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1. INTRODUCTION 

The dynamic behaviour of rotors (mainly their natural frequencies and the corresponding 
mode shapes) can be strongly influenced by the spin speed. Apart from the speed-dependent 
characteristics of the bearings, the causes intrinsica ll y linked with the rotor itself are main ly 
fou r: gyroscopic effect, rotating damping, centrifugal stiffeni ng and deviation from axial 
symmetry [1]. While rotating damping has a very small effect on the natural frequencies of 
the system (it may have a very strong effect on the decay rate, to the point of making the 
system unstable), and cen trifugal stiffening is usually important only for the natural 
frequencies linked with the blades of bladed rotors, gyroscopic effect has a deep influence on 
the dynamic behaviour of a large class of rotors. Generally speaking, it is owing to the 
gyroscopic effect that the Campbell diagram of most rotating machines is not 'Hat"like that 
of the Jeff COli rotor. 

The importance of taking into accoun t gyroscopic effect when modelling rotors is well 
understood, and most codes used to compute the critical speeds, the unbalance response 
and the Campbell diagram of rOlOrs take it into account, introducing a suitable gyroscopic 
matrix into the equation of motion. Depending on the approach used for the discretizat ion 
of the system, such a matrix may be a "lumped" one, when discrete discs with their polar and 
transverse moments of inertia are included at some locations, or a "consistent" one, when 
using the finite element method to derive the mass and gyroscopic matrices. 

However, there are cases, mai nly in the design of controllers for actively controlled rotors, 
in which the dynamics of the system is studied neglecting the spin speed, in the hope that the 

mailto:genw@polifO.it
mailto:j.smvicki@csllohio.edll


e!ects of rotation, and hence also gyroscopic e!ect, can be included in the unmodelled or 
parasitic dynamics of the system without resulting in large errors. Moreover, there are cases 
in which reduced order models based on modal co-ordinates are used. These models are 
based on modal uncoupling and take into account only a small, often very small, number of 
modes, without taking into account that gyroscopic e!ect couples the various modes. If the 
rotor can be considered a weakly gyroscopic system, the result is an approximation not 
dissimilar to that due to neglecting the modal coupling caused by damping, centrifugal 
sti!ening, non-linearities, etc., but this is not generally the case and larger errors can be 
expected. 

It must also be noted that, if the inertial characteristics of the rotor are such that the polar 
(J ) and transverse (diametral) (J

t
) moments of inertia are approximately equal, the critical 

p
speeds computed without taking into account gyroscopic moments are little a!ected by it. 
However, even in this case, the Campbell diagram is not #at and new, very dangerous, 
critical speeds may appear in the supercritical region. Very large unbalance responses, not 
predicted by the reduced model, and shifts of the natural frequencies can appear. 

The purpose of this paper is to introduce an uncoupling of the equations of motion which 
does not neglect the speed-depending e!ects, like a gyroscopic e!ect, particularly for the 
application to the design of the controller of actively controlled machines. 

2. ROTOR EQUATION OF MOTION 

Consider a multi-degree-of-freedom linear system made of an isotropic rotor running on 
a general stator. Its equation of motion can be written with reference to real or to complex 
co-ordinates [1, 2]. In the latter case, the gyroscopic matrix is symmetric, while in the 
former one it is skew symmetric. Using the real co-ordinates approach, the equation of 
motion is 

MxK #(C# G)x #(K# C #K   ) x"f (t)#  f (t), (1)
   

where the mass M, damping C (total, rotating plus non-rotating), sti!ness K and centrifugal 
sti!ening K matrices are symmetrical and independent from the spin speed, except for the 
case of the matrices coming from the linearization of hydrodynamic bearings (8-coe$cients 
models) while the gyroscopic G and the circulatory (rotating damping) C

 
matrices are skew 

symmetric; the non-rotating force vector f (t) is a generic function of time while the rotating 
 

force vector f (t) due to unbalance is a harmonic function of time with a period
 

corresponding to the rotation frequency. 
For the study of the lateral dynamics, it may be expedient to write separately the 

contributions in the two in#ection planes xz and yz (z-axis has been assumed to be the axis 
of rotation) by reordering the generalized co-ordinates, with those related to the xz plane 
before those related to the yz plane:

M 0 G C
   K        

M

 x#   0 # 
C

M M !G C C   x
        

(K#K   ) 0 C
    

  x"f (t)#  f (t), (2)
(K#K   ) !C

#  
(K#K   )

(K#K   )  #  0    
    

  

where the gyroscopic G
ij 

and the circulatory C matrices are di!erent from those in 
 
ijequation (1) and are symmetrical. Moreover, if the lumped parameters approach is used, 

matrices G are diagonal and their elements vanish in correspondence to the translational 



  
     

  
 

  

      
  

  
 

 

      
  

  
 

 

  

degrees of freedom and are equal to the polar moment of inertia J associated with the nodes 
p

for rotational degrees of freedom. 
Equation (2) can be expressed in modal co-ordinates in the form

 K #(CK # GK )  R #(KK # CK #KK )  "fK (t)# fK (t), (3) 

where the modal co-ordinates 1 are referred to the eigenvectors of the undamped, 
i

non-rotating system, normalized in such a way that the mass matrix is an identity matrix. 
The modal sti!ness matrix is then diagonal and its elements are the squares of the natural 
frequencies of the undamped, non-rotating system. All other matrices are not diagonal and 
couple all modes. It is possible to de"ne a proportional damping and a proportional 
centrifugal sti!ness matrix in such a way that the corresponding modal matrices are 
diagonal and do not couple equation (3). The gyroscopic and circulatory matrices always 
couple the equations, but in the case of axisymmetrical systems, it is also possible to de"ne 
a proportional form in which the equations uncouple in pairs, each pair being referred to 
two modes in the two in#ection planes with the same frequency. In this case, very simple 
models can be devised by introducing the complex co-ordinates z"x#iy for translational 
degrees of freedom and ¢"¢ !i¢ for rotational ones. Note that while complex 
co-ordinates can greatly simplify the equation of motion of axisymmetrical systems, they 
can be used also in the study of general, non-isotropic, rotating systems. 

