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Ampilification of high-order rainbows
of a cylinder with an elliptical cross section

James A. Lock, Charles L. Adler, Bradley R. Stone, and Patrick D. Zajak

The intensity of high-order rainbows for normally incident light and certain rotation angles of a cylinder
with an elliptical cross section is greatly amplified with respect to the intensity for a circular cross-

sectional cylinder.

The amplification is due to a number of the internal reflections occurring past the

critical angle for total internal reflection, and the effect is especially strong for odd-order rainbows,

beginning with the third order.

Experimentally, the fourth- and the fifth-order rainbows of a nearly

elliptical cross-sectional glass rod were observed and analyzed. © 1998 Optical Society of America

OCIS codes:

1. Introduction

The extreme rarity of naked-eye observations of rain-
bows beyond the second order in rain showers is due
in part to the fact that the intensity of high-order
rainbows decreases approximately geometrically as a
function of the number of internal reflections of light
rays in the water droplets.! As a result, the high-
order rainbows are lost in the background sky bright-
ness. Likewise, laboratory observations of high-order
rainbows of a single liquid droplet are hampered by
weak rainbow signals being obscured by the much
brighter specularly reflected and transmitted light
exiting the droplet in the same direction.2 In spite of
these difficulties, most of the rainbows to the 24th
order, as well as the 32nd-order rainbow, have been
observed in the laboratory? by use of bright-light
sources, sensitive detectors, and by use of either
incident-beam-blocking techniques’* or off-axis
Gaussian beam illumination® to channel as much
power as possible into the impact parameter of the
rainbow ray and to avoid producing the otherwise
dominant specularly reflected and transmitted light.

In this paper we consider the laboratory observa-
tion of high-order rainbows of a dielectric cylinder,
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such as a long glass rod. We show that for normally
incident light and certain rotation angles of a cylinder
with an elliptical cross section, the intensity of high-
order rainbows should be greatly amplified with re-
spect to the intensity of the corresponding rainbows
of a circular cross-sectional cylinder. This is be-
cause a number of the internal reflections of the rain-
bow ray occur past the critical angle for total internal
reflection. We show that even if the major and mi-
nor axes of the cylinder’s cross section differ by as
little as a few percent, rainbows as high as the fifth
order can, under the proper conditions, become as
bright as the first-order rainbow.

The body of this paper is organized as follows. In
Section 2 we outline the geometric ray theory of high-
order rainbows of a cylinder whose cross section is
either elliptical or comprises two half-ellipses of differ-
ent eccentricities smoothly joined together. The two-
half-ellipse model was chosen because the analytical
formulas describing the propagation of a ray inside the
cylinder are relatively straightforward. In addition,
this model closely approximates the nearly elliptical
cross section of the glass rod that we previously used to
observe low-order rainbows at either normal® or diag-
onal incidence? as well as interior optical caustics at
diagonal incidence.® In this paper we numerically
compute both the rainbow angle and the contribution
of the Fresnel coefficients to the intensity for rainbows
up to the seventh order for an elliptical cross-sectional
cylinder. We find that the rainbow intensity should
dramatically increase for certain rotation angles of the
cylinder. The intensity increase is most dramatic for
odd-order rainbows because every second internal re-
flection is a total internal reflection. In Section 3 we
perform an experimental search for high-order rain-
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bows of a nearly elliptical cross-sectional glass rod and
report our observations of the fourth- and the fifth-
order rainbows. Last, in Section 4 we discuss our
results and comment on strategies for observing the
third-order rainbow of falling oblate spheroidal water
droplets in a rain shower.

2. Theory of High-Order Rainbow Formation by a
Cylinder with a Two-Half-Ellipse Cross Section

As in Ref. 6, we consider a long homogeneous dielec-
tric cylinder of refractive index n, whose symmetry
axis coincides with the z’ axis and whose cross section
is given by

12 12
X Y
— + =1 fory’ =0,
a® b Y

12 12
X Yy

+ =1 for y’ <0, 1

a® by’ Y D

where the x'y’z’ coordinate system is attached to the
cylinder. The cylinder is rotated about the z = 2z’
axis through the angle ¢ (¢ is the angle between the x
and the x' axes) and parallel light rays traveling in
the —y direction of the laboratory xyz coordinate sys-
tem are normally incident upon the cylinder. An
incident light ray strikes the illuminated side of the
cylinder at the laboratory coordinate (x,, y,) and is
refracted into the cylinder. It then internally re-
flects at the surface P — 1 times at the coordinates
(x,,¥,) with 1 = p = P — 1 and finally refracts out of
the cylinder at (x,, y,,) with the scattering angle 0,(£).
The relative minimum of 6,(£) as a function of x, is
denoted by 6,%(¢£) and is the (P — 1)th-order rainbow
angle for the cylinder rotation angle &.

