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Abstract

The successful establishment of invasive species has been shown to depend on aspects of the invaded community, such as
gap characteristics. Biotic resistance may be particularly critical for stopping invaders at early life history stages, but new
species can often invade following disturbances, which may create microsites with very different characteristics than are
usually present. We examine the response of two invasive thistle species, Carduus nutans L. and C. acanthoides L., to three
different microsite characteristics: disturbance type, size, and water availability. The two species initially responded
differently to the type of disturbance: C. acanthoides had higher emergence and survival in plots with both above- and
belowground disturbance, whereas C. nutans had better early performance in large microsites with above-ground
disturbance only. Later in their life cycle, C. nutans performed better in plots that had been disturbed both above- and
belowground, whereas C. acanthoides was largely unaffected by disturbance type. Increased emergence and survival, larger
size and a higher proportion flowering were observed in larger gaps for both species throughout the life cycle. Watering
had a negative impact on C. nutans emergence and fall survival and on C. acanthoides survival to the following summer.
Overall, these results suggest that disturbance-generated microsite characteristics (disturbance type and size) may have
large impacts on establishment of these two Carduus species, which in turn may persist well beyond the initial stages of
growth. Studying invader responses to disturbance can help us to understand under what circumstances they are likely to
establish and create persistent problems; avoiding or ameliorating such situations will have significant management
benefits.
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Introduction

A suitable microsite for emergence and seedling establishment is

a necessary condition for the success of a plant. Gaps in the

existing vegetation, occurring due to death of individuals, through

animal activity or other disturbances, create opportunities for

plants to establish due to the exposure of soil, removal of

competing vegetation and removal of litter [1]. Characteristics of

gaps can be important to the regeneration niche, which includes

dispersal, germination, establishment and seedling development

[2]. Gap properties, such as size, can have a large impact on plant

establishment, growth and reproduction [3]. Although plants in

larger gaps have fewer potential competitors, they are also more

vulnerable to desiccation, leading to the potential for trade-offs in

optimal gap sizes.

Better plant growth in gaps may also be because of a reduction

in the intensity of belowground competition, and not just due to

light availability, as root biomass has been shown to be lower in

gaps in an abandoned hayfield [4]. Furthermore, the effects of

above-ground and belowground competition are not necessarily

additive; Cahill [5] found that for two rosette forming species, the

combined competitive response to above-ground and below-

ground competition were subadditive (i.e. the total response was

less than the sum of the separate responses), indicating that these

responses are not independent. As disturbances generally occur

above ground only, or both above and belowground, an

understanding of both is required to predict species responses.

Even among species with generally similar life histories, species

may have very different responses to gap opportunities [6].

Understanding the effect of microsite characteristics has

particular importance in the case of invasive species, as biotic

resistance is an important early barrier to invasion [7]. When

resident species do not keep resource levels uniformly low,

opportunities for species to invade may exist [8]. Disturbances

can alter such opportunities, and are well-known to affect species

diversity [9,10,11]. Fluctuations in the abundance of competitors,

which affects the availability of space and light, can make the

invasibility of a community quite dynamic, and communities

previously resistant to invasion may suddenly be vulnerable

following disturbance such as drought [12]. Natives may actually

be more competitive under conditions of reduced resource (light,
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water or nutrient) availability, but invasives may be favored in

areas of high resource availability [13].

In this study, we address the effect of microsite characteristics (in

terms of whether only above-ground, or both above- and below-

ground disturbance has occurred, gap size and water availability)

on emergence and establishment of two non-native invasive plant

species. Carduus nutans and C. acanthoides are invasive species of

Eurasian origin which have spread and become invasive through-

out the world [14]. For both Carduus species, we examined two

cohorts (sown in consecutive years) and evaluated invader

performance in terms of emergence, growth, and flower produc-

tion to assess the effects of microsite characteristics (size, above/

belowground disturbance and water availability) on distinct life

history stages. We hypothesize that thistle performance will be best

in plots that receive both above-ground and below-ground

disturbance (decreasing both light and root competition), that

emergence will be highest for both species in larger microsites

(with fewer competitors) and that watering will have a beneficial

impact (as this is a critical resource).

