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Frequency driven phasic shifting and elastic-
hysteretic partitioning properties of fractional 

mechanical system representation schemes 
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I. Introduction 

In recent yea rs, increasingly exotic material combinations have been employed in 
structural applications to damp out vibrations and acoustical inpu ts. This includes 
a variety of metal-elastomer pairings in sandwiched and coating type configu rations. 
The modeling of such hysteretic systems is often complicated by their fre-
quency dependent damping characteristics. Whi le such behavior can be simulated by 

-Corresponding author. 



generalized Kelvin Voigt (KV) type representations [1, 2], this generally yields 
very stiff models involving higher order derivatives [3]. Fractional formulations [3—8] 
can be used to bypass such difficulties. This follows from the fact that complete 
operator bases can be formed by irrational power sets bound by lower orders, i.e., 
(0; 1), (0; 2), ... etc. [3, 6, 7]. While fractional operators [3—13] yield improved model 
representations of system behavior, their earlier use was hampered by: (1) a lack of an 
understandable physical interpretation, and (2) somewhat complex computational 
properties. 

Recently, improved computational schemes [8, 14] have been developed and 
benchmarked. Nonetheless, their further use is still hampered by a lack of physi
cal insight. In the context of a lumped parameter system model, this paper investigates 
the manner in which fractional operators partition conservative and nonconservative 
behavior. Special emphasis is given to ascertain the manner in which the fractional 
order and frequency are involved in the partitioning process. In the sections 
which follow, detailed discussions are given on the governing equations, the 
asymptotic large time properties of fractional operators, the steady state solution, 
system energetics and importantly on the conservative—nonconservative energy 
splitting. 

2. Governing equations 

For mechanical systems with complex frequency dependent hysteresis, the govern
ing equations of motion can be written in the form: 

MD (x)#F(x , Q)"G, (1)
2 f fL n nn 

where M, F, G, x. Q and D
2
( ) ) respectively represent the mass matrix, restoring force 

L n n f nvector, exciting force vector, displacement vector, the vector defining integro-differ
ential operator powers, and the 2nd time derivative. Assuming that F is a linear 
superposition of integro-differential operators, it follows that 

F (x, Q)" K D (x), (2)
f r Q(r) fn n Lr 

where K is the rth material coefficient matrix, Q(r) is the rth element of Q and D
Q(r)

( ) ) 
L ris the Louiville—Riemann operator, namely [15] n 
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such that (!) denotes complex conjugation. The components Gl and its pair 
G l define both the amplitude and phasing of the input for each wl 

n frequency. 
n Given that Q(l ) can range the real number axis, through Eq. (3), Eq. (2) can consist 

of fractional/integer integrals or derivatives. For the integer version, we obtain the 
classic Kelvin Voigt (KV) representation [1, 2], i.e., 

F (x)" K D (x) . (6)
f r r fn Lr 

3. Asymptotic large time properties of fractional operators 

Given the use of Fourier decomposition (FFT) analysis, generally the steady state 
input to vibratory systems can be cast in terms of harmonic or damped harmonic 
functions involving phase shifts. This includes such functions as ej t, e'+j t, 
cos(wt#¢), and so on. As will be seen in this section, under such functions, the 
Louiville—Riemann operator D ( ) ) can be replaced by a frequency and Q weighed

Q(l)
expression involving integer operators. 

Based on the Louiville—Riemann definition, it can be shown that [15] 

D
Q
(ej t),(t) Qej ty*(!Q, jwt) , (7) 

where y* (!Q, jwt) defines the incomplete gamma function [16]. The incomplete 
gamma function has an asymptotic expansion which permits us to write [16] 

y*(!Q, jwt) e j t
&( jw)Q! #O((  jwt) 2)J , (8)

tQ jwq(!Q) (t)Q+1 [1!

Q#1 
jwt 

where q (!Q) is the gamma function [16]. Based on Eqs. (7) and (8) it follows that 
asymptotically (i.e., tPR) 

1 
D (ej t )&( jw)Qej t! #O(( jwt) 2)J . (9)
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Similar expressions can be derived for cos (wt) and sin (wt). 
In terms of Eq. (9), for t<0, the following asymptotic expression can be obtained, 

i.e., 
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Based on the form of the double angle identities, Eqs. (10—12) can be rewritten in the 
form: 

D (ej t ; cos(wt) ; sin(wt))"(w)Q{cos C2 
Q)[ej t ; cos(wt) ; sin(wt)]

Q

#sin C2 
Q)[ jej t ;!sin(wt) ; cos(wt)]} . (13) 

Since ej t,cos (wt), and sin (wt) form complete bases, any harmonic exciting force can 
be written in the form 
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i
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Given that each member of Eq. (14) satisfies Eq. (13), it follows that for t<0, 
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wherein h
i
(w
i
t) is any harmonic function. Equation (16) applies for essentially all Q. 