As was described in detail in Ref. 6, the normal to
the cylinder surface at (x,, y,) and the interior ray
between the p and the p + 1 interactions with the
surface make the angles v, and 3,, respectively, with
the positive x axis. For a cylinder with a two-half-
ellipse cross section, we have

(b,*/a®)sin® € + cos® € — x,°
tan vy, =

P'_(bf/aZ——])shlgcos§'+“byp ?

for thej = 1, 2 half-ellipses. The angles of incidence
and transmission of the incoming ray at the point (x,,
¥o) on the cylinder surface are

eoi =m/2 — v, 3)
0. = arcsin[(sin 6,)/n]. (4)

The angles 8, of the interior rays are

8o = Yo + ¢,
O =2v, =81 ifp=1,p = odd,
=2y, =8, — if p=1, p = even, (%)
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and the angle of incidence of the interior ray at (x,,
Yp) is

Bpi = 'yp - 81771. (6)

Last, the scattering angle of the ray exiting the cyl-
inder at (x,, y,) after P — 1 internal reflections is

_P’TT/2_'YP+ept l.fPZOdd
Op(8) = P+ 1)m/2 —yp+ 0, if P=even @
where
0, = arcsin(n sin 0p'). (8)

As was the case in Ref. 6, at each interaction of a
ray with the cylinder surface a decision must be made
as to whether the interaction takes place on the j = 1
half-ellipse or on the j = 2 half-ellipse. The decision
is made by examination of whether the internal ray
between the p and the p + 1 interactions crosses the
line that connects the two points on the circumfer-
ence where the half-ellipses are joined together.
Numerically propagating a ray inside the cylinder
begins with specifying (x,, v,), calculating v,, then
calculating 3,, and then calculating (x,. 1, y,. 1) With
the expression for y, ., ; obtained when Eqgs. (1) in the
laboratory coordinate system are substituted into

tan 8p = (yp+1 _yp)/(xp+1 - xp)' (9)

The contribution of the Fresnel coefficients to the
intensity of the P rainbow [also called the (P — 1)th-
order rainbow] for unpolarized incident light is

1 P-1 2 q P-1 2
Ip= 5 [toTE(H rpTE)tPTE] + 5 [tOTM(H rpTM>tPTM:| ,

p=1 p=1

(10)
where t™F, rTE ™ and ™ are the transverse electric

(TE) polarization and transverse magnetic (TM) polar-
ization electric-field transmission (¢) and reflection (r)
Fresnel coefficients evaluated at the angles of inci-
dence and transmission of the rainbow ray at each
interaction with the surface. Equation (10) is the
dominant contribution to the rainbow intensity in Airy
theory for a circular cross-sectional cylinder.>1°© An-
other contribution to the intensity whose quantitative
importance has not been studied here is the depen-
dence of the spreading rate of the local outgoing flux
tube on the curvature of the cylinder at the ray inter-
action points. This flux tube effect for scattering by
spheres and spheroids is described in Refs. 11 and 12.

The ray-tracing procedure of Egs. (2)—(9) was used to
compute numerically the rainbow angle 0,7(¢£) as a
function of £ in 5° increments for 2 =P = 8, n = 1.474,
and for various values of b/a for an elliptical cross-
sectional cylinder with b = b; = by, # a. Figure 1
shows representative results for the P = 6 rainbow
with b/a = 1.0, 0.987, 0.975, 0.963, and 0.950. The
graphs in Fig. 1 are given only for 0° = ¢ = 180°
because, for an elliptical cross-sectional cylinder, 6,7 (£)
has 180° rotational symmetry and the results for 180°
= & = 360° repeat the 0° = ¢ = 180° results. By
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Fig. 1. Rainbow angle 64 and the rainbow Fresnel coefficient factor I,

as defined in Eq. (10) for the P = 6 rainbow of an elliptical-cross-section

cylinder as a function of the cylinder rotation angle £ for (a) b/a = 1.0,
() b/a = 0.987, (c) b/a = 0.975, (d) b/a = 0.963, (e) b/a = 0.950.