Methods

Study Species
Carduus nutans and C. acanthoides are herbaceous monocarpic

perennials; they are sometimes annual, winter annual or perennial

[15]. Carduus nutans seeds are larger (2–4 mm) and heavier (4 mg)

than those of C. acanthoides (1–3 mm, 2 mg) [16]. When sown into

intact (undisturbed) vegetation, both species have extremely poor

germination [17]. Seeds require good contact with the soil in order

to absorb enough moisture for germination, and both species have

maximal emergence at depths of 0.5–1.0 cm in the soil [16].

Carduus acanthoides appears to be more sensitive to moisture stress,

although C. nutans is also affected by moisture conditions [16].

Despite substantial propagule pressure, C. nutans seldom establishes

in well-managed pastures in its invaded range, presumably due to

a lack of suitable gaps for colonization [18]. For these species,

emergence and early establishment has been shown to be a critical

determinant of population growth [19]. Thus we also follow

individuals from germination through to flowering, as the

conditions favoring establishment may not benefit later life history

stages [20].

Carduus nutans and C. acanthoides emergence and survival were

previously shown to be microsite size-dependent in a one year

study, although, surprisingly, a watering treatment appeared to

have no effect on thistle emergence and survival [21]. It is also

known that disturbance can enhance their emergence [17,22,23].

However, it has been suggested for C. nutans, despite the positive

effects of disturbance generally, that there may be decreased

emergence in large (3 m2) plots [24].

Experimental Design
The experiment was conducted in a field at the Russell E.

Larson Agricultural Center at Rock Springs, (40.711, 277.942) in

Pennsylvania’s Ridge and Valley physiographic province, USA.

The site is a former pasture that has been left ungrazed for more

than a decade, with mostly weedy grasses and dicots present. The

site is typical of a central Pennsylvanian hayfield; the dominant

species are mostly non-native and include the grasses Elymus repens,

Arrhenatherum elatius, Dactylis glomerata and Phleum pratense, and the

dicots Plantago lanceolata, Taraxacum officinale, Trifolium repens,

Trifolium pratense and Galium species. The seeds were collected

from naturalized Carduus populations from areas that only have

one species present (near Carlisle, PA for C. nutans, and in State

College for C. acanthoides). Flower heads were dissected to remove

seeds, after which seeds were sifted with mesh screens to remove

small flat seeds with no embryo, which are typically not viable (E.

Leichtman, unpublished data) [25].

Two independent cohorts were initiated in separate plots, one in

the fall of 2004 and one in the fall of 2005. The experiment had a

randomized, full block design with three treatments: watering,

microsite size and type of microsite disturbance. There were a total

of 32 plot types (2 species62 watering types64 microsite sizes6
2 microsite disturbance types), replicated ten times in each of the

two cohorts (640 plots total).

Disturbances were created in two different ways: a clipping

treatment disturbed only the above-ground biomass but left the

soil intact, and a full disturbance treatment disturbed both above

and below-ground areas. All plots were first clipped, and then the

full disturbance plots received an additional belowground distur-

bance. Clipping involved removing all above-ground biomass with

electric clippers or scissors; this is similar to the effect of close

mowing or grazing, both of which are experienced in the pastures

and roadsides where these species are common. The full

disturbance treatment consisted of an above- and below-ground

disturbance created by either roto-tilling the plot (for 30 and

50 cm edge length disturbances) or drilling holes in the soil with a

bulb planting attachment (for the 5 and 15 cm disturbances), to an

approximate depth of 10 cm. This treatment mimics disturbance

in recently tilled areas, in marginal areas such as construction sites,

and due to animal digging.

Four microsite sizes were investigated: squares with lengths of 5,

15, 30 and 50 cm along an edge. These sizes were chosen to span

the range from the minimum size believed necessary for seedling

establishment (K. Shea, unpublished data) through to the largest

area we had observed being occupied by single large adults. Half

of the plots received a watering treatment, which consisted of

adding 1 L of water over a 50650 cm area twice weekly. The

amount of precipitation in the northeastern United States is

predicted to increase under climate change, but there is a large

amount of uncertainty in the amount of increase [26,27,28]; the

amount added was intended to loosely mimic that projection while

still falling within the range plants might experience in a wet year.

Four seeds of a species were sown in the soil at approximately

5 mm below the surface in the center of each disturbance in

marked locations in September of 2004 (cohort 1) or 2005 (cohort

2). This controls for seed limitation and allows us to focus on the

effects of microsite characteristics. After planting, disturbed plots

were lightly hand-weeded to maintain differences between the

treatments during the emergence period (i.e. for the first month).

