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A Nonlinear Model for Prediction of Dynamic 
Coefficients in a Hydrodynamic Journal Bearing 

Jerzy T. Sawicki 
Cleveland State University, Cleveland, Ohio, USA 

T. V. V. L. N. Rao 
Birla Institute of Technology and Science, Pilani, India 

This paper investigates the variation of nonlinear stiff­
ness and damping coefficients in a journal orbit with respect 
to equilibrium position. The journal orbit is obtained by 
the combined solution of equations of motion and Reynolds 
equation. In the linearized dynamic analysis, dynamic pres­
sure is written as a perturbation of static pressure and pres­
sure gradients at equilibrium position. However, in order 
to obtain nonlinear dynamic coefficients about equilibrium 
position, the dynamic pressure gradients in the orbit are 
also written as the first order perturbation of static pressure 
gradients and higher order pressure gradients for displace­
ment and velocity perturbations. The dynamic coefficients 
are functions of bearing displacement and velocity pertur­
bations. The higher order pressure gradients at equilibrium 
position are evaluated at various eccentricity ratios and L/D 
ratios of 0.5 and 1.0. The variation of nonlinear dynamic 
coefficients is analyzed for three Sommerfeld numbers of 
a two-axial groove journal bearing under the action of an 
external synchronous load along and perpendicular to the 
radial journal load. Results indicate that the oil film nonlin­
earities affect the journal motion at lower eccentricity ratios 
(higher Sommerfeld numbers) with wide variation in stiff­
ness and damping coefficients. 

Keywords	 Hydrodynamic journal bearing, Dynamic coefficients, 
Nonlinear model, Journal orbits 

Linearized stiffness and damping coefficients are widely used 
for the stability and journal response of rotor bearing systems. 

Address correspondence to Jerzy T. Sawicki, Rotor–Bearing Dy­
namics & Diagnostics Laboratory, Department of Mechanical En­
gineering, Cleveland State University, 2121 Euclid Ave., SH 245, 
Cleveland, OH 44115-2214. USA. E-mail: j.sawicki@csuohio.edu 

In the linearized analysis, bearing stiffness and damping coeffi­
cients can be evaluated at the journal equilibrium position. How­
ever, the linearized dynamic coefficients do not provide insight 
into the variation of dynamic coefficients for large amplitude 
journal motion about equilibrium position. Fluid film forces in 
a journal bearing are nonlinear functions of journal center posi­
tions and velocities. The large amplitude journal (transient mo­
tion is generally obtained by nonlinear analysis which is based 
on the combined solution of governing Reynolds equation and 
journal equations of motion at each time step. However, it is im­
portant to estimate the variation of dynamic coefficients along 
the journal orbit in order to determine the degree of nonlinearity 
of the orbital response. 

Lund’s (1978, 1987) infinitesimal perturbation method or fi­
nite perturbation approach (Qiu and Tieu, 1996) are used for 
evaluation of linearized stiffness and damping coefficients about 
journal equilibrium position. Lund (1987) reported that although 
the dynamic coefficients are evaluated by infinitesimal approach, 
they are valid up to a 0.4 of the bearing clearance. Qiu and Tieu 
(1996) calculated the dynamic coefficients at different pertur­
bation amplitudes. They concluded that perturbation displace­
ments and velocities should be within 5% and 4%, respectively, 
to keep the difference between the coefficients obtained from fi­
nite and infinitesimal perturbations under 2.5%. Hattori (1993) 
analyzed the variation of stiffness and damping coefficients with 
large dynamic loads over one rotor revolution of a journal bear­
ing of rotary compressor. The dynamic coefficients are calcu­
lated along the journal center locus under unsteady state. It is 
observed that the coefficients vary by one order of magnitude 
over the complete cycle and the nonlinearity caused by the fluid 
film forces is evident in the system. Choy et al. (1991) calcu­
lated nonlinear bearing stiffness coefficients of the order of odd 
power of perturbation displacements at various locations from 
the equilibrium position. The nonlinearity of the bearing was 
evaluated from the deviation of exact stiffness from linear coef­
ficients. Linear stiffness was evaluated at the equilibrium posi­
tion, while exact stiffness was obtained by the finite perturbation 
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approach. They showed that for displacements far away from the 
equilibrium position, nonlinearity in the oil film forces is signif­
icant, and can be modeled closely by higher order stiffness and 
damping coefficients. Choy et al. (1992) examined the nonlinear 
effects on the dynamic performance of the journal bearing under 
various operating conditions such as low and high eccentricity 
ratios, high speeds, and journal bearing axial misalignment. Re­
sults obtained at both high and low eccentricity ratios indicated 
that degree of nonlinearity is high when the journal is operating 
at lower eccentricity ratios. Chu et al. (1998) included the higher 
order terms in the bearing reaction expansion to obtain the oil 
film nonlinearity in journal bearing undergoing large amplitude 
dynamic motion. Error evaluation scheme is adopted to setup 
confidence bounds on the higher order solutions. The nonlin­
ear dynamic model is applied to both conventional and smart 
slider bearing. Results using the above nonlinear model indicate 
that the linearized bearing coefficients are valid for 0.06 of dis­
placement perturbations. Muller-Karger and Granados (1997) 
presented a methodology wherein the dynamic coefficients are 
adjusted using minimum square method for one orbit. Their stud­
ies indicated that nonlinearity depends on the size and shape of 
the orbital motion. 