comparison, the P = 6 rainbow angle of a circular
cross-sectional cylinder with n = 1.474 and /a = 1.0
is 163.09° for all &£ and I; = 0.0043. For an elliptical
cross-sectional cylinder with b/a < 1, the rainbow an-
gle increasingly deviates from its P = 6 circular cross-
sectional value as b/a decreases. But more
significantly, I; quickly grows to more than an order of
magnitude larger than the circular cross-sectional
value in certain £ intervals whereas it shrinks to more
than an order of magnitude smaller than the circular
cross-sectional value in other £ intervals. The reason
for this is apparent in Fig. 2, in which each of the
individual TE Fresnel coefficients of the P = 6 rainbow
ray is graphed as a function of &, The region of large
I; amplification corresponds to the p = 1, 3, 5 reflec-
tions becoming total internal reflections, and the re-
gion of minimum I corresponds to the minimum
values of the p = 1, 3, 5 reflection Fresnel coefficients.
The varying curvature of the elliptical cross section can
thus be exploited to create situations in which total
internal reflection occurs, and, as a result, the rainbow
intensity dramatically increases. For the sake of
completeness, it should be noted that a small evanes-
cent wave leakage occurs by means of tunneling at
these total internal reflections,!® rendering the re-
flected percentage there to not be strictly 100%.

The trends observed for the P = 6 rainbow occur for
other high-order rainbows as well. In Tables 1 and
2 we list the maximum value of I, the value of the
cylinder rotation angle £ at which it occurs (to the
nearest 5° increment), and the Fresnel coefficient am-
plification ratio with respect to a circular cross-
sectional cylinder for the first seven rainbows and
b/a = 0.975,0.950. These tables exhibit the follow-
ing trends. Although the first- and the second-order
rainbow intensities are likely to be only minimally

I (€) (dimensionless)

Fresnel coefficient (dimensionless)

0 90 180
& (degrees)

Fig. 2. Rainbow Fresnel coefficient factor as defined in Eq. (10)
and the values of the individual TE Fresnel coefficients for the P =
6 rainbow of an elliptical-cross-section cylinder for the 0 = p = 6
interactions of the rainbow ray with the cylinder surface. Thep =
0 curve is the initial transmission coefficient, the 1 = p = 5 curves
are the internal reflection coefficients, and the p = 6 curve is the
final transmission coefficient minus one.

amplified for a cylinder with a slightly elliptical cross
section, based on the Fresnel coefficient factors, the
intensity amplification of high-order rainbows in cer-
tain narrow intervals of & should be substantial, es-
pecially for even-P (i.e., odd-order) rainbows. It is
also significant that the maximum amplification oc-
curs at nearly the same value of & ~20° to 25° for
even P and ~30° to 35° for odd P when b/a = 0.95.
For b/a = 0.95, the P = 4 rainbow is at 6 ~ 0° and is
predicted to have roughly twice the peak intensity of
the first-order rainbow for n = 1.474. The P = 6
rainbow is at 6 ~ 180° and is predicted to have
roughly the same peak intensity as the first-order
rainbow, assuming that the flux tube spreading fac-
tors play a small role. Such should be the case here,
as the local radius of curvature varies by only —10%
to +5% around the cylinder perimeter for b/a = 0.95.

Table 1. Maximum Fresnel Coefficient Contribution to the Rainbow
Intensity for an Elliptical Cross-Sectional Cylinder, the Cylinder Rotation
Angle § at which it occurs, and the Fresnel Coefficient Amplification
Ratio with respect to a Circular Cross-Sectional Cylinder for the 2 <
P = 8 Rainbows and b/a = 0.975

P IPmax % (de g) IPmax / IPcircle
2 0.0520 20 1.16
3 0.0196 35 1.10
4 0.0315 5 3.21
5 0.0104 20 1.69
6 0.0554 15 12.98
7 0.0172 35 5.47
8 0.0363 15 15.23
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Table 2. Maximum Fresnel Coefficient Contribution to the Rainbow
Intensity for an Elliptical Cross-Sectional Cylinder, the Cylinder Rotation
Angle £ at which it occurs, and the Fresnel Coefficient Amplification
Ratio with respect to a Circular Cross-Sectional Cylinder for the
2 = P = 8 Rainbows and b/a = 0.950