When using the complex-co-ordinates notation, the equation of motion of an 
axisymmetrical rotating system is 

i tMqK #(C!i G) q#(K#K !i C ) q"f (t)# f e . (4) 

The matrices which are symmetric when using the real co-ordinates approach are real in 
the equation written in terms of complex co-ordinates, while skew-symmetric matrices give 
way to symmetric, imaginary terms. When using the complex co-ordinates approach, all 
relevant matrices are then symmetric. 

Also in this case there is no di$culty in performing a modal transformation using the 
eigenvector of the undamped non-rotating system

i t K #(CK !i GK )  #(KK #KK !i CK )  "fK (t)# fK e , (5) 

where the only matrix to be diagonal is KK . Clearly, the symmetric but non-diagonal matrices 
CK , G KK , K and C couple the equations of motion. Again, in the case of weakly damped and 
gyroscopic systems, also with a weak centrifugal sti!ening e!ect, the terms outside the main 
diagonal of such matrices may be neglected and the equations of motion may be uncoupled 
in an approximated way, as already seen for the case in which real co-ordinates are used. 

3. UNCOUPLING OF THE EQUATIONS IN THE STATE SPACE 

The uncoupling of gyroscopic systems, in the context of rotor dynamics, can be 
performed in several ways; see for example references [3}5]. Genta [6] proposed to split the 
fully populated modal damping and gyroscopic matrices into the proportional (diagonal) 
and non-proportional part (o!-diagonal elements). If the latter is negligible, modal 
uncoupling can be performed and the computation of the Campbell diagram becomes very 
easy. In the other case, a fast converging iterative procedure was proposed. The estimation 
of the errors associated with neglecting the coupling between the normal modes for 
non-gyroscopic systems can be found in reference [7]. Recently, Wang and Kirkhope [8, 9] 
showed that a set of real eigenvectors exists which constructs a basis for the vector space of 
systems with only gyroscopic coupling. The original complex eigenvalue problem can be 



 

 
     

  

      

 

      

 

 

  
 

  
 

 

transformed into a real one in terms of two real symmetric matrices composed of the 
original mass, gyroscopic and sti!ness matrices, and a closed-form response can be derived. 

By writing the equation of motion (4) with reference to the complex state space, the usual 
equation 

z"Az#Bu (6) 

is obtained, where the state vector z and the dynamic matrix A are 

 
A"

!M-l (C!i G) !M-l (K#K !i C ) 
z" 

q

q , . (7)
I 0 

Note that the dynamic matrix is complex, even in the case of undamped systems. Its 
eigenvalues are then complex but not conjugate: this physically means that the whirl 
frequencies of forward modes do not coincide with those of the backward modes. 

The input gain matrix can have di!erent expressions. As an example, in the case of the 
unbalance forces it is possible to consider a single input proportional to the square of the 
spin speed, obtaining 

" 

M-l f i tB , u " e . (8)
u 0 u 

If the non-rotating forces f act on a number of stations of the rotor, the input gain matrix 
and the input vector can be written as 

B " 

M-l T 
, u "f , (9)

0 

where T is a selection matrix which identi"es the degrees of freedom to which the 
generalized forces are applied. The same relationship applies for the control forces in the 
case of a controlled rotor. 

It is well known that if the matrix U of the complex right eigenvectors of the dynamic 
matric A is obtained, it is possible to uncouple the equations of motion in the form 

zz "U-l AUzz #U-lBu , (10) 

where modal dynamic matrix AK "U-lAU is a complex diagonal matrix and zz "U-lz are 
the modal states of the system. Equation (10) is a set of 2n uncoupled equations, if the 
number of complex degrees of freedom is n. Note that this uncoupling can be performed also 
in the case of a damped gyroscopic system; however, it requires the modal dynamic matrix 
and the modal input gain matrix for each value of the spin speed to be recalculated. This 
implies the solution of an eigenproblem of order 2n for each value of the speed, which is, 
however, exactly what is needed for plotting the Campbell diagram. 

In the case of an undamped gyroscopic system the eigenvalues of the dynamic matrix 
A are imaginary and the eigenvectors have the "rst n elements which are imaginary and the 
other ones which are real. 