The watering treatment was applied from sowing in September

until the end of the fall growing season in November during the

first growing season of each cohort. Plots were censused three

times weekly during the first month; all new emergences and the

survival of previously emerged seedlings were recorded. Monitor-

ing of bare plots next to the experimental sites resulted in no

germinations of either species, thus all germination observed was

attributed to the seeds sown. In November, the longest leaf length

and diameter of each rosette was recorded, in addition to whether

or not the plant experienced herbivory.

After overwintering, in May and June of 2005 and 2006, the

longest leaf length and diameter of rosettes were measured. All

mature flowerheads were bagged with pollen bags after pollination

had occurred, to avoid further thistle seed contamination of the

soil. In July 2005, 2006 and 2007, a destructive census of flowering

plants was carried out in existing cohorts, as individuals senesce

and die after flowering. The number of flower heads was recorded

for flowering plants, and the longest leaf length was measured for

rosettes. If a plot still contained a rosette, it was monitored in

Microsite Affects Invasive Thistle Establishment
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subsequent years, as in both cohorts, some individuals did not

flower in their first, or even their second, summer. By 2007,

however, nearly all plants had flowered or died, and the

experiment was terminated.

Statistical Methods
Analyses were performed separately for the two species. In order

to avoid pseudoreplication, the average plot response was used as

the response variable in all analyses [29]. We examined logistic

regressions of the proportion of seeds planted that emerged and

survived in the fall, the proportion of emerging individuals that

survived to the following summer, and the proportion of

individuals that flowered. In each case we used a vector of the

number of successes to failures in order to account for sample size

in estimating proportions [29]. We also examined linear regres-

sions of log transformed size data (longest leaf length at the end of

fall and spring).

The potential explanatory variables were: whether or not a plot

was watered, the relative area of the microsite disturbance (scaled

to the largest disturbance area, to allow easier comparison with

other variables) and the type of the microsite disturbance. All

variables were centered and standardized following Schielzeth

[30].

Generalized linear mixed effect models were fit using the lmer

package [31] in R [32], using block and cohort as random effects.

Likelihood ratio tests were used on nested models to determine

whether including interactions between treatments significantly

improved model fit [33]. If the best model contained higher order

interactions, models were refitted on subgroups of the data. P-

values were estimated using likelihood ratio tests to compare

models with and without the parameter of interest; models were fit

using maximum likelihood.

Results

Microsite characteristics strongly influenced the establishment

of both species. Overall, C. nutans had higher emergence rates than

C. acanthoides (22% and 39% for C. nutans and 13% and 24% for C.

acanthoides in the two cohorts). Nearly all emergence occurred in

the fall; in 2005 only four new emergences were observed in the

spring for the cohort planted in 2004. Carduus nutans grew to

slightly larger sizes than C. acanthoides by early November of the

first season in both cohorts. A higher proportion of C. nutans plants

present flowered in their first year (7.34% for C. nutans versus

1.25% for C. acanthoides), with similar numbers flowering in the

second year (approximately 24% for both species).

Carduus nutans initially performed better (higher germination and

survival rates and larger size) in large microsites in clipped versus

fully disturbed plots (Fig. 1a, Fig. 2a), but later had better

performance (larger size, more flowerheads produced and a higher

proportion flowering) in fully disturbed plots (Fig. 3). For C. nutans,

the sign of the interaction term in the model of emergence and fall

survival of fully disturbed plots was positive, in contrast to clipped

plots, where it was negative. Microsites with both watering and

larger area had higher germination and survival rates in clipped

plots, but this combination led to lower germination and survival

rates in fully disturbed plots. Carduus acanthoides had better

performance in fully disturbed plots (Figs. 1b, 2b), although this

is not significant for survival to July or the proportion flowering

(Fig. 3b).

Larger microsite size was significantly positively associated with

all aspects of C. nutans performance except survival to July in

clipped plots (Fig. 1–3, Tables 1 and 2). For C. acanthoides, the

models also consistently show a significant positive effect of

microsite size. Microsite area had a larger impact on C. nutans

emergence and fall survival in fully disturbed plots than in clipped

(above-ground disturbance only) plots.