P IPrnax g ( de g) IPmax / IPcircle
2 0.0621 20 1.39
3 0.0219 30 1.22
4 0.1298 25 13.22
5 0.0178 30 2.89
6 0.0688 25 16.11
7 0.0405 35 12.89
8 0.0386 20 16.23

For each of the maximum Fresnel coefficient ampli-
fications in Table 2, the individual Fresnel coefficients
were examined, and their behavior is summarized in
Fig.3. TheP =4,6,8, ..., rainbow peak intensities
should be greatly amplified because every second re-
flection (i.e.,,p = 1,3,5,7 - - -) is a total internal reflec-
tion. This also explains why the & interval for
maximum amplification is nearly the same for each
even-P rainbow. The impact parameter of a high-
order rainbow ray is near the edge of the cylinder, and
four internal reflections for n = 1.474 brings the rain-
bow ray back to the vicinity of its starting point. Thus
every second interaction occurs on opposite sides of the
cylinder within the low-curvature regions on the cir-
cumference where total internal reflection occurs.
The intensity amplification mechanism is modified
somewhat for odd-P rainbows because the rainbow ray
must be able to exit the cylinder at the last odd-P
interaction and not be totally internally reflected
there. This leads to the maximum Fresnel coefficient
amplification occurring at a somewhat different value
of £ at which the elliptical cross section has a different
orientation and at which the last interaction of the
rainbow ray with the surface no longer is within one of
the low-curvature total internal reflection regions on
the circumference. As a result, for odd-P rainbows
there are relatively fewer total internal reflections and
a correspondingly lower peak amplification ratio.

From an experimental point of view, although rain-
bow intensity amplification for an elliptical cross-
sectional cylinder due to total internal reflections is
both novel and interesting, glass rods are seldom man-
ufactured with an exactly elliptical cross section.
They possess small deviations from ellipticity, such as
the glass rod that we have previously used,® which had
an average radius of a = 8.05 mm and whose cross
section was reasonably well described by the two-half-
ellipse model with b, /a = 0.950 and b,/a = 0.976. A
question of experimental interest is whether the large
amplification ratios obtained for an elliptical cross sec-
tion persist if the cross section contains small devia-
tions from ellipticity. In Fig. 4 we compare the
rainbow angle and I, as functions of £ for the P = 6
rainbow of our glass rod predicted by the two-half-
ellipse model with those of an elliptical cross-sectional
cylinder with an eccentricity of b/a = 0.963, the aver-
age of b;/a and b,/a. The figure shows that although
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Fig. 3. Ray path of the rainbow ray for 2 = P < 8 and n = 1.474
at the cylinder rotation angle corresponding to the maximum rain-
bow Fresnel coefficient amplification given in Table 2. The large
filled circles represent total internal reflection.

small deviations from ellipticity cause noticeable dif-
ferences in both the rainbow angle and I, (i.e., the first
Fresnel coefficient amplification maximum in Fig. 4 is
broadened and further increased whereas the second
maximum is narrowed and decreased), the basic phe-
nomenon of rainbow intensity amplification persists.
Small deviations from ellipticity change the rainbow
ray path inside the cylinder and the interaction points
of the ray with the surface. But the changes appar-
ently come close to averaging each other out rather
than producing a systematic shift that could cause
substantial differences in the rainbow angle and a dra-
matic decrease in the rainbow Fresnel coefficient am-
plification ratio. The stability of the Fresnel
coefficient amplification on small perturbations from
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Fig. 4. Rainbow angle 6% and the rainbow Fresnel coefficient
factor I as defined in Eq. (10) for the P = 6 rainbow as a function
of the cylinder rotation angle £ for an elliptical cross section with
b/a = 0.963 (solid curve) and a two-half-ellipse cross section with
bi/a = 0.950 and by/a = 0.976 (dashed curve).

ellipticity provides encouragement for experimentally
searching for the high-order rainbows of a nearly el-
liptical cross-sectional glass rod.