While equation (10) is all that is needed for uncoupling the equations of motion (written 
with reference to the state space) of any damped gyroscopic system, a further elaboration 
intended to obtain uncoupled equations in the con"guration space (i.e., aimed to split the 
multi-degrees-of-freedom rotor into a number of uncoupled single-degree of freedom rotors) 
may be useful. If the eigenvalues are ordered in such a way that the forward}backward pairs 
are placed one after the other, the system with n complex degrees of freedom can be split 
into n gyroscopic systems with a single degree of freedom, whose equations of motion are 

i t1K #(CM !i GM ) 1R #(KM !i CM ) 1"fM (t)# fM e . (11)
i i i i i  i i i i 



 
 
  
 
      

  

   
 

 

  

 
 

 
  

 

The modal parameters can be easily computed by solving the eigenproblem related to the 
homogeneous equation (11) and equating the solution to the ith pair of eigenvalues (s

i+
and 

s
i-

, where the signs # and ! identify the forward and backward modes) of the original 
system 

1 J (s ) R (s ) 0 KM J (s ) !R (s )
i- i- l i- i-

0 ! R (s ) J (s ) ! GM !2J (s ) R (s )
i- i- i " i- i- . (12)

1 0 CM J (s ) !R (s )J (s
i+

) R (s
i+

) 
i i+ i+

0 ! ! CM !2J (s ) R (s )R (s
i+

) J (s
i+

) 
i i+ i+


Equation (12) is easily solved in a closed form, yielding
 

KM "!J (s ) R (s
i+

),
i i-

) J (s
i+

)#R (s
i-

GM "l [J (s )#J (s
i+

)],
i i-

CM "!R (s )!R (s
i+

),
i i-

CM "!l [R (s ) J (s )#R (s
i+

) J (s
i+

)]. (13)
i i- i-

Note that by de"nition J (s
i+

) is positive while J (s ), is negative. In the case of the
i-

undamped system, the eigenvalues are imaginary and KM "!J (s ) J (s
i+

).
i i-

The modal parameters of the system can thus be used to write a state-space equation 

zzz "AK zz#BK u, (14) 

where the structure of the dynamic matrix is 

AK 0 2 0
l 

0 AK 2 0
AK " (15)

2 2 2 2  

0 0 2 AK 

with 

!(CM !i GM ) !(KM !i CM )
AK " i i i  i . (16)

i 1 0 

The transformation matrix to obtain the state variables zzz from zz is the matrix of the 
eigenvectors of matrix AK . If  U

l 
"eigenvectors (AK ), it follows that 

zzz "U
l
zz "U

l
U-l z. (17) 

The input gain matrix BK is then 

BK "U
l
U-lB. (18) 

In the case of the homogeneous equations the state variables zNN
i
, are directly the modal 

co-ordinates 1 and the related modal velocities, while in the case when input vector u is
i 

present things are more complicated. If zNN were the modal co-ordinates and velocities, the
i 

structure of equation (14) with the dynamic matrix expressed by equations (15) and (16) 
would imply that the rows with even order of the input gain matrix do vanish. This, 
however, is not the case and cannot be expected, as the uncoupling is performed in the state 
space and no immediate interpretation of the modal state variables in terms of modal 
co-ordinates and velocities is possible. What is still possible is to assume that the elements in 
even positions of vector zzz are the modal co-ordinates 1, but the elements in odd positions 



 

are the modal velocities minus the corresponding element in the even position of vector BK u. 
Operating in this way, the modal forces in equation (11) can be expressed as 

K 
fK (t)"(BK GM (BK u)

( i)
#

d(Bu)
( i) . (19)

i
u)
( i-l)

!i 
i dt 

Equation (20) can then be used to compute the modal forces due to unbalances or the 
modal control forces due to active devices. 

4. EQUIVALENT VISCOUS DAMPING 

The damping properties of rotors, as far as the rotating damping is concerned, are often 
modelled using the so-called structural or hysteretic damping model. It is essentially based 
on the de"nition of a complex sti!ness (or a complex Young's modulus when working at the 
level of material properties) and on the assumption that the phase lag between the stresses 
and the strains in structural materials is essentially constant and independent of the 
frequency. 

It is also well known that the hysteretic damping model has some severe drawbacks, 
namely it is unsuitable for systems subjected to non-harmonic (or, better, non-periodic) 
forcing functions [10] and overestimates damping in low-frequency motion. In the case of 
rotors this is particularly severe when dealing with rotating damping in 
almost-synchronous whirling, when the frequency at which the hysteresis cycle is gone 
through is very low. A practical di$culty in implementing the model is obtaining the 
numerical values for the relevant parameters, namely the loss factor or the in-quadrature 
modulus of the material (usually the former is used for low-damping materials, while the 
second one is mostly used for high-damping ones). Very often analysts resort to values 
taken from the literature or obtained through experimental testing, taking a suitable 
allowance for the large uncertainties involved. 

The concept of hysteretic damping has been extended also to the rotordynamics "elds, 
with the usual distinction between rotating and non-rotating damping [1, 11]. The 
synchronous response of systems with hysteretic damping and even with mixed hysteretic 
and viscous damping properties can thus be computed, as well as the response to 
non-synchronous excitation and the threshold of stability. 

The main limitation of the hysteretic damping model is its strict limitation to the 
frequency domain computation. Its unsuitability to numerical time domain simulation is 
a severe drawback not only for its extension to non-linear systems, but also in general for all 
cases in which time domain modelling is increasingly applied. The possibility of applying 
the procedure seen above, in which the equations of motion are uncoupled and reduced to 
those of many single-degrees-of-freedom rotors (in complex co-ordinates) is thus particularly 
interesting; it allows uncoupling and at the same time it yields a model in which the damping 
is of the viscous type. A sort of equivalent modal viscous damping is obtained, which is 
equivalent in the sense that it yields the same complex eigenvalues as the original system. 