Emergence and fall survival in clipped plots had a negative

response to the watering treatment (Table 1) for C. acanthoides and

for C. nutans in clipped plots. There was no significant size response

(average longest leaf length) to watering for either species. By the

spring (Table 2), no significant impacts from the watering

treatment were seen except that C. acanthoides survival to July,

given emergence, was lower in watered plots; the magnitude of this

effect was relatively large.

Discussion

Many biological invasions are associated with disturbance and

the associated increase in resource availability [20,34]. Our results

show that disturbances that create gaps for emergence are

critically important for the invasion success of Carduus thistles,

and confirm that C. nutans and C. acanthoides emergence, survival

and growth are strongly dependent on characteristics of their

germination sites. In contrast, there is very poor emergence of

these species in undisturbed vegetation [17,21].

Microsite size appears to be particularly important, with larger

microsites generally leading to better emergence and higher

survival for both species. We did not observe a negative effect of

very large gaps, suggesting that potential desiccation was not as

critical during this study. The fact that larger size and higher

flowering rates occurred in large microsites is in agreement with

our observation of large, naturally occurring individuals of both

species on highly disturbed areas with virtually no other

vegetation, such as construction sites (E. Rauschert, pers. obs.).

Such large individuals may be particularly important for spread, as

tall height and lower surrounding vegetation leads to longer

dispersal distances and hence greater invasion speed [35].

The distribution of gap sizes in old fields and pastures, which

are typical habitats for these thistles, likely has important

consequences for their ability to invade and persist in an area.

Goldberg and Gross [1] studied gap characteristics in a mid-

successional old field, and found that most gaps were small (less

than 10 cm in size), and that animals were creating most of the

new gaps. In New Zealand pastures with C. nutans infestations, gap

sizes were also found to be small (mostly less than 10 cm), and

there were fewer gaps in spring and autumn, when most

emergence occurs [24]. Panetta and Wardle [24] suggest that

hoof sized gaps may best promote emergence. This would be an

unfortunate result for management, as grazing in wet pastures

often creates gaps of such sizes. Wardle et al. [36] claim that some

cover may be needed for a suitable microclimate for C. nutans

emergence, as they observed low emergence in large bare ground

plots. However, even in their experiments, individuals in the bare

plots were more likely to flower in the first summer and grew

larger than in plots with other vegetation.

For plants, the ability to access critical resources such as water is

an important part of the invasion process. For example, C.

acanthoides has been shown to be sensitive to desiccation during

emergence and early growth [37]. Interestingly, additional water

availability generally had a negative impact on emergence and

survival in our study. This was unexpected, given most earlier

work on these species, though one previous study found no effect

of irrigation on thistle emergence and survival [21]. It is possible

that watering may have washed some seeds deeper into the soil;

both species have decreased emergence at increased soil depth,

with C. acanthoides more vulnerable to this effect [16]. It is also

possible that the addition of water initially benefited the existing

Microsite Affects Invasive Thistle Establishment
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vegetation more than the thistle seeds, an example of an indirect

effect on competition [8]. Interestingly, the impact persisted longer

than expected for C. acanthoides, where survival until July was

negatively impacted. Davis and Pelsor [38] also suggest that early

fluctuations in key resources, even only brief ones, may still have

impacts a year later.

The differential response we observed to type of disturbance is

intriguing. Carduus acanthoides had higher emergence rates in fully

disturbed plots than in plots with above-ground disturbance

(clipped) only. Carduus nutans had better performance generally in

large clipped plots; it was less affected by the established below-

ground environment than C. acanthoides. Seed size may be partially

responsible for the differential response to disturbance; C.

acanthoides seeds are considerably smaller than C. nutans seeds. It

has been suggested that species with smaller seeds need larger gaps

for establishment [39], to overcome the fact that they produce

initially smaller seedlings; perhaps species with smaller seeds also

benefit more from both above- and belowground disturbance.

This effect is likely most important for early stages; by the

following spring, both species were larger in initially fully disturbed

microsites. However, such subtle differences in responses to

microsite quality may play a role in invasion success, and should

not be ignored.