3. Experiment

Our experimental apparatus has been described
elsewhere.6-8 Briefly, the glass rod was placed on a
calibrated rotation stage and was normally illumi-
nated with the expanded beam of a 15-mW He—Ne
laser. Previous observations of the P = 2, 3 rain-
bows permitted the determination of the rod’s refrac-
tive index, average ellipticity, and ellipticity
difference by use of the two-half-ellipse cross-
sectional model. As mentioned in Section 2, the P =
4 rainbow should occur near 6 ~ 0° and is lost in the
bright transmitted light. The P = 8 rainbow should
also occur far enough into the forward hemisphere
(i.e., 8 ~ 15°) so as to be obscured by the transmitted
light. Thus the most promising candidates for ob-
servation are the P = 5, 6, 7 rainbows, which should
occur at the scattering angles 6 =~ 90°, 6 ~ 180°, and
0 ~ 75°, respectively, when the rod is rotated into the
proper £ interval for maximal amplification.

Despite their expected large peak brightness, these
high-order rainbows are elusive, however, as their inten-
sities should be quite small for most other values of &
As the rod is rotated they should quickly flash into visi-
bility, and then a few degrees in & later they should
equally quickly fade away. The situation is further
complicated by the fact that the experimental observa-
tions of the P = 2, 3 rainbows in Ref. 6 were fitted well,
but not perfectly, by the two-half-ellipse cross-sectional
model because the shape of our rod’s cross section is in
actuality somewhat more complicated. As a result, the
two-half-ellipse model provides only a rough estimate of
where the high-order rainbows should occur.

The P = 5 rainbow was first seen during our previ-
ous study of the P = 3 rainbow when the two rainbows

T T T
270
w
g 260
>
o
k=2
2
TS 250
@ 240
2 N
g A
2 002
c
[
E o001
=2
) ]
o 0 90 180 270 360
& (degrees)

Fig. 5. Rainbow angle 6% and the rainbow Fresnel coefficient
factor I, as defined in Eq. (10) for the P = 3 (solid curve) and P =
5 (dashed curve) rainbows as a function of the cylinder rotation
angle £ for a two-half-ellipse cross section with b,/a = 0.950 and
by/a = 0.976. The two rainbows are produced by rays incident at
opposite sides of the cylinder.

occurred at nearly the same scattering angle. In Fig.
5 we show the predicted P = 3, 5 rainbow angles and
Fresnel coefficient amplification factors of Eq. (10) for
our glass rod in the two-half-ellipse cross-sectional
model. The P = 3 rainbow intensity is predicted to
vary by a factor of ~2, ignoring variations in the
spreading rate of the outgoing flux tube. Such a vari-
ation was qualitatively observed in the laboratory, and
the minimum P = 3 rainbow intensity (i.e., I, ~ 0.01 in
Fig. 5) roughly coincided with our visual of)servation
threshold. The P = 5 rainbow intensity has predicted
sharp enhancements when it is in the vicinity of the
P = 3 rainbow at the P = 3 closest approach to the
forward direction. It was at these two locations (¢ ~
0° and & ~ 140° corresponding to 85 ~ 270°) that we
observed the P = 5 rainbow within a few degrees of the
P = 3 rainbow. As expected, it quickly flashed into
existence, moved across the viewing screen more rap-
idly than did the P = 3 rainbow, and then equally
quickly faded from view as & was varied by ~5° in one
case and by ~10° in the other. By using the beam-
blocking technique, we verified that the rainbow rays
of the P = 3, 5 rainbows originated on opposite sides of
the cylinder, as expected from Fig. 3. Also as ex-
pected, the observed supernumerary patterns of the
two rainbows faced each other, with the principal
peaks being on opposite ends of the pattern. The light
intensity in the vicinity of the P = 3, 5 rainbows was
measured with a photodiode mounted on a fixed track
and advanced by a stepper motor, as was described in
Ref. 6. The resulting intensities of the two rainbows
are given in Figs. 6 and 7. As expected, the separa-
tion of the P = 5 supernumeraries is wider than that of
the P = 3 supernumeraries. But their intensity
shows significant deviations from the square of an Airy
function. This was also noted in Ref. 6 for the P = 2
rainbow and may be due to small local inhomogene-
ities in the rod’s glass. The P = 5 rainbow visually