The study of the dynamic behaviour of the rotor can thus be performed in the time 
domain, both by integrating the uncoupled systems or even by recombining the modes to 
obtain the equivalent viscous rotating and non-rotating damping matrices. 

The solution for the free circular whirling of a general multi-degrees-of-freedom rotor is 
of the type 

ist istq"q e or z"z e (20)
  

depending on whether the equation is written in the con"guration or in the state space. 



      
    

 

 
     

    

 

 
 

 

 

 

 

 
    

  

The equations of motion for free circular whirling of an axisymmetrical rotor with mixed 
(i.e., viscous and hysteretic) damping can thus be written in the frequency domain as 

(s	 M#sC!i sG#K#K !i C $K $K )q "0 (21) 

with reference to the con"guration space. By resorting to a state-space approach, the 
frequency domain equation is 

(sI!A)z "0,	 (22) 

where 

!M-l (C!i G) !M-l (K#K !i C $K $K )
A"	 . (23)

I	 0 

Matrices K are the imaginary parts of the complex sti!ness matrices related to the stator 
and the rotor, and the double signs are stated following this simple rule: 

•	 The term in K is positive for forward whirling (J (s)'0) and negative for backward 
whirling (J (s)(0). 

•	 The term in K is positive for subcritical forward whirling (J (s)' ) and negative for 
supercritical forward whirling (0(J (s)( ) and for backward whirling (J (s)(0). 

The computation must then proceed by solving three eigenproblems (with two positive 
signs, with positive and negative signs and with two negative signs) and then choosing 
among the computed modes those which obey the above-mentioned rules [1, 11]. An 
eigenvector matrix and a set of eigenvalues is thus obtained and the procedure can proceed 
following the same rules as seen above for systems with viscous damping. 

Note that equations (21) and (23) are approximated and their accuracy increases with 
decreasing hysteretic damping and increasing value of the di!erence between the whirl and 
the spin speeds (abs (J (s)! )). This would preclude the use of this model for synchronous 
whirling, but this can be circumvented by noting that in that condition rotating damping 
plays no role in the dynamic behaviour of the rotor and matrix K can be altogether 
neglected. 

5. EXAMPLES 

5.1. JEFFCOTT ROTOR WITH HYSTERETIC DAMPING 

The simplest model for the #exural behaviour of rotors is the so-called Je!cott rotor, 
i.e., a point mass P, with mass m, attached to a massless shaft of sti!ness k (Figure 1). Point 
mass P may lie at a small distance from the geometrical centre C of the shaft, giving way to 
static unbalance with eccentricity 8. 

Using the complex co-ordinate z"x#iy, the frequency domain equation of a Je!cott 
rotor with hysteretic damping, subjected to a non-synchronous circular forcing function 
f"f eiAt with whirl frequency A, is  

[!mA #k#i ($k $k )] z "f .	 (24) 

i tThe eccentricity causes a synchronous forcing function f"m8 e . 
Note that while this equation is approximated when studying the free whirling of the 

system (the whirl frequency being a complex quantity), in the study of the forced response 
A is the (real) frequency of a forced motion and then the equation contains no 



 
 
 

  

 
 

 

 

    
 

   
 

  
 

 

   
 

  
 

 

Figure 1. Sketch of a Je!cott rotor. Point P, with mass m, is attached to a massless shaft with sti!ness k with an 
eccentricity 8. 

approximations. The same holds for the unbalance response in which is substituted for A, 
with the added consideration that in synchronous whirling the term in k must be omitted. 

By introducing the natural frequency of the undamped system, and normalizing with it 

The solutions of the eigenproblem yielding the free whirling frequencies of the damped
 

both the whirl and the spin speed, 

A*" 

A 
" 

A
,

A  k/m 
s*" 

s 

A 
"! , 

s

 k/m 
*" 

A 
"!

 k/m 
(25) 

the dynamic matrix of the system is simply 

A" 

0 

1 

!(1$i1 $i1 ) 
0 

, (26) 

where 1
i 
"k

i 
/k. 

system are the following: 

•	 Case with two positive signs 

s*"$ ! !1# 1#(1 #1 ) 
#i 1# 1#(1 #1 ) 

. (27)
2	 2 

•	 Case with two negative signs 

s*"$  !1# 1#(1 #1 ) 
#i 1# 1#(1 #1 ) 

. (28)
2	 2 



  

   
  

   
  

 

 
  

  
 

  
   

  
 

 

   
  

 

 
  

 

    
  

 
   

   
  

 

  

 

  

  

 

  

  

•	 Case with a positive and negative sign. Here there are two subcases: 

(1) 1 '1 

s*"$ ! 

!1# 1#(1 !1 ) 
2 

#i 
1# 1#(1 !1 ) 

2 
. (29) 

(2) 1 (1 

s*"$ 

!1# 1#(1 !1 ) 
2 

#i 
1# 1#(1 !1 ) 

2 
. (30) 

For the choice among the solutions obtained above, the discriminating factor is whether 
the speed is smaller or higher than the critical speed, or better, than the imaginary part of s. 