In this paper, the stiffness and damping coefficients are evalu­
ated along the journal orbit in terms of first order and higher order 
dynamic coefficients about equilibrium position. First order per­
turbation of dynamic pressure in unsteady Reynolds equation 
gives one unsteady pressure term and four unsteady pressure 
gradients. Further perturbation of the one unsteady pressure and 
four unsteady pressure gradients about static equilibrium posi­
tion, yields static pressure, first order and higher order pressure 
gradients about equilibrium position. A finite difference method 
with successive over relaxation scheme is used to solve the un­
steady two dimensional Reynolds equation. Journal center tra­
jectory is obtained by the combined solution of Reynolds equa­
tion and equations of motion. The first and higher order stiffness 
and damping coefficients are obtained at journal equilibrium 
position using the Lund’s (1978, 1987) infinitesimal perturba­
tion approach. For a given journal trajectory, by making use of 
perturbation displacements and velocities, variation of dynamic 
coefficients along the journal orbit can be obtained. 

THEORY 
Stiffness and damping coefficients are obtained from the 

Taylor series expansion of bearing fluid film forces in terms 
of perturbation displacements and velocities. Nonlinearities in 
the bearing forces are obtained by including the higher order 
displacement and velocity perturbations in the bearing force ex­
pansion and thereby nonlinear stiffness and damping coefficients 
are evaluated. In this case, the nonlinear dynamic coefficients are 
predicted with respect to perturbation displacements and veloci­
ties. In general, the comparisons are obtained for (i) coefficients 
obtained from finite perturbation amplitudes, (ii) coefficients 
including first and higher order perturbation amplitudes, and 

(iii) coefficients from infinitesimal perturbation approach. How­
ever, for bearings acted upon by external dynamic loads journal 
undergoes an orbital motion about static equilibrium position. 
Under these conditions it is important to determine the devia­
tion of the coefficients along the journal orbit to predict the range 
of validity of the linearized coefficients along the journal orbit. 
Hence, there is a need to evaluate the coefficients at the unsteady 
state position along the journal locus with respect to the static 
equilibrium position rather than the evaluation of coefficients 
with respect to the corresponding perturbation amplitudes, as in 
the case of traditional approach. 

GOVERNING EQUATIONS 
The two dimensional isoviscous, laminar and incompressible 

Reynolds lubrication equation under dynamic conditions for the 
two-axial groove bearing shown in Figure 1 takes a form: 

( ) ( )2 ( )
∂ H 3 ∂P R ∂ H 3 ∂ P 1 ∂ H ∂ H + = + Q [1]
∂θ 12 ∂θ L ∂ Z 12 ∂ Z 2 ∂θ ∂T 

Under dynamic conditions, the transient motion of the journal 
is defined by the journal center position and velocity, such that 
the film thickness is expressed as: 

H = 1 + X cos θ + Y sin θ [2] 

The fluid film reaction forces along the locus of the journal 
trajectory are functions of journal center displacements and ve­
locities. The first order perturbation of pressure and film thick­
ness about the unsteady state journal position under dynamic 
conditions is: 

P = P + Px !X + Py !Y + Pẋ!Ẋ + Pẏ!Ẏ [3] 

