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Relativistic invariance and Zitterbewegung

James A. Lock

We examine the question of what it is about the structure of relativistic quantum mechanics that
causes the nonintuitive phenomenon of the Zitterbewegung of particle position to exist. Further,
Wwe examine various assumptions concerning the measurement process which are implicit in the

observation of Zitterbewegung.

INTRODUCTION

Over the last fifty years, the subject of Zitterbewegung of
a free particle has been examined in many articles' and
standardly appears in textbooks on relativistic quantum
mechanics.” It is interpreted as a trembling of the position
of the free particle superposed on its usual rectilinear mo-
tion. It is said to result from the fact that a particle wave
packet cannot be localized to any size smaller than roughly
its Compton wavelength ' without possessing both positive
energy and negative energy Fourier components. When the
expectation values of various functions of the position op-
erator are calculated for such a wave packet state, the posi-
tive energy and negative energy Fourier components inter-
fere producing either transient or steady-state vibrations in
tﬁhe expectation values with a frequency greater than 2mc*/

In the present communication we consider a different
aspect of the phenomenon of Zitterbewegung. Rather than
being primarily concerned with the effects of Zitterbewe-
gung, we address the more fundamental question of what it
IS about the structure of relativistic quantum mechanics
that causes this nonintuitive phenomenon to occur in the
first place. Secondly, we examine the assumptions implicit
In the position measurement process which are necessary
for the observation of Zitterbewegung.

_ One may claim that the answers to both of these ques-
tions concerning the origins of Zitterbewegung are not un-
known, However, these questions of interpretation are im-
Portant to the understanding of the phenemenon and they
are usually at best only implicitly addressed in the standard
treatments of the topic. Thus, we believe it to be of peda-
80gic value to explicitly address these questions in this
‘ommunication. Qur two conclusions appear at the end of
Sec. III and at the beginning of Sec. IV. They are then
Tepeated in Sec. V.

RELATIVISTIC INVARIANCE AND FREE
PARTICLE SYSTEMS

In the quantum mechanics of a single particle, the parti-
cle position operator is associated with a dynamical proper-
ty of the particle and provides a rule for the correspondence
of measured values of that property with coordinates in
three-dimensional space. In nonrelativistic quantum me-
chanics, the only correspondence deemed useful is the
identity, i.e., that the position of a particle is its location in
space.'' An example of this identity association is the as-
sumed proportionality of the single particle charge density
and the probability density in nonrelativistic quantum me-
chamcs, 12,13

plr) = elyir)|”. (2.1)

By having a unitary operator W acting on each of the
operators O and states |¢) of the original system via the
prescription

0y = W) (2.2)
and
0'=Wow -, (2.3)

it is always possible to generate an equivalent representa-
tion of the theory. In the transformation process, the phys-
ical interpretations of the various operators change but all
matrix elements, and therefore all measurements, remain
the same. Often, transforming to another representation is
calculationally very useful such as when

W = expliHt) (2.4)
which connects the Schrodinger picture and Heisenberg
picture versions of single particle quantum mechanics or
when W is the Clebsch-Gordon matrix which connects the

coupled and uncoupled versions of spin-orbital angular
momentum space. In these two cases, however, the phys-



or X remains tpe same.
the physical interpre-
11 change. Such1s the

ical meaning of the position operat
With other changes of representation
tation of the position operator may we
case when, for example,

N N 2.5

W = expli(P-a)’] 23)
and

- . ~ 2.6

X' = X + 2a(P-a). | (_s :
In this situation, position in the new reprﬁe{ltattl::‘:) :1g1

linear combination of position and momentum 1n
nal representation. Such position-changing TCPW{'“?'
tions are deemed neither useful nor necessary in nonrelati-
vistic quantum mechanics. o .

In r(e]lativistic quantum mechanics, a new situation arises
with respect to similarity transformations of the theory.
Correspondences for the position operator othle4r than the
identity association are meaningful and useful. The relg-
tivistic quantum mechanics of a single free particle of spin
S, mass m, and which possesses both positive and negative
energy states'® may be formulated in any one of an infinite
number of equivalent reducible representations of the
Poincaré group. One such representation, known as the
canonical representation,'® assumes a form reminiscent of
the Galilean quantum mechanics of a single free nonrelati-
vistic particle. The canonical representation is expressed in
terms of four basic particle dynamical variable operators,
X, P, 2, and 4, which are descriptively termed the particle
position operator, the particle momentum operator, the
particle spin operator, and the particle energy sign opera-
tor, respectively. The time evolution of the free particle is
expressed by the Schrodinger equation

o), =iﬁ§|m,, 27

with the free particle Hamiltonian in this representation
being

Hy=A4 (PP + mic*I)\2.
The position operator

X =ifivVp (2.9)
has the same simple properties that the canonically conju-
gate position operator had in Galilean quantum mechan-
ics. For example, let the the simultaneous eigenstates of the
commuting operators X, X, 4 | be IR0, 4,4 ),atr=0
and let the simultaneous eigenstates of the commuting op-

erators {P, X, 4 }bCIP,A,A) atr = 0. Theti .
of these states is then 0 me evolution

