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Experimental observation of rainbow scattering by

a coated cylinder:
thin-film interference

twin primary rainbows and

Charles L. Adler, James A. Lock, Justin K. Nash, and Kirk W. Saunders

We experimentally examine the primary rainbow created by the illumination of a coated cylinder. We
present a simple technique for varying the coating thickness over a wide range of values, and we see

evidence for two different scattering regimes.
In the second, where the coating is thin enough to act as a thin film, a single rainbow
is produced whose intensity varies periodically as the coating thickness varies.
with previous theoretical predictions.
290.0290, 290.4020, 120.0120, 120.4120.

bows are produced.

OCIS codes:

1. Introduction

Since the early 1900’s there has been a great deal of
interest in rainbow scattering by nonspherical or in-
homogeneous particles.l~4 This interest was great-
est in the mid-1970’s to the early 1980’s, when
catastrophe theory revolutionized our understanding
of the rainbow caustic,>12 and again in the mid-
1990’s to the present, as rainbow refractometry be-
came a practical tool for particle sizing and index
measurement.13-25 In the latter studies, index inho-
mogeneity is of great concern because it will lead to
errors in the measurement of droplet temperature
and index of refraction. Although there have been a
number of studies on the effects of index inhomoge-
neities on the rainbow position by use of sophisticated
multilayer models of liquid droplets, to our knowl-
edge there have been no experimental studies of such
systems.26-32  This is due to the experimental diffi-
culty in creating a droplet in which the index of re-
fraction can be varied spatially in a controllable way.

In this paper we study the simplest possible case of
index inhomogeneity, namely, rainbow scattering by
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In one, where the coating thickness is large, twin rain-
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a coated particle—that is, one that can be divided into
two regions: the core with index of refraction n; and
the coating, which completely surrounds the core,
with index ny; see Fig. 1. (We assume that the me-
dium surrounding the particle has an index of refrac-
tion of 1.0.) The theory of rainbow scattering has
already been carried out for a special class of coated
particle, namely, the coated sphere.33 In that paper,
rainbow scattering by a coated sphere was investi-
gated with geometrical optics and extensions to Mie
theory. Although we do not examine the coated
sphere in this paper, most of the results of Ref. 33 can
be adopted by us with no alteration for the class of
particles we are studying: coated cylinders illumi-
nated normally to the cylinder axis. Rainbow scat-
tering by two concentric cylinders with circular cross
sections is identical (as far as geometrical optics is
concerned) to scattering in an equatorial plane of a
coated sphere whose core and coating radii and indi-
ces are identical to those of the cylinder.

Even though this system is simple, there is inter-
esting physics here. Several specific predictions
have been made for rainbow scattering by singly
coated particles. As the coating thickness varies,
the primary rainbow should vanish for large coating
thicknesses, be twinned (i.e., two rainbows emergent
in place of one) for intermediate thicknesses (referred
to as the a and B rainbows), or vary in brightness
periodically when the coating is only a few wave-
lengths thick.33 In this paper we report the obser-
vation of the latter two phenomena. In addition, we
also studied a doubly coated cylinder and have seen
several phenomena that have never been predicted



Fig. 1. Coated particle geometry. The inner radius is a; and the
coating thickness is 8. The core index of refraction is n, and the
coating index is n,. The ray paths creating the a and B rainbows
are indicated on the diagram.

before to our knowledge. We discuss the relevance
of our observations to the practical aspects of rainbow
refractometry in our conclusions.

To observe these phenomena, one needs to be able
to examine a system in which the coating thickness
can be easily varied by more than an order of mag-
nitude. Although a test tube filled with water
makes a good coated cylinder, it is not ideally suited
to this study because the relative thickness of the
coating (the glass) is a significant fraction of the core
diameter (the water): typically of the order of
5-20%. With this thickness, one can easily see the
twin rainbows separated by ~5-10°. However, if
one wishes the coating to act as a thin film, the rel-
ative thickness of the coating to the core must be at
least an order of magnitude smaller. In the litera-
ture there has already been some study of rainbow
scattering by liquids in beakers: Hattori et al. did
this in their development of a rainbow refractometry
system to measure the refractive index of a
liquid.1®-21 In this study the researchers had to ac-
count for the thickness of the glass beaker holding
their liquid sample to measure the index of the liquid
accurately. To do this, they found the position of
what we call the B rainbow by using a simple ray-
tracing program. However, these researchers did
not observe the twinning of the primary rainbow into
two separate bows because they did not consider the
possibility of twinned rainbows in their study. (It
must be pointed out here that the « rainbow is dim
under these conditions and not easily seen unless one
is looking for it.) Along similar lines, Marcuse and
Presby used rainbow scattering by a step-index opti-
cal fiber to measure core and cladding diameters
and to investigate core—cladding concentricity.34:35
Their research forms a complement to this paper:
The experimental conditions they considered (small
core, large coating) are the reverse of those consid-
ered here. Interestingly enough, they also saw the
doubling of the primary rainbow because of refraction