H = H + !X cos θ + !Y sin θ [4] 

Substituting the first order perturbation of pressure (Equa­
tion 3) and film thickness (Equation 4) into the Reynolds 

FIGURE 1 
Geometry and configuration of two-axial groove bearing. 



equation (Equation 1) yields one unsteady pressure (Equation 5) 
and four unsteady pressure gradients (Equations 6–9). These are: 

( ) ( ) ( )
∂ H 3 ∂ P R 2 

∂ H 3 ∂ P 1 ∂ H ∂ H + = + Q [5]
∂θ 12 ∂θ L ∂ Z 12 ∂ Z 2 ∂θ ∂T ( ) ( ) ( )2
∂ H 3 ∂ Px R ∂ H 3 ∂ Px +
∂θ 12 ∂θ L ∂ Z 12 ∂ Z ( )

1 ∂ H 2 ∂ P = −  sin θ − cos θ 
2 ∂θ 4 ∂θ ( ) ( )

R 2 
∂ H 2 ∂ P − cos θ [6]

L ∂ Z 4 ∂ Z ( ) ( ) ( )2
∂ H 3 ∂ Py R ∂ H 3 ∂ Py+
∂θ 12 ∂θ L ∂ Z 12 ∂ Z ( )

1 ∂ H 2 ∂ P = cos θ − sin θ 
2 ∂θ 4 ∂θ ( ) ( )2 H 2R ∂ ∂ P − sin θ [7]

L ∂ Z 4 ∂ Z ( ) ( ) ( )2
∂ H 3 ∂ Pẋ R ∂ H 3 ∂ Pẋ+ = Q cos θ [8]
∂θ 12 ∂θ L ∂ Z 12 ∂ Z ( ) ( ) ( )2
∂ H 3 ∂ Pẏ R ∂ H 3 ∂ Pẏ+ = Q sin θ [9]
∂θ 12 ∂θ L ∂ Z 12 ∂ Z 

Similar to Equations (3) and (4), the first order perturbation 
of unsteady pressure, pressure gradients, and film thickness with 
respect to journal equilibrium position, result in: 

P = P xo!X + Pyo!Y + P˙ X + P˙ Yo + P x0! ˙ yo! ˙ [10] 

Pj = Pjo + Pjx!X + Pjy!Y + Pj ẋ!Ẋ + Pj ẏ!Ẏ [11] 

for j = x, y, ẋ, ẏ, where Pi j  = Pji 

H = Ho + !X cos θ + !Y sin θ [12] 

Calculation of stiffness and damping coefficients in jour­
nal bearing dynamic analysis is performed with respect to the 
steady state position. Hence, considering the perturbation of un­
steady pressure (Equation 5) and unsteady pressure gradients 
(Equations 6–9) about steady state equilibrium position, and 
collecting one zeroth order and four first order terms for each of 
Equations (5–9), yields a set of pressure and/or pressure gradi­
ents with respect to the equilibrium position. 

The equations of motion in non-dimensional form for two-
degree of freedom rotor bearing system considering the hydro­
dynamic and external forces are: 

2 d
2 X Fx

MQ = 1 − + Fd cos(QT ) sin α [13]
dT 2 W
 

2 d
2Y Fy


MQ = −  − Fd cos(QT ) cos α [14]
dT 2 W 

The hydrodynamic forces are obtained by integrating the 
pressure profile. When a small amplitude motion of the journal 
about equilibrium position is considered, these forces are propor­
tional to the journal displacements and velocities, wherein the 
constants of proportionality are referred as stiffness and damping 
coefficients, respectively. The boundary conditions used for the 
evaluation of first order and higher order stiffness and damping 
coefficients are same as those enunciated by Lund and Thomsen 
(1978) and Lund (1987). 

The nonlinear stiffness coefficients Kxx and Kyx are eval­
uated by integration of nonlinear pressure gradient term Px 

(Equation (11)) obtained using the first order perturbation of the 
unsteady Reynolds equation about the unsteady state position as 
well as about the equilibrium position: 

{ } { }   
Kxx cos θ − = Px dθ [15]
Kyx sin θ 

where Px = Pxo + Pxx!X + Pxy!Y + Pxẋ!Ẋ + Px ẏ!Ẏ , and 
the integration is carried out for each of the pressure gradient 
terms Pxo, Pxx , Pxy , Pxẋ , and Px ẏ , respectively. 