In the "rst cases ( *( [1# 1#(1 !1 ) ]/2), the two solutions are equation (28) 
with (#) and equation (28) with (!). Equation (14) can be used to compute the modal 
parameters, obtaining 

KM " 1#(1 #1 ) +
 
 ,	 GM "0,

 
(31) 

CM "0.CM "  !1# 1#(1 #1 ) +  (1 #1 ),
    

The approximated values have been obtained assuming that the loss factor is small when 
compared with unity, as is usually the case. 

In the second case ( *' [1# 1#(1 !1 ) ]/2), two subcases must be 
distinguished: 

•	 If 1 '1 the two solutions are equation (29) with (#) and equation (28) with (!). 
Equation (14) can be used to compute the modal parameters, but no closed-form solution 
is reported here owing to the complexity of the result. Note that in this case the 
gyroscopic term GM is not exactly zero, although being small. This may appear strange, as 
by de"nition the Je!cott rotor has no gyroscopic e!ect, but it must be kept in mind that 
in this context the gyroscopic term has the aim of accounting for di!erent values of the 
whirl frequency in forward and backward whirlings as in a Je!cott rotor with viscous 
damping they are equal while in a supercritical rotor whereas with hysteretic damping 
they di!er from each other, the only way being to assign an equivalent gyroscopic term to 
the systems. If damping is small, this term vanishes, and the modal parameters are 

KM + GM +0,
 
, 

CM +   , CM +
 
  
 . 

(32) 
   

•	 If 1 (1 the two solutions are equation (30) with (#) and equation (29) with (!). The 
solution for forward whirling has a positive real part and hence is unstable, as it is well 
known. Again, the exact expression of the modal parameters is too complex to be 
reported here. The modal parameters for small damping are 

KM + GM +0,
 
, 

(33) 
CM +!   , CM +!

 
  
 .   

The modal parameters for a Je!cott rotor with 1 "0)08 and 1 "0)04 are reported in
 
Figure 2. Note that in the above equations to distinguish whether the system works in the
 



  

   
  

 

   
  

 

 

 

  

 

 

Figure 2. Modal parameters for a Je!cott rotor with 1 "0)08 and 1 "0)04. 

subcritical region a check of the type *( [1# 1#(1 !1 ) ]/2) was performed. 

There is no reason not to use a di!erent criterion: *( [1# 1#(1 #1 ) ]/2). This 
introduces an ambiguity in the procedure, which is, however, only an apparent one: owing 
to the smallness of hysteretic damping, the two values are very close to each other (in the 
numerical example they are *(1)0002 and 1)0018); moreover, it has little meaning to 
investigate what happens between these values, as the very model of hysteretic damping 
loses meaning when close to the condition J (s*)+ *. 

The unbalance response of the same system is reported in Figure 3. The zone close to the 
peak has been enlarged, to show that in the vicinity of the critical speed the two models used 
yield di!erent results, as expected. This is, however, not a severe drawback: as will be stated 
later this approach is not very convenient when dealing with the unbalance response, and 
the present case is not typical, as it contains quite a large hysteretic damping (particularly 
where the rotating damping is concerned). 

The responses to harmonic excitation for the two cases of subcritical operation with 
*"0)5, and supercritical operation with *"1)5, are shown in Figure 4. The di!erences 

between the solution computed using the hysteretic damping model and that obtained with 
the equivalent viscous damping are so small that it cannot be seen in the Figure. 

As a "nal check plots of the type of that of Figure 4 were obtained with varying *, and 
the di!erence between the peak amplitudes obtained using the two di!erent models was 
computed. The relative error is plotted in Figure 5 as a function of *. Note that in the 
subcritical range the error is vanishingly small and in the supercritical range it is very small 



  

 
  

 

    
 

 

Figure 3. (a) Unbalance response for a Je!cott rotor with 1 "0)08 and 1 "0)04. Solution computed using the 
hysteretic damping model: full line; solution with the equivalent viscous damping: dashed line. (b) Same as (a), for 
a speed range close to the critical speed. 

Figure 4. Response to a harmonic excitation for the two cases of subcritical operation with /A "0)5 and 
supercritical operation with /A "1)5. The solution computed using the hysteretic damping model and that 
obtained with the equivalent viscous damping are completely superimposed. 

(of the order of 0)1%). At the critical speed a large error is present, and the response is 
doubled. Note that this very high error, like the error in similar conditions found in Figure 
3, is linked with the particular data used for the example, and that it is usually far smaller. 
Note also that the speed range in which a large error is found is very narrow. 

5.2. THE STODOLA}GREEN ROTOR 

Consider as a second example, the so-called Stodola}Green rotor: a disc attached at the 
end of a prismatic cantilever beam (Figure 6). It can be modelled as a rotor with two 
complex (four real) degrees of freedom: by neglecting damping and assuming that the only 
forcing function is due to the static unbalance of the disc, the equation of motion is 

i tMqK !i Gq#Kq" f e , (34) 



 

 

 
  

    
       

    
 

 
 
      

 
      

  

 

Figure 5. Relative error between the peak amplitude of the frequency response of a Je!cott rotor with 1 "0)08 
and 1 "0)04, computed using the hysteretic damping and the equivalent viscous damping models. 