IRO), 4, 4), = exp( - i) R(0), 4,4 ),
and

P.A,4), = exp( - iHlyt)|P, A, 4),, 2.11)
anq the localization property of the position eigenstates is

XIR(O)’ArA >0= RIR(O)r 4,4 )o (2 12)
Then, as in Galilean quantum mechapj ition
erator X is a local operator with r, et s on o>

: . espect to the i
eignestates at the instant of | ocalization coordinate

o{R10, 4", 4"X|R(0), 4,4 ), = R'§ (R

(2.8)

(2.10)

‘RWA'Aad’A.

(2.13)
function 1o-
ergy sign,

In gddition, t?le Fourier components of the -
calized coordinate eigenstates have a single en
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IR(0), A, 4 ),
djl:: xm,‘P.R)exp' —iAEt ”P. A, A4 )0.
(27)

Finally, the time evolution of wave-packet states POSSesgeg
no Zitterbewegung. If the wave-packet state | ) g

(2.14)

d’P A)P, A, 4)
9)o=3 | o—sA P A A)P. A4, 4), 215
) (2m)
then
o( ¥ expliHot )Xexp( — iHot )| ¥ )o
iy [L24 %P, 4, 4)[VeA(P, A, 4)]
AA (277')3
d*P L AP
AP A 4P AE,
*C;Jw' ( =
—R, + V. 216

Other equivalent representations of the relativistic quan-
tum mechanics of a single particle with both positive ang
negative energy states available may be obtained from the
canonical representation by the similarity transformation
with the unitary operator W (X, P, £, 4 ).""'* If the unitarily
transformed representation is expressed in terms of the unj-
tarily transformed operators

x=WXW-, 2.1

p=WPW !, (218

o=WIW-' 2.19
and

5=waw -, (2.20

the Hamiltonian and all other operators in the transformed
Tepresentation are the same functions of %, p, o, and 4 as
the original versions of the operators were of X, P, £, and
4 in the original representation. But if the transformed r¢-
presentation operators are also expressed in terms of X, P,
%, and 4, they assume very different functional forms and
physical meanings than their counterparts did in the ca-
nonical representation. When the transformed r epresenta-
tion is written in this second way, the position operator X
does not, in general, commute with the transformed energy
Sign operator &. As a result, the matrix elements of X taken
with respect to superpositions of the eigenstates of the
transformed Hamiltonian

i’°= Wi{owh‘ (2.21)

possess Zitterbewegung. Specifically, if |p, 4, & )o.afe ghe

simultaneous eigenstates of {p, o, 4 |, and the Hamiltonia?
ols

ho= 3((:2{,.", + mic*r)'2, (2.22)
and [¢), is the Wwave-packet state,
- d’p
o= gf P a(p, 4,8)|p, 4,8 ), (2.23)

then



(glexplfor | X expl = haf Do
0

(4P gu(p, 4, 8)[V,alp. 4, 8)]
;lﬁ;J‘(zﬁ)l

d’p 2 Op
4P ap, 4,6 !
+ c;,f (27) E
d’p . NI 7|
. a*(p, A0 )W 544D
+tﬁ,1 '5;5/141 (277)]

X [V Wasis(P)] (P A, blexp[ — i(6" — S)Et /%]
(2.24)

where

E= (C2P2 + m’ (2.25)
Wi (P)isthe 2(2S + 1)x2(2S + 1) matrix realization of
the operator W, and thg .lasl term in Eq. (2.24) is the Zit-
terbewegung. Such position-changing .transformed repre-
sentations which are of great calculational value are the
Dirac representation'” for §'= 1/2 and the Sakata-Take-
tanireprmmalionm for §=0.

Foragiven Sand m, each equivalent representation pro-
vides an identical description of the relativistic quantum
mechanics of a single free particle. With this being the case
and without any further implicit assumptions, there is no
physical reason to prefer one unitarily transformed repre-
sentation over another for the description of the particle.
Without further assumptions, one may simply avoid the
problem of Zitterbewegung by appealing to the canonical
representation with its basic position operator X. In this
form of the theory, even though the particle has both ener-
gy signs available to it, the possibility of Zitterbewegung
Never arises.