in the core, although for different reasons than the
twinning observed here. They did not systemati-
cally vary the coating diameter in their research, as
this is extremely difficult to do by use of optical fiber.

In this paper we investigate rainbow scattering by a
thin liquid coating on a transparent cylinder. This
coating can be made when the end of a transparent
cylindrical rod is dipped into a liquid such as water.
As the liquid coating sags under the influence of grav-
ity, its thickness varies continuously over time. This
allows us to examine the coating near the bottom end
of the rod as it progressively thins from over 100 pm to
approximately 1 wm. By doing this, we can observe
several phenomena predicted in the paper by Lock et
al.33:  the twinning of the primary bow when the coat-
ing is thick and thin-film effects when it is thin enough
that the twin rainbows merge. Because both depend
sensitively on the thickness of the liquid layer, this
technique offers a method for measurement of thin-
film thicknesses to high accuracy. We discuss the
promise of this technique and some experimental prob-
lems associated with it in the conclusions.

2. Rainbow Scattering by a Coated Sphere

Before we describe our experimental system and re-
sults, it is useful to review the theory of rainbow
scattering by a coated sphere.33 Figure 1 shows the
geometry that we consider. As stated above, n; and
a, are the index and radius of the core, and n, and a,
are those for the coating. & = a, — a; is the coating
thickness. Inray theory, the rainbow angle is a local
minimum in the scattering angle with respect to the
impact parameter of a family of parallel rays hitting
the sphere.36:37 The primary rainbow angle is the
minimum for those rays undergoing one internal re-
flection before exiting, whereas the secondary is cre-
ated by two, the tertiary by three, etc. (In theory,
there is no end to this: rainbows up to the order of
206 have been reported in the optics literature.38-39)
In this paper we consider only the primary rainbow.
Because of the two possible ray paths shown in Fig. 1,
there are two separate minima in the scattering an-
gle, which we label 6 7 and GBR, that is to say, the
coated sphere produces twin primary rainbows.

The angles of the rainbows are functions of the
relative thickness of the coating, 8/a; and the refrac-
tive indices of the core and coating. In Ref. 33 the
authors derived an approximate formula for 6, and
Bg, which is correct to first order in 8/a;. Call 0,7
the scattering angle for the primary rainbow of a
homogeneous sphere of index n;. Then the scatter-
ing angles for the twin rainbows are approximately33

20 4-n2 " [4-n2\"
+ — - - —
a1 |:<3n22 + n12 - 4) (n12 - 1) :| ’

(1a)

eaR — eOR
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057 = 0,8+ [2( -5 % =] |
aq 3n2 +n1 _4 nq —1
(1b)

This derivation is based on a Taylor-series expansion
of the rainbow angles derived from ray theory. The
analysis is not accurate for arbitrarily large or small
coating thicknesses. It was checked by use of the
Aden—Kerker extensions of Mie theory for a coated
sphere.4® By doing this, Lock et al.33 found that the
results given above were valid typically for 1072 <
d/a; < 0.1. They also found that, for some typical
values of nq, ny, and a,, there was a transition near
d/a; = 0.3 where the primary rainbow vanished.
For 3/a, < 1073, the situation is more interesting:
For these thicknesses, the coating acts as a thin film.
Because the twin rainbows emerge at effectively the
same scattering angle, they can interfere construc-
tively or destructively, depending on the coating
thickness. Thus there is a periodic variation in the
brightness of the rainbow as the coating thickness
varies.

It is useful to use Airy theory to estimate where the
coating thickness is thin enough that it acts as a thin
film. This will be important for the later evaluation
of our experimental results. Let us