Figure 6. Sketch of a Stodola}Green rotor: a disc, with mass m and moments of inertia J and J , attached at the 
end of a prismatic massless cantilever shaft. 

t p

where the relevant vectors and matrices are 

x#iy 
f " 

m8 
q" , , 

¢ !i¢ 0 

0 
G" 

0 0  
K"

EI 12 !6l 
M" 

m 
, , , (35)

0 J 0 J l; !6l 4l
t p 

where E, I and l are, respectively, the Young's modulus of the material, the area moment of 
inertia of the cross-section and the length of the shaft. The equation of motion can be 
written in non-dimensional form as 

zK zK z 

1 0  8A 0 0  8A 4 !2 8 * 
!i * # " (36)

0 f l¢¢ 0 0f l¢Q !2 -
; 

l¢ 0 

8A 8A 8 



   
 

 

 

 
 

 

  

    

 
 

            

 
 

    

 
  

by introducing parameters 

0"
J 
p, f" 

J
t " 

r
t , (37)

J ml l
t 

where r " J /m is the radius of inertia of the disc corresponding to the moment of inertia 
t t

J . The non-dimensional whirl and spin speed are de"ned as 
t

A*" 

A 
, *" , (38)

A A 

where 

A " 

3EI 
(39)

ml; 

is the natural frequency at standstill when the disc at the tip of the beam has negligible 
moments of inertia (parameter fP0). Assuming a solution of the type 

z z iAt
" e (40)

l¢ l¢ 

the equation for free whirling is 

!A* 
1 0  

0 f 
# *A* 

0 0  

0 0f 
# 

4 

!2 

!2 
-
; 

z 

l¢ 
"0. (41) 

The non-dimensional whirl frequencies of the system depend on two parameters, namely 
ratio f, assessing the importance of the transverse moment of inertia with respect to the 
mass, and the product 0 *, assessing the importance of the gyroscopic e!ect. If fP0 the 
behaviour of the rotor tends to that of the Je!cott model; the non-dimensional frequency of 
the "rst mode tends to 1 and does not depend on the speed, while the frequency of the 
second mode tends to in"nity (there is only one mode). With increasing f the e!ect of the 
speed increases and the frequency of the second mode (both forward and backward) is 
increasingly lower. 

The non-dimensional Campbell diagrams for the cases with f"0)1 and 1 (a very high 
value, corresponding to a very large disc, with a radius of inertia related to J equal to the 

t
length of the beam) are reported in Figure 7. The full lines refer to the non-modal solution 
and the modal solution obtained with modal parameters obtained for each value of the 
speed; the dashed lines refer to a modal solution obtained with "xed modal parameters. 

From the Figure it is clear that the results obtained using the modal procedure with "xed 
parameters are unacceptable, particularly in the case of the higher value of f and for the 
forward whirl branches of the plot. 

The modal parameters K and G are reported in Figure 8. 
The computation of the unbalance response is straightforward. Assuming a solution of 

the type 

z z i t
" e , (42)

l¢ l¢ 



         
 

   
  

 

Figure 7. Non-dimensional Campbell diagrams for the Stodola}Green rotor with f"0)1 and 1. The ** lines 
refer to the non-modal solution and the modal solution obtained with modal parameters obtained for each value of 
the speed: the } } }  lines refer to a modal solution obtained with "xed modal parameters. 

Figure 8. Modal sti!ness and gyroscopic parameter K and G as function of the non-dimensional speed 0 * for 
the two modes. The various curves refer to f"0)01, 0)02, 0)05, 0)1, 0)2, 0)5 and 1. 

the equation yielding the response to static unbalance with eccentricity 8 is 

z 

1 0 4 !2 8 * 
! * # " . (43)

0 f (1#0) !2 -
; 

l¢ 0 
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Figure 9. Unbalance response of a Stodola}Green rotor with 0"1)6 and f"1. (a), (b). Modal unbalance forces 
(amplitude and phase) acting on the two uncoupled modal gyroscopic systems (c), (d). Amplitude and phase of the 
unbalance response computed using the original equations and modal equations with two modes (superimposed to 
each other, ** lines), response computed using a single mode (} } }  lines) and using two modes, but uncoupling 
the equation of motion using the modal co-ordinates in the con"guration space (equation (3)) and neglecting the 
out-of diagonal terms of the gyroscopic matrix () ) ) ) ) )  lines). 

The non-dimensional unbalance response of a Stodola}Green rotor with 0"1)6 and 
f"1 is reported in amplitude and phase in Figure 9(c) and 9(d), full lines. The system has 
a single critical speed, * 

c 
"1)62. The other critical speed is imaginary, and its modulus is 

0)9202. 
The non-dimensional modal unbalance forces acting on the two uncoupled modal 

gyroscopic systems with the speed-dependent modal parameters shown in Figure 9, 
normalized by dividing them by 8 * , are reported in amplitude and phase in Figure 9(a) 
and 9(b). The unbalance response, computed using the modal equations (with two modes) 
and then transforming the results to physical co-ordinates is completely superimposed to 
the non-modal result, as expected. The response computed using a single mode (dashed 
lines) is quite close to the correct response, at least around the zone of the peak. As the 
absolute value of the imaginary critical speed is not much higher (actually it is lower) than 
the critical speed, the response computed using a single mode cannot be expected to be very 
close to the correct one [12]. 

The response computed using two modes, but uncoupling the equations of motion using 
the modal co-ordinates in the con"guration space (equation (3)) and neglecting the out-of 
diagonal terms of the gyroscopic matrix (dotted lines), leads to very large errors and shows 
that this way of proceeding cannot be followed, at least for highly gyroscopic systems like 
the present one. 