The nonlinear stiffness coefficients are written as: 

{ } { } { } { }
Kxx Kxxo  Kxxx  Kxxy− = + !X + !Y 
Kyx Kyxo Kyxx Kyxy { } { } 

Cxxx  Cxxy+ !Ẋ + !Ẏ [16]
Cyxx Cyxy 

SOLUTION PROCEDURE 
For the half bearing considered in the analysis, the computa­

tional grid has 73 nodes in circumferential direction and 7 nodes 
in axial direction. 

The procedure for predicting the first order and higher order 
dynamic coefficients about steady state equilibrium position of 
the journal can be summarized as follows: 

1. The eccentricity ratio and slendemess ratio are the given 
variables. 

2. The two-dimensional Reynolds equation is solved using the 
finite difference method with successive over relaxation to 
obtain the steady state pressure, attitude angle, and Sommer­
feld number. 

3. Perturbation of the unsteady pressure and four unsteady 
pressure gradients with respect to equilibrium position is 
conducted. 

4. Using the infinitesimal perturbation method and the boundary 
conditions given by Lund (1978), the first order and higher 
order stiffness and damping coefficients are determined. 

The procedure for predicting the nonlinear dynamic coeffi­
cients for a journal orbit and along the locus of the orbit can be 
outlined as follows: 

(a) Given the Sommerfeld number, the eccentricity ratio and 
attitude angle are predicted. 



(b) The steps (2) and (3) in the above procedure for predict­
ing the dynamic coefficients about steady state equilibrium 
position are evaluated. 

(c) Incorporating the reaction forces in equations of journal mo­
tion, the new journal center position and velocities are de­
termined. The improved Euler method (Abdul-Wahel et al., 
1982) is used for numerical integration of equations of mo­
tion, and the trajectory is obtained. 

(d) The perturbations of displacements and velocities are calcu­
lated with reference to equilibrium position for each journal 
position along the locus of journal center trajectory. 

(e) The nonlinear stiffness and damping coefficients are calcu­
lated along the locus of the journal trajectory using the per­
turbation amplitudes, first order and higher order dynamic 
coefficients. 

RESULTS AND DISCUSSION 
The higher order coefficients in the nonlinear expansion of 

stiffness and damping coefficients are evaluated at journal equi­
librium positions. The variation of first order dynamic coeffi­
cients for four different multi-lobe bearing configurations is dis­
cussed extensively for various L/D ratios by Lund and Thomsen 
(1978). The results obtained for higher order coefficients with 
several eccentricity ratios and for L/D ratios from 0.5 to 1.5 are 
presented in this paper. The geometry and configuration of the 
two-axial groove journal bearing, considered for the determina­
tion of first order and higher order coefficients about equilib­
rium position using infinitesimal perturbation method, are same 
as that of studied by Lund and Thomsen (1978). The bearing 
parameters and operating conditions are given in Table 1. 

Figure 2 shows the higher order nondimensional coefficients 
for displacement perturbation in the x-direction (along the di­
rection of radial load) for L/D ratios of 0.5, 1.0 and 1.5. These 
higher order coefficients are included in the first order Taylor se­
ries expansion of nonlinear stiffness coefficients Kxx and Kyx . 

The variation of the higher order coefficients Kxxx , Kyxx , 

Kxxy, Kyxy, Cxxx , Cyxx , Cxxy, Cyxy with the increase of eccen­
tricity ratio is depicted in the Figure 2. Also it is observed that 
all the higher order coefficients show a decrease in the range of 
their values with the increase of L/D ratios from 0.5 to 1.5. 

TABLE 1 
Bearing Characteristics and Operating Conditions 

(Lund and Thomsen, 1978) 

Bearing type Two-axial groove 
Pad arc 160◦ 

Groove angle 20◦ 

Preload 0.0 
Offset factor 0.5 
L/D 0.5, 1.0 and 1.5 
Eccentricity Ratios 0.114 to 0.809 

FIGURE 2 
Higher order coefficients for displacement perturbation 

in x-direction. 