20 March 1998 / Vol. 37, No. 9 / APPLIED OPTICS 1531
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Fig. 6. Experimental light intensity in
the vicinity of the P = 3 rainbow at 0% ~
270°. The distance from the glass rod to
the detector was 49.5 cm.
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Fig. 7. Experimental light intensity in the
vicinity of the P = 5 rainbow at 6% ~ 275°.
The distance from the glass rod to the de-
tector was 49.5 cm.
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Fig. 8. Experimental light intensity in the
vicinity of the P = 6 rainbow at 65" ~ 175°.
The distance from the glass rod to the de-

appeared more like the square of an Airy function than
the intensity scan of Fig. 7 indicates. The pattern as
viewed by the authors consisted of the principal rain-
bow peak flanked on one side by eight clear supernu-
meraries, one or two of which appeared somewhat
brighter than the principal peak. This is evident in
Fig. 7 along with a relatively large background noise
level that was not visible to the naked eye.

Next, with two viewing screens set so that the ex-
panded incident beam passed through a 20-mm gap be-
tween them, the rod was rotated until the P = 6 rainbow
was observed on one of the viewing screens at a scatter-
ing angle a few degrees away from 180°. Again, as £ was
varied, it quickly flashed into existence, and after another
~3° of rotation it equally quickly faded from view. Once
the rainbow was found, the viewing screens were brought
closer together until the competing specularly reflected
light was eliminated. We verified by the beam-blocking
technique that the P = 6 rainbow was due to light inci-
dent at the edge of the cylinder. The P = 2 rainbow
could also be seen on one of the viewing screens, and the
P = 6 principal maximum visually appeared to be of
comparable brightness with that of the P = 2 rainbow,
whereas the P = 6 supernumeraries were noticeably
dimmer than those of P = 2. In comparison, the prin-
cipal peak of the P = 3 rainbow was much dimmer than
the P = 2 principal peak. The intensity in the vicinity of
the P = 6 rainbow was then measured with the photo-
diode driven by the stepper motor and is shown in Fig. 8.
We did not attempt to locate the P = 7 rainbow.

The angular separations of the respective supernu-
meraries of the P = 3, 5, 6 rainbows of a circular cross-
sectional cylinder for n = 1.474 are in the ratio 1:1.81:
2.20 according to Airy theory.>° Analysis of the first
four supernumerary maxima and minima of Figs. 6—8
gives the ratio 1:1.39:1.60. Although the trend of in-
creasingly wide supernumeraries as P is increased is
apparent in Figs. 6—8, the numerical values of the ratios
are incorrect because of the supernumerary patterns of
the P = 2, 3 rainbows growing and shrinking by a factor
of ~2 as the rod was rotated through a complete revolu-
tion, as was mentioned in Ref. 6. The reason for this is
most likely a combination of small local inhomogeneities
in the glass and variations in the spreading rate of the
outgoing flux tube.

1532 APPLIED OPTICS / Vol. 37, No. 9 / 20 March 1998

tector was 73.5 cm.

4. Discussion

Searching for the high-order rainbows of an elliptical-
cross-section or nearly elliptical cross-sectional cylin-
der possesses both advantages and disadvantages
relative to searching for the high-order rainbows of a
circular cross-sectional cylinder. The advantage is
that the varying curvature of the elliptical cross sec-
tion provides an opportunity for a number of the in-
ternal reflections to become total, thus rendering the
high-order rainbows much brighter than their circu-
lar cross-sectional counterparts. The disadvantage
is that, because the brightening occurs over a small
range of the cylinder rotation angle £, it is difficult to
predict exactly when in &£ and where in 6 the bright
high-order rainbows will occur if the cross section is
not exactly elliptical. The results of Table 2 and Fig.
3 illustrate that the total internal reflections occur in
the regions where the surface curvature is smaller
than average. But for a rod whose ellipticity is of the
order of only a few percent, these low-curvature re-
gions are difficult to locate visually.