 

Figure 10. Sketch (a) and FEM model (b) of the rotor of a small gas turbine used as Example 3. 

Figure 11. Modal parameters for the "rst 3 modes of the rotor used as example 3, plotted against the spin 
speed . 

5.3. ROTOR OF A SMALL GAS TURBINE 

Consider the rotor of a small gas turbine described as Example 4.3 in reference 
[1, p. 339] (Figure 10). Assume that the sti!ness of the bearings is 20 MN/m and that the 
loss factors of the supports and of the shaft material are, respectively, 0)01 and 0)004. The 



system is modelled using 22 degrees of freedom, which are reduced to 8 (translations at 
nodes 1, 3, 4, 6, 7, 8, 9 and 11) through Guyan reduction. 

The modal parameters for the "rst three modes (gyroscopic e!ect, sti!ness, total damping 
and rotating damping; the modal mass has a unit value) are plotted as functions of the speed 
in Figure 11. Note that the total damping and the rotating damping are equivalent viscous 
damping coe$cient for hysteretic damping; they change abruptly at the critical speeds, as 
could be expected. In this case the equivalent viscous rotating damping for the "rst mode is 
very small (in the "rst mode the rotor behaves almost as a rigid body and its damping has 
little in#uence on the dynamic behaviour) and is negative at some speeds. 

The response to a unit eccentricity of the compressor wheel is plotted as a function of 
speed in Figure 12. Owing to the small damping, the two peaks corresponding to the 
crossing of the two critical speeds are quite high. The response computed using the 
non-modal procedure and the hysteretic damping model, is reported together with the 
response computed using the present modal approach and the equivalent viscous damping 
(full lines). The response was also computed using a reduced number of modes (dashed 
lines). The computation performed using only the "rst mode ("rst forward and backward 
modes) is quite close to the correct one at speeds not much in excess of the "rst critical 
speed, but then the errors become unacceptable. At higher speeds at least two modes must 
be used: the curves obtained using 2, 3 and 8 modes are completely superimposed in the 
whole "eld of interest. 

5.4. ROTOR ON ACTIVE BEARINGS 

Consider the same rotor studied in the previous example, but assume that it is supported 
by two active bearings located at nodes 1 and 11, with perfectly co-located sensors and 

Figure 12. Unbalance response at the centre of gravity of the compressor wheel (node 3) for a unit eccentricity in 
the same point. Response computed using the complete model (hysteretic damping) and the present modal 
approach (all modes, viscous damping). The } } }  line refers to a response computed using only the "rst forward 
and backward modes. 



 

   
  

 
 
  

  
 

  
 

actuators. Neglect the open-loop negative sti!ness of the electromagnetic actuators and 
assumed ideal sensors, actuators and power ampli"ers. 

The system has 8 degrees of freedom (after Guyan reduction) and the control forces are 
applied on two nodes: matrix T to be introduced into equation (9) has then eight rows and 
two columns, and contains all zeros except for the elements 1,1 and 2,8 which have a unit 
value: 

1 0 0 0 0 0 0 0  T
T " . (44)

0 0 0 0 0 0 0 1  

Vector f "[ f
cl

, 
c
f ]T has two elements, namely the forces supplied by the two actuators. 

Using the complex notation, they are complex numbers, with the real part being the 
x component of the force and the imaginary part being the y component. 

Assuming a simple ideal, decentralized, PD active control implemented through direct 
measurement of the displacements and velocities at the sensor locations, it is possible to 
write an output vector y"[qR , qR 

s
, q , q

s
]T and an output gain matric C with four rows and 

l l
16 columns, in which all elements are equal to zero except for elements 1,1: 2,8: 3,9 and 4,16 
which have a unit value. 

The control gain matrix is then de"ned by the relationship 

0 k 0 
u " 

f
cl "!G

c
y"! 

k
dl pl y, (45)

c f 0 0 k
c 

k
d p 

where the proportional gains k and the derivative gains k
d 
contain all the gains from the 

p
sensors to the actuators. 

By closing the loop in this way, the control input vector can be written in the form 

u
c
"!G

c
Cz. (46) 

The closed-loop dynamic matrix of the system is then 

A
cz 
"A

oz
!BG C. (47)

c

By using the matrix of the complex right eigenvectors U of the open-loop dynamic matrix 
A

oz
, the closed-loop dynamic matrix can be written in modal form 

AK "U-l A U!U-lBG CU. (48)
cz oz c

Note that the modal closed-loop dynamic matrix is not diagonal, even if the open loop is, 
because the control systems couples the various modes. This is unavoidable, since the 
eigenvectors of the open-loop system and those of the closed-loop one are di!erent. 