When Q is an integer, then the classical results are retrieved, namely 

lim D
Q
{H (w/t)} PH(w/t) , (17)

Q�0 f f 
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1
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For non-integer Q, as noted earlier, D (H) is a frequency and Q weighted superposi-

Q
tion of H and D (H) .

1
The phasic behaviour of D follows directly from Eqs. (10)—(12) and Eq. (14), that is 

Q 

lim D {H(w/t)} P (w
i
)Qh

iCwi
t# Q) . (19) 

t<0 Q f 2
i 

Since Q may be an integer, rational or irrational number, the most direct interpreta
tion of h

i
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4. Steady state solutions 

For t<0, general system hysteresis induces the so-called steady state response 
which involves a harmonic type behavior. In this context, under the spectrally rich 
system exciting field defined by Eq. (4), the particular-steady state-solution to Eq. (1) 
can be written in the form 

x" ej itx
i
. (21)

f f
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Based on the asymptotic differentiability properties defined by Eqs. (10) and (19), the 
coefficients of Eq. (21) take the form 

x " ' 1 G
i
, (22)

f i iL n 
where 

'
i
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i
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For the 1-D case, Eqs. (22) and (23) reduce to the simplified expression 

x " 
G
i . (24)

i !(w )2M# (w )Q(r)ej(  2)Q(r)K
i r i r 

Note (x ; x ) are complex numbers which form conjugate pairs with (x ; x ).
i i i if fBecause of this, the $(i)th mode takes the form 
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which casted in a phasic manner yields the expression 
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Considering the one mode KV model, Figure 1 illustrates the amplitude peak 
dependency on fractional order Q over a range of frequencies. Figure 2 illustrates the 
amplitude magnitude behavior in the fractional order and frequency domain. As can 
be seen, for Q( 1 the peak amplitude shifts to the right of the undamped reasonance 
while for Q' 1, the peak shifts to the left. On the other hand, the strong influence of 
frequency on phasic behavior is shown in Fig. 3. Note the fact that for an integer 
derivatives, i.e., Q" 1, the phase at resonance is fixed. In contrast, for the fractional 
form it shows the linear dependence on fractional order, i.e., S" 1

2 q. 

5. Energetics 

A better appreciation of the mechanisms leading to the Q-dependent amplitude and 
phasic shifting can be ascertained through an understanding of the conservative— 
nonconservative energy partitioning induced by the fractional operator representa
tion. In particular, the rate of work done during system excursions can be estimated 
by the expression: 

D (¼ )" D (x/ )F. (29)
1 1 f n 



      

Fig. 1. Fractional order frequency dependency of peak amplitude: single mode KV model: Q3[0, 2]. 

Fig. 2. Fractional order frequency dependency of amplitude magnitude: single mode KV model: Q3[0, 2]. 

In terms of Eqs. (2) and (21), Eq. (29) yields the relation 

D (¼)" jw'(wp )Q(r)ej(  2)Q(r)<'pr ej( '+ p)t , (30)
1

r ' p 
where 

"x/'K xp . (31)<'pr f r fL 
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Fig. 3. Phasic behavior as a function of fractional order Q3[0, 2] and frequency w3[0, 2]: single mode 
KV model. 

To determine the conservative—nonconservative partitioning, we introduce expres
sions for the rates of elastic energy storage and the traditional viscous energy 
dissipation. These are defined by 

D (EES)"D (x/ )K x , (32)
1 1 rf fL 

D (»ED)"D (x/ )K D (x) . (33)
1 1 r 1f fL 

Again based on Eq. (21), Eqs. (32) and (33) yield 

D (EES)" D (EES'p) , (34)
1 1

' p 
D (»ED )" D (»ED'p) , (35)
1 1

' p 
where 

D (EES'p)"jw'x/ x ej( '+ p)t, (36)'K1 f r f pL 
D (»ED'p)"!w'w x/'K x ej( '+ p)t. (37)
1 p f r f pL 