The higher order nondimensional coefficients for displ­
acement perturbation in the y-direction (perpendicular to the 
direction of radial load) for the L/D ratios under study are shown 
in Figure 3. These higher order coefficients are included in the 
first order Taylor series expansion of nonlinear stiffness coeffi­
cients Kxy and Kyy . It is  shown that all the higher order coeffi­
cients Kxyy , Kyyy , Cxyx , Cyyx , Cxyy , Cyyy decrease in the range 
of their values with increase in L/D ratios from 0.5 to 1.5, which 
is similar to the variation of higher order coefficients contained 
in the expressions for coefficients Kxx and Kyx . 



TABLE 2 
Bearing Parameters and Operating Conditions 

(Muller-Karger and Granados, 1997) 

Sommerfeld number 
Bearing type 
Pad arc 
Groove angle 
Preload 
Offset factor 
L/D 
Dynamic force orientation 
Force amplitude 
Excitation frequency 

0.2813, 0.1643 and 1.1252 
Two-axial groove 
150◦ 

30◦ 

0.0 
0.5 
0.5 
0◦ and 90◦ 

0.60 
Synchronous 

The variation of the stiffness and damping coefficients along 
the journal orbit is considered for various journal operating con­
ditions, similar to those studied by Muller-Karger and Granados 
(1997). The bearing parameters, operating conditions and the 
type of external dynamic load are given in Table 2. 

The variation of the stiffness coefficients along the journal or­
bit obtained at three Sommerfeld numbers (S = 1.1252, 0.2813 
and 0.1643) for a dynamic load (Fd = 0.6) applied along and 
perpendicular to the radial load (α = 90◦ and 0◦) is  shown 
in Figure 4. For high Sommerfeld number (S = 1.1252), the 

FIGURE 3 
Higher order coefficients for displacement perturbation FIGURE 4
 

in y-direction. Variation of stiffness coefficients along the journal orbit.
 



FIGURE 5 
Variation of damping coefficients along the journal orbit. 

variation of four stiffness coefficients at α = 90◦ and 0◦ is 
higher as compared to lower values of Sommerfeld numbers 
(S = 0.2813 and 0.1643), i.e., higher eccentricity ratios. 

Figure 5 depicts the variation of damping coefficients along 
the orbital response for three Sommerfeld numbers (S = 1.1252, 
0.2813 and 0.1643) under the dynamic load (Fd = 0.6) applied 
along (α = 0◦) and perpendicular (α = 90◦) to  the radial load. It 
is observed from the results obtained that the variation of damp­
ing coefficients at three Sommerfeld numbers is very similar to 
that predicted for stiffness coefficients. Alos, for a given journal 

transient response obtained for all the Sommerfeld numbers, the 
variation of dynamic coefficients (both stiffness and damping 
coefficients shown in Figures 4 and 5) for α = 0◦ is higher as 
compared to those obtained for α = 90◦ . 

The purpose of calculating the stiffness and damping coef­
ficients variation along the journal locus for the given journal 
orbit at a given journal operating position (or for a given Som­
merfeld number) is to understand the degree of nonlinearity for 
the given orbit. The nonlinearities in fluid film are larger at higher 
eccentricity ratios than at lower eccentricity ratios. However, the 
change in nonlinearity with perturbation amplitudes is higher at 
lower eccentricity ratios (higher Sommerfeld numbers) than at 
larger eccentricity ratios (lower Sommerfeld numbers). 

CONCLUSIONS 
A methodology to predict the degree of nonlinearity in the 

orbital response for a two axial groove bearing is presented for 
three Sommerfeld numbers. The orbital response is obtained 
for a dynamic load along and perpendicular to the radial load, 
and the variation of nonlinear dynamic coefficients is analyzed 
along the locus of the journal response. Nonlinear dynamic co­
efficients are obtained by the infinitesimal perturbation of un­
steady pressure gradients at the unsteady journal position (at 
any point on the journal locus) with respect to the equilibrium 
position. These nonlinear dynamic coefficients are functions of 
first order and higher order dynamic coefficients evaluated at the 
journal equilibrium position. Higher order dynamic coefficients 
are evaluated for various eccentricity ratios and slenderness 
ratios. 