4)]/2,

RELATIVISTIC INVARIANCE AND
INTERACTING PARTICLE SYSTEMS

In contrast to this, when considering the interaction of
_the particle with an external force center, since the external
interaction must be expressed in a relativistically invariant
way, the nature of the interaction often provides compell-
ing calculational reasons to prefer one representation over
@qther. For an external interaction of arbitrary complex-
ityin the canonical representation, the procedure by which
ftla!mstic invariance is guaranteed or the restrictions on
the lntezrlaction imposed by relativistic invariance are not
known.?' However, if the interaction is unitarily transfor-
:}?;!(’16 toafour-potential which is a local algebraic function
term:n?' gtl}e same transformed representation written in
covm" t »P, 2, and 4 already gives rise to a manifestly
fOur-v:cnt equation of motion, then the addition of the local
via mmm(:;l Interaction to the transformed representation

Actual] coupling preserves the manifest covariance.
Ve ordey’lgl-lllss procedure is usually carried out in the re-
Ovariant T. _For example, one begins with a mamf&stly
Actions m‘:j‘-'lua‘tlgn of motion with local four-vector inter-
uation o é'llllmmal coupling such as the S = 1/2 Dirac

Blermines the §' =0 Klein-Gordon equation. One then
“Onsistent i l: form of the transformed representation
ton vanjshes Nthm equations in the limit as the interac-
the Folgy_w, ext the form of the operator W (known as
fo Y-Wouthuysen operator) connecting the trans-

.':gfesﬁntation to the canonical representation is
teractiong fi_.Lastly one transforms the local four-vector in-
om the transformed representation to the ca-
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nqmcal representation via the similarity transformation -
with the Foldy-Wouthuysen operator W. For example, let
[R(0), (1.4 ) be the simultaneous eigenstates of X, 2,and 4
at the instant of localization. Then the four-vector interac-

tion #(X) V\(hich is a local interaction in the transformed
representation, i.e.,

o{R'(0), 4,4 "[&(X)[R(0), A, 4 ),
=us442R (R —R) (3.1)

becon@ the nonlocal interaction U in the canonical repre-
sentation where

E/= W‘ 'ﬂfV
and where its nonlocality is expressed by
ofR(0,4",4 '|i/|§z(0), A4),
- ATATATA" d (5;6pl J‘d 3R ’ exp[[P’.(R' N R')]
XW ian-a-Pluy-g-p-5-(R")
X W4-5-14(P) exp[iP{R" — R)].

(3.2)

(3.3)

This is exactly what happens for the case of the electro-
magnetic interaction when the static electromagnetic four-
potential operators [A(X), @ (X)] are added to the free parti-
cle Dirac representation for S =1/2 via the minimal
coupling prescription

u=e®(X) — ea-A(X). (3.4)
For the electromagnetic interaction in the transformed re-
presentation, the operator X is interpreted as the electro-
magnetic position of the particle since from Eq. (3.1) a par-
ticle described by its localized eigenstate |R) at the instant
of localization experiences the electromagnetic potential at
the single spatial coordinate R. This procedure is not the
only way in which to introduce external interactions into
the theory in a relativistically invariant way. It is however
the only way in which it is clear cut as to how to go about
proving that the interactions so added are relativistically
invariant.”?

It is a source of great relief and simplification that one
does not have to go through such an elaborate procedure in
order to guarantee the Galilean invariance of the theory of
a single interacting nonrelativistic particle. For a free non-
relativistic particle, one begins with a representation of the
Galilean group for which position is simple and for which
the free Hamiltonian is

H,=PP/2m. (3.5)
This is quite analogous to beginning the discussion of Poin-
caré invariance with the canonical representation where
again the position operator had simple properties. For the
case of local scalar or four-vector interactions, Galilean
invariance is maintained by addipg the interaction directly
to the free particle Hamiltonian H, in the original represen-
tation or by minimal coupling to the original representa-
tion free Hamiltonian respectively. One does not have to
appeal to a different unitarily transformed representation
in order to demonstrate the Galilean invariance of these
external interactions. Galilean invariance allows position
and interactions to possess simple properties in t_he same
representation While relativistic invariance requires that
position and interactions be simple in different representa-
tions.