As usual with modal control, it is possible to use a reduced order model to design the 
controller, i.e., to take into account only a reduced number of eigenvectors in performing 
the modal transformation in equation (48). To evaluate the errors linked with the use of 
reduced order models in the present case, assume the following gain matrix: 

4 0 2000 0 
G "10; (49)

c 0 4 0 2000 

and compute the "rst six eigenvalues at a speed "2000 rad/s using the complete model 
and the reduced order one. The results are shown in Table 1. Note that the open-loop model 
is unstable; the second forward mode has a positive real part. This could be expected, as it is 
typical of free &long rotors' (rotors with J (J ) [10, 13]. The closed-loop system is stable, 

p t
owing to the high derivative gain and, above all, to the fact that there is a perfect co-location 
between sensors and actuators, The reduced order model in which only the "rst four modes 



TABLE 1 

First six complex eigenvalues (three forward and three backward modes) for the open- and the 
closed-loop systems. ¹he computation of the eigenvalues of the closed-loop rotor has been 
performed using the complete modal system (16 modes) and with two reduced order models 

( four modes and six modes) 

Closed loop 

Mode Open loop 16 modes (full) Four modes Six modes 

I BWD 0 !42 !148i !41 !150i !41 !150i
 
I FWD 0 !94 #296i !98 #298i !95 #297i
 
II BWD 0 !92 !296i !98 !298i !94 !297i
 
II FWD 0)4#981i !303 #1135i !309 #1125i !309 #1125i
 
III BWD !3)6 !1117i !56 !1129i * !57 !1128i
 
III FWD !3)7 #4526i !192 #4552i * !194 #4538i
 

have been considered gives a set of eigenvalues which are almost coincident with the "rst 
four eigenvalues of the complete model. If more than four natural frequencies are required, 
it is necessary to resort to a model containing more modes: a reduced model of order 
6 allows the "fth and sixth natural frequency to be obtained with very good precision, while 
re"ning the values of the "rst four. 

6. CONCLUSIONS 

A new way of uncoupling the equations of motion typical for rotordynamics has been 
introduced. It allows the n equations of motion (2n if the model is written with reference to 
the state space) of a rotor with n complex degrees of freedom to be split into n uncoupled 
equations, i.e., a rotor with n degrees of freedom is split into n single-degree-of-freedom 
gyroscopic systems. More conventionally, it can be split into 2n uncoupled systems written 
in the state space, but in the latter case it is impossible to distinguish between modal sti!ness 
and modal gyroscopic term. 

In the case of hysteretic type of damping, the uncoupled gyroscopic systems are provided 
with an equivalent viscous damping, where the term &&equivalent'' means that it leads to the 
same natural frequency and decay rate. It has then the same meaning as is used for constant 
viscous equivalent damping, i.e., a viscous damping leading to the same amplitude in 
resonant conditions. 

The following points must be kept in mind: 

•	 Transformation (10) needed to obtain the uncoupled modal system in the space state is 
straightforward and does not need any more work than that needed for the computation 
of the Campbell diagram and of the related eigenvectors. 

•	 Even if only a reduced number of modes is required, all eigenvectors must be obtained in 
order to invert the eigenvectors matrices, needed to compute the modal input gain matrix. 
In case of a large number of degrees of freedom, the use of Guyan reduction can be 
important for reducing the amount of computational work. 

•	 When computing the unbalance response, the modal uncoupling does not provide any 
simpli"cation of the computation. On the contrary, it requires the computations of the 



eigenvalues and the eigenvectors at the various speeds, instead of the mere solution of 
a set of linear equations. 

•	 When computing the response of the system at a "xed speed a computational advantage is 
present on the contrary, since a single eigenproblem has to be solved. and then the 
response (at varying excitation frequency) can be computed from uncoupled equations. 
For this task transformation (17) is not really needed as transformation (10) is su$cient. 

•	 The modal uncoupling presented here can be very useful in the design of the control 
system for actively controlled rotors. Even if the control system couples the various 
modes, reduced order models can be devised simply by taking into account a reduced 
number of eigenvectors. The results are approximated, owing to the presence of some 
spillover, but a numerical example has shown that the approximation obtained is very 
good. The model used for the design of the controller is speed dependent: if it is impossible 
to design a "xed parameters controller which behaves satisfactorily in the required speed 
range, it is possible to resort to gain scheduling by designing a number of controllers 
adapted to di!erent speeds (see for example reference [14]). 
Throughout the whole paper models based on the complex-co-ordinates approach 

have been used and the rotor has been assumed to be axially symmetrical. This is 
convenient in order to reduce the complexity of the various formulae, but is not required; 
the present approach works well even if real co-ordinates are used (with the need of 
doubling the number of equations and grouping them four by four instead of two by two). 
Systems which are non-isotropic can thus be studied, using either the standard real 
co-ordinates approach, or by introducing mean and deviatoric matrices and using complex 
co-ordinates. 
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APPENDIX. A: NOMENCLATURE 

f force vector 
i imaginary unit (i" !1) 
k sti!ness, gain 
l length 
m mass 
q vector of the generalized co-ordinates (complex) 
s eigenvalue, Laplace variable 
t time 
u input vector 
x vector of the generalized co-ordinates (real) 
xyz reference frame 
y output vector 
z state vector 
A dynamic matrix 
B input gain matrix 
C total damping matrix, output gain matrix 
E Young's modulus 
G gyroscopic matrix 
G 

c
I 

control gain matrix 
area moment of inertia of the cross-section 

J 
p

J
tK 

moment of inertia (polar) 
moment of inertia (transversal) 
sti!ness matrix 

K imaginary part of the sti!ness matrix 
K centrifugal sti!ening matrix 
M mass matrix 
T selection matrix 
U matrix or the right eigenvectors 
1 loss factor 

vector of the modal co-ordinates 
A whirl speed 
¢ rotation 

} 
spin speed 
modal matrix or vector 

Subscripts 

cl closed loop 
d derivative 
n non-rotating 
ol open loop 
p proportional 
r rotating 
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