In spite of this disadvantage, we observed the P = 5,
6 rainbows of a nearly elliptical cross-sectional glass
rod illuminated by the expanded beam of a low-power
He—Ne laser. Had the direct unexpanded beam been
incident at the edge of the cylinder, we no doubt would
have been able to observe additional high-order rain-
bows because of increased laser power being channeled
into the rainbow ray impact parameter. Indeed,
when we placed the glass rod in a tank of water into
which a few drops of milk had been added and illumi-
nated the rod’s edge with the unexpanded laser beam,
we easily saw the first ten rainbows in the light scat-
tered by the suspended milk particles. Each rainbow
ray was flanked on one side by a small bundle of su-
pernumerary rays, and each group of rays left the cyl-
inder circumference nearly tangentially at ~50°
intervals. A few of the rainbows visually appeared
dimmer than the neighboring higher- and lower-P
rainbows because of small Fresnel reflection coeffi-
cients for the particular rod rotation angle used.

Variants of the total internal reflection mechanism
for high-order rainbow amplification have been ex-
ploited previously. In order to amplify the rainbow-
enhanced forward glory, D’Amico et al. reflectively



coated their fused-silica spheres at the locations
where internal reflections were expected to occur.14
Similarly, we previously observed the P = 6 internal
caustics of the glass rod illuminated by an expanded
laser beam at diagonal incidence and at £ = 90°. In
that situation as well, the internal reflection coeffi-
cients attained much larger values at diagonal inci-
dence than at normal incidence.® The relative
refractive index of the glass rod in water for the qual-
itative observations described above is 1.106. For a
low refractive index, each rainbow ray is incident
comparatively nearer the edge of the cylinder, the
internal reflections occur nearer the critical angle for
total internal reflection, and high-order rainbows be-
come dimmer at a progressively slower rate, thus
permitting easier observation of high-order rainbows.

Last, a complementary phenomenon observed in
asymmetrical optical cavities has attracted much at-
tention recently.’>6¢ In a circular cross-sectional
cavity, morphology-dependent resonances (MDR’s)
can attain long lifetimes because of successive inter-
actions with the cavity surface occurring beyond the
critical angle for total internal reflection. When the
cavity is deformed, however, the interior MDR ray is
occasionally incident upon the cavity surface at an
angle less than the critical angle, leading to refractive
intensity losses and a resulting decrease in the MDR
lifetime. This effect has been called chaotic light
because of the nature of the MDR ray path inside the
cavity.!” In the analysis of this phenomenon, the
cavity cross section has been modeled as a small qua-
drupole deformation of a circular shape rather than
as an ellipse, or two half-ellipses, as is done here.

The results of Tables 1 and 2 are virtually unchanged
if the refractive index 1.333 corresponding to water is
used, rather than 1.474 for glass. The intensity of the
P = 2, 3 rainbows varies only weakly as a function of &
The maximum amplification of the P = 4, 6, 8, . . ., rain-
bows is large and occurs for &£ ~ 20°, whereas the maxi-
mum amplification for P = 5,7, . . ., is somewhat smaller
and occurs for £ ~ 0°. The interval in & of maximum
amplification becomes narrower as P increases. Again,
because four internal reflections of a rainbow ray within
the elliptical cross section bring the ray back to roughly
its starting point for n = 1.333, the high value of the
maximum amplification ratio for even P (i.e., odd-order
rainbows) is due to every second reflection being a total
internal reflection.

Finally, we consider atmospheric rainbows of falling
oblate spheroidal water droplets in a rain shower when
the light rays are confined to the vertical plane in which
the droplets’ cross section is elliptical. The weak varia-
tion in the brightness of the P = 2, 3 rainbows as a
function of the direction of incidence of light rays from the
Sun is sufficiently small so as to not affect the observation
of the first two atmospheric rainbows. The region of
large amplification of the P = 4 (i.e., third-order) rainbow
intensity is relatively wide in & and occurs for high solar
elevations, i.e., 50° or more. When the droplet is large,
e.g.,a = 0.7 mm corresponds!® to b/a = 0.97, the max-
imum Fresnel coefficient amplification ratio is roughly 4.
This suggests that a possible opportunity for observing

the rare third-order rainbow should occur for ray paths in
the vertical plane of relatively large and monodisperse
raindrops at high solar elevations with a suitably dark
background sky above the Sun. However, during the
simultaneous observation of the first-, second-, and third-
order rainbows, as described in Ref. 19, the Sun was at a
relatively low angle. This would indicate that the wa-
ter droplets involved either were smaller so that their
oblate spheroidal flattening was minimal or that the
base of the third-order rainbow, produced by light con-
fined to the droplets’ circular horizontal cross section,
was observed.
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