E
ASSUMPTIONS IMPLICIT IN TH
OBSERVATION OF ZITTERBEWEGUNG

rises in transformed repre-

Since the Zitterbewegung a  tod with manifestly

sentations of the Poincaré group o
covariant equations of motion and local four-vecto

actions, its observation hinges on the local m;t:jr:oort;lg?
probing interaction of the measuring device u il
sure position. Thus Zitterbewegung measl'lmﬂtlal globe o
information about the nature of the experiment pr "
well as giving information about the pamf:le being ]:;fon ot"
An example of the dependence of the interpretatio
one’s observations on the assumptions‘one makes concern-
ing the nature of interactions is prom.:led by the Darwin
term in the electromagnetic interaction of an electron
bound in the Coulomb field of an atomic nucl_eus. One may
take the point of view of the Dirac representation and claim
that the Zitterbewegung of the electron’s electromagnetic
position in the local Coulomb field causes it to §ample and
time average the local electromagnetic potential over the
range of the Zitterbewegung amplitude producing a

AE = ( — ef?/8m*c?)(¢|V-E|¢) (4.1)

shift in the bound state energy of the electron. Alternative-
ly, one may take the point of view of the canonical represen-
tation and claim that the basic electron position operator
possesses no Zitterbewegung but that the Coulomb interac-
tion with the atomic nucleus is nonlocal when expressed in
terms of this position operator.? Then due to the nonloca-
lity of the electromagnetic interaction, the electron at a
given point location experiences the interaction at that co-
ordinate averaged with the interaction strength evaluated
over a small neighborhood of spatial coordinates near to it.
The same energy shift results from this alternative point of
view. The Darwin interaction is a reflection of the inability
of particle position and electrostatic interactions to be si-
multaneously described in a simple way in a given repre-
sentation. One may interpret the effect to be due to either of
the two complementary causes with equal validity.

The same interpretive assumptions are inherent in the
terminology “the Zitterbewegung of a free particle.” The
terminology describes the fuzziness in position measure-
ments that one would observe if the free particle under
consideration was being continuously sampled by an arbi-
trarily weak probe, and if one were monitoring the observa-
ble quantity in terms of which the probing potential was a
local four-vector. In terms of the canonical representation,
‘this same fuzzyness in position measurements would be
Interpreted as being due to the nonloca] character of the
probing interaction in that representation,. Both for the
Darwin interaction and for the free particle example, we
prefer to think of the nonintuitive effects as being due to
position Zitterbewegung rather than to force nonlocality
This is because, motivated by the way we parameterize
ﬁelqs in classical physics, we are more comfortable in pre-
ferring to think of common interactions such as the Cou-
lomb force as being local interactions,

Itis less clear cut as to what options of
useful if one considers the case where th
tion may well be mtnnsicz.nlly'nonlocal, ie., be a nonloca]
function of X in any unitarily transformed Tepresenta
tion. 2 In this case, the probing interaction takes on o
special simplicity in any transformed Tepresentation Thno
one may with complete validity, describe thig inter; ing

’ eractin

system in the canonical representation where if nothing

interpretation are
€ probing interac-
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else, the position operator X is simple. In the canonicg
representation, the Zitterbewegung of X cannot occur. Ag.
suming one knows hovy to expenmema!uy measure X inth,
canonical representation, any trembling in eXperimenty)
observations of pos?tlor} would‘be due to the intrinsj¢ non.
locality of the probing interaction.

SUMMARY
The requirement that relativistic quantum mechanicy

theories allow both positive and negative energy states js ,
necessary but not sutﬁcnent.condmo_n for the existence of
Zitterbewegung. From classical physics and nonrelativistic
quantum mechanics, we carry over two intuitive hopes fo
relativistic quantum mechanics, (hat In some general way
position possesses simple properties and that in some gep.
eral way interactions possess snm‘ple properties. Crucial to
the existence of Zitterbewegung is the fact that, as seen iy
Sec. I11, relativistic invariance demands that both of these
intuitive hopes cannot be simultaneppsly fulfilled. One has
the option of whether to allow position to be simple or to
allow interactions to be simple. But one can never take both
options at once. If the particle position operator maintains
all the intuitive properties which it possessed in Galilean
quantum mechanics, then interactions are forced to be
nonlocal functions of that position. That is, the observed
strength of the interaction is its value at the spatial coordi-
nate where the particle is located, averaged with the inter-
action strength at neighboring spatial coordinates where
the particle is not located. On the other hand, if one ex-
presses interactions as algebraic functions of a local posi-
tion operator, then that position which the interactions are
local in possess Zitterbewegung. Also, since Zitterbewe-
gung is a consequence of the assumption of the local char-
acter of the probing interaction, if one is not going to have
any local four-vector interactions present, one is not going
to have any Zitterbewegung present either.
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X. Thus the Coulomb interaction is nonlocal in the eigenstates of X. This

point of view is emphasized in Ref. 18.
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