PDO is in
the positive (warm) phase and vice versa. On the
other hand, there is a strong indication that the
stream chemistry has also been affected by varia-
tions in local rainfall in the Edwards Plateau, irriga-
tion water use, and reservoir impoundment, etc.

The results of the study could have broad impli-
cations for watershed management of dryland riv-
ers in the western United States. Most of the
dissolved salts are from dissolution of rock salts
(e.g., gypsum, anhydrite and halite) in various geo-
logical formations in the upper valley. The rate of
salt export is directly related to the amount of
stream discharge upstream. Water diversions for
agricultural practices are subject to salt accumula-
tion and land degradation when poor drainage pre-
vails. Increase in reservoir storage and/or irrigation
water use reduces the rate of salt export from the
Pecos River and temporarily alleviates salinity con-
ditions of downstream water bodies (e.g., Amistad
and Falcon Reservoirs) in the lower Rio Grande.
However, salts stored or accumulated on irrigated
lands will eventually be washed out when high-flow
conditions persist.
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