We did see differences in the germination rates of the two

cohorts, with higher germination rates in the second cohort. This

may be due to maternal effects of the source populations on the

quality of the seed produced in different years, as we have also

observed large variation in germination rates of seeds from

different years in greenhouse experiments (Rauschert, unpublished

data). It is also possible that in 2005 in the fall, conditions were

generally more favorable for Carduus germination and early

seedling growth. For example, in September through November,

Figure 1. Effect of microsite area on fall emergence and survival of Carduus nutans and C. acanthoides. Panels a and b show the combined
emergence and survival response for C. nutans and C. acanthoides (darker blue indicates full disturbance, lighter bars indicate clipped areas).
Emergence and survival are generally higher in larger microsites. For C. acanthoides, performance was better in fully disturbed microsites. Carduus
nutans did better in larger clipped microsites but smaller fully disturbed microsites.
doi:10.1371/journal.pone.0045490.g001

Figure 2. Effect of microsite area and type of disturbance on rosette size in fall. Panels a and b show that rosettes were larger in larger
microsites for both species in the fall (darker blue indicates full disturbance, lighter bars indicate clipped areas). For Carduus acanthoides, rosettes are
larger in fully disturbed plots.
doi:10.1371/journal.pone.0045490.g002

Microsite Affects Invasive Thistle Establishment
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2004, there was twice as much rainfall as in 2005 (2788 mm vs.

1590 mm) [40], which may have benefitted the resident commu-

nity more than the thistles [41]. Additionally, since we did not thin

plots to one Carduus seedling if more than one plant germinated,

there may have been some intraspecific competitive effects, but as

95% of plots had 2 or fewer germinations these effects were likely

small.

It is worth noting that the dominant species present in the

abandoned hayfield in central Pennsylvania, USA, were also non-

native. Rauschert et al. (in revision) also observed that the species

generally associated with Carduus thistles in central Pennsylvania

are non-native; several are also associated with Carduus thistles in

their native range [42]. In agricultural systems this is a common

situation, as many weedy species were introduced along with crop

Figure 3. The response of the proportion of thistles present to microsite size. Both species were more likely to flower in larger microsites
(darker blue indicates full disturbance, lighter bars indicate clipped areas). For C. acanthoides, the effect of disturbance type is not significant. No C.
acanthoides individuals flowered in clipped 225 cm2 microsites.
doi:10.1371/journal.pone.0045490.g003

Table 1. Carduus nutans and C. acanthoides fall emergence and growth response to microsite characteristics.

Carduus nutans Carduus acanthoides

Explanatory variable Coefficient p- value Coefficient p- value

Emergence and fall survival in clipped plots Intercept –1.15

Area 0.64 0.00***

Watering –0.55 0.02*

Interaction 0.55 0.02*

Emergence and fall survival in fully disturbed plots Intercept –1.67

Area 1.14 0.00***

Watering 0.07 0.73

Interaction –1.18 0.01**

Emergence and fall survival Intercept –2.04

Disturbance Type 0.87 0.00***

Area 0.19 0.02*

Watering –0.46 0.00**

Fall rosette size Intercept 0.17 –0.12

Disturbance Type –0.23 0.01** 0.49 0.000***

Area 0.17 0.00*** 0.17 0.000***

Watering 0.12 0.08 0.03 0.67

*indicates significance of p#0.05.
**indicates significance of p#0.01.
***indicates significance of p#0.001.
Model results for fall measurements are shown in Table 1. Generalized linear mixed-effects models were fit, using likelihood ratio tests to determine whether model fit
was improved by including interactions. Where higher order interactions were present (such as analyses of germination for C. nutans), Larger microsite area generally
led to increased germination, survival and size. Rosette size was higher in clipped plots for C. acanthoides versus fully disturbed plots for C. nutans. Watering either had
no effect or a negative effect;
doi:10.1371/journal.pone.0045490.t001

Microsite Affects Invasive Thistle Establishment
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species. Generally, invader-invader interactions, both positive [e.g.

invasional meltdown, 43] and negative [e.g. invasional interfer-

ence, 44,45], are likely to increase as the number of non-native

species continues to rise.

Our results demonstrate that gap characteristics play an

important role in emergence and establishment of these two

species. Both microsite size and water availability affected

establishment, but the type of disturbance generating the microsite

also had a significant impact. These effects persisted well beyond

these initial life stages. An understanding of the establishment and

regeneration niche, and the role that disturbance plays at critical

life stages, thus is an important part of any management plan for

dealing with an invasion that has already occurred, and for

maintaining community resistance to invasion. It is important to

identify under what circumstances species are likely to grow well

enough to establish large, persistent populations. In the case of

these invasive plants, our results clearly suggest that minimizing

the size and the intensity of disturbances, or reseeding of other

vegetation, are most likely to hinder invasion success.
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