Spark Plasma Sintering of Soft magnetic Materials

Harnavdeep Kaur
Cleveland State University

Taban Larimian
Cleveland State University

Javier Esquivel
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/u_poster_2018
How does access to this work benefit you? Let us know!

Recommended Citation
https://engagedscholarship.csuohio.edu/u_poster_2018/73
Spark Plasma Sintering of Soft Magnetic Materials
Harnavdeep Kaur1, Taban Larimian1, Javier Esquivel2, Rajeev Gupta2, and Tushar Borkar1
1Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University
2Chemical and Biomedical Engineering Department, The University of Akron

Motivation:
Study the effect of mechanical alloying (MA) and spark plasma sintering (SPS) processing parameters on microstructure, phase formation and microhardness of soft magnetic materials such as Finemet (Fe\textsubscript{73.5}Cu\textsubscript{1}Nb\textsubscript{3}Si\textsubscript{13.5}B\textsubscript{9}) alloys.

Materials and Methods:
Material: Fe\textsubscript{73.5}Cu\textsubscript{1}Nb\textsubscript{3}Si\textsubscript{13.5}B\textsubscript{9}

Methods:
• Planetary Ball Mill:
Mechanical alloying is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in high-energy ball mill.
Speed: 350 rpm
Ball to powder ratio: 10:1 and 15:1

• Spark Plasma Sintering (SPS):
Spark plasma sintering is a novel tool for processing of metals, alloys, and composites at lower temperatures and shorter processing times, as compared to conventional processing routes.
Pressure: 250 MPa
Temperature: 550°C
Holding time: 5 min

Soft Magnetic Materials:
Soft magnetic materials are essential components in many devices and are indispensable in modern electrical engineering and electronics. There has been significant progress made in the field of soft magnetic materials in recent years. Over the past 3 decades, iron-based soft magnetic alloys such as Finemet (Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Nb\textsubscript{3}Cu\textsubscript{1} (at%)) have attracted great interest due to their exceptional magnetic properties like high magnetization, low coercivity, and high curie temperature.

Results and Discussion:

X-ray Diffraction Pattern (XRD):
- (011) Fe\textsubscript{3}Si
- (002) Fe\textsubscript{3}Si
- (112) Fe\textsubscript{3}Si

Scanning Electron Microscope (SEM) Analysis:
- Grain size decreases with increase in milling time, however micro-hardness increases with increase in milling time.

Conclusions:
- X-ray Diffraction pattern (XRD) confirms the presence of α-Fe\textsubscript{3}Si phase in Finemet alloys and also, broadening of (110) peak of Fe\textsubscript{3}Si observed with increase in milling time which associated with decrease in crystallite size as milling time increases.
- Scanning Electron Microscope (SEM) further shows that the grain size decreases with increase in milling time.
- Microhardness of Finemet alloys increases with increase in milling time, mainly due to decrease in crystallite size of α-Fe\textsubscript{3}Si.
- The ball to powder ratio (BPR) has a significant effect on the microstructure of sample, for example crystallite size decreases with increase in ball to powder ratio.