Based on the results obtained using the present methodology 
it is concluded that the variation of dynamic coefficients along 
the journal locus is larger at high Sommerfeld numbers (low 
eccentricity ratios). When the dynamic load is perpendicular to 
the radial load, the journal orbits are slender as compared to those 
orbits obtained for dynamic load parallel to the radial load. For 
all Sommerfeld numbers the variation of dynamic coefficients 
along slender orbits is larger than that for round orbits. The 
degree of nonlinearity introduced into the nonlinear dynamic 
coefficients by the journal orbit (nonlinear analysis) is larger at 
low eccentricity ratios than at high eccentricity ratios. 

The present methodology can be used to predict the varia­
tion of dynamic coefficients along the journal center locus to 
determine the nonlinearity of “stable” journal orbits. 

NOMENCLATURE 
bi jo, Bi jo  Damping coefficients evaluated at equilibrium 

position, Ns/m; Bi jo  = bi joCω/w, i, j = x, y 
bi j , Bi j  Damping coefficients evaluated for the journal 

orbit, Ns/m; Bi j  = bi j Cω/w, i, j = x, y 
bi jk, Bi jk  Higher order damping coefficients evaluated at 

equilibrium position,Ns/m2; Bi jk  = bi jkC2ω/w; 
where i, j, k = x, y denote the direction 
of force, first order perturbation amplitude, 



and higher order perturbation displacement, z, Z Coordinate along the axial direction, m; Z = 
respectively z/L 

C Radial clearance, m α Angle of orientation of dynamic force with re­
ci jk  , Ci jk  Higher order cross coefficients evaluated at eq- spect to horizontal direction 

uilibrium position, Ns/m2; Ci jk  = ci jk  C2ω/w; η Oil viscosity, Ns/m2 

where i, j, k = x, y denote the direction of θ Angular coordinate measured from the vertical 
force, first order perturbation amplitude, and load direction 
higher order perturbation velocity, respectively ω NJournal angular velocity, rad/s 

mCD	 Journal diameter, m ωs Speed parameter; ωs = ω W 
fx , fy , Fx , Fy Bearing forces along vertical and horizontal ωp Angular velocity of whirl 

directions, N; Fx = fx /ηω(R/C)2 RL , Fx = Q Whirl ratio, ωp/ω 

fx /ηω(R/C)2 RL 
fd , Fd Dynamic force of excitation, N; Fd = fd /mCω2 Subscript 
h, H Oil film thickness, m; H = h/C o Pressures, forces, and dynamic coefficients cal­
ki jo, Ki jo  Stiffness coefficients evaluated at the equilib- culated with reference to equilibrium position 

rium position, N/m; Ki jo  = ki joC/w, i, j = 
x, y REFERENCES 

ki j  , Ki j  Stiffness coefficients evaluated for the journal Abdul-Wahed, N., Nicolas, D., and Pascal, M. T. 1982. Stability and 
orbit, N/m; Ki j  = ki j C/w, i, j = x, y unbalance response of large turbine bearings. ASME Journal of Lu­

ki jk  , Ki jk 	  Higher order stiffness coefficients evaluated at brication Technology 104:66–75. 
equilibrium position, N/m2; Ki j  = ki jkC2/w; Choy, F. K., Braun, M. J., and Hu, Y. 1991. Nonlinear effects in a plain 
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p, P	 Pressure in the oil film, N/m2; P = p/ηω(R/C)2 
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finite bearing with large dynamic loads (stiffness and damping coefficient varia-
Pj	 Non-dimensional pressure gradients for finite tions in bearing oil films). JSME International Journal 36(2):251– 

bearing; j = x, y, ẋ, ẏ 257. 
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Fluid Bearing and Rotor Bearing System Design and Optimization R	 Journal radius, m 
ASME, New York, 1–28. t, T	 Time, sec; T = tωp 

Lund, J. W. 1987. Review of the concept for dynamic coefficients for 
w, W	 Static load, N; W = w/ηω(R/C)2 RL 

fluid film journal bearings. ASME Journal of Tribology 109:38–41. 
x, y, X, Y	 Vertical and horizontal coordinates with respect Muller-Karger, C. M., and Granados, A. L. 1997. Derivation of hydro-

to bearing center, m; X = x/C, Y = y/C dynamic bearing coefficients using minimum square method. ASME 
X, Ẋ Non-dimensional journal center displacement Journal of Tribology 119:802–807. 

and velocity in x-direction Qiu, Z. L., and Tieu, A. K. 1996. The effect of perturbation amplitudes 
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