Now, employing Euler’s identity, Eq. (30) can be recast as follows 

D (¼)" {jw' (w )Q(r) cos C2 
Q (r))!w'(w )Q(r) sin C21 p p Q(r))}
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By drawing an analogy between Eqs. (36) and (37) with the first and second partitions 
of Eq. (38) we can recast D (¼) in the form 

1

D
1
(¼)" 

r ' p {(w p )Q(r) cos C2 
Q(r))D

1
(EES (r)'p )#(w p )Q(r) 1

 sinC2 
Q(r))D

1
(»ED (r)'p )} , (39) 

where 

D
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D
1
(»ED (r)'p )"!w'w p <'pr ej( '+ p)t . (41) 

Here D (EES'p
(r)) and D (»ED'p

(r) ), respectively provide time scaling for the (r)th
1 1

mode rates of elastic energy storage and dissipation. Noting Eq. (38), the Q(r) 
functional embedding sets up partitioning between the said conservative and noncon
servative features of the energetics. 

For a single harmonic input, Eqs. (39)—(41) reduce to the following more tractable 
form, i.e., 

D (¼)" {2(w)Q(r) cos C2 
Q(r))D (EES (r))#2(w)Q(r) 1 sin C2 

Q(r))D (»ED (r))},1 1 1
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(42) 

where 
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1 r r r
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Given that all [K(r)]; r3[0, 1,2) are symmetrical, then 

Im(<* ),0 for all r. (46)
r 

Hence Eq. (43) can be recast as 

D
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r
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r
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In a phasic format, Eqs. (43) and (44) yield the expressions 
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8
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q" (Re(< ))2#(Im(< ))2 . (52)
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Alternatively, if we seek the net phasic behavior, we obtain the expression 
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1 r r r 

r 

cos (2wt#<
 r

)}, (53) 

where here 

y "[CRe(¢ ) sin C2 
Q(r))#Im(¢ ) cos C2r r r

Q(r)))
2 

J
1 2

#C!Re(¢ ) cos C2 
Q(r))#Im(¢ ) sin C2 

, (54)
r r

Q(r)))
2

 1{
!Im(¢ ) cos(( /2)Q(r))!Re(¢ ) sin(( /2)Q(r))

< "tan r r (55)
 r Im(¢ ) sin(( /2)Q(r))!Re(¢ ) cos(( /2)Q (r)) } . 

r r

As Q,0 or  1;  
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Equations (39) and (42) define the level of partitioning of conservative and noncon
servative effects over a range of Qth ordered fractional operators. Considering the case 
of the single spectral input to a single fractional KV model, we obtain that 

D (¼)"(X2)K
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Since 

D
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1
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then 
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(X)2K

0 [w# cos C2 
Q)wQ+1 C

K
1)J sin (2wt# ¢), (62)

1 2 K
0

D (»ED )" 
(X)2K

0 sin C2 
Q)wQ+1 C

K
1) sin2(2wt# ¢). (63)

1 2 K
0

As can be seen from Eq. (63), D (»ED) has a mixed definiteness contingent on the 
tuning of Q. For instance, for 0( 1Q( 1, it is positive definite for all t. Depending on 
the relative size of K and K

0
, D (EES) may also have a mixed definiteness for 

1 1
variations in Q. Regardless, as t is varied in any given period, there is a storage mode 
wherein D

1
(EES)' 0 and a relaxation mode such that D

1
(EES)( 0. 

Noting Eqs. (61)—(63), the conservative and nonconservative partitions are formed 
by a Q weighted frequency dependent splitting. Recalling Section 4, for Q( 1, the 
peak amplitudes occurred to the left of resonance while for Q' 1, the shift was to the 
right. Based on Eqs. (62) and (63), as Q is varied from 1P 0, the elastic storage process 
grows in intensity. In contrast, as Q is varied from 0P 1, the nonconservative, i.e., rate 
of dissipation becomes more intense. Varying Q in the interval (1, 2) the process is 
reversed. This behavior is repeated every interval of 2 in Q space. In the negative 
range, Q( 0, the conservative/nonconservative dominance tends act analogously in 
the negative axis direction. 

6. Summary 

It follows from the preceding sections, that the fractional operator is actually 
a viscoelastic element which partitions the system energy into conservative and 
nonconservative components. The order of the operator, Q, serves to weight the 
splitting in favor of the nearest integer operator. Such properties enable the tuning of 
both amplitude and phasing. In this way the proper hysteresis, amplitude and 
phase-frequency behavior can be simulated by such models. These features give 
fractional integro-differential operators a decided advantage over their integer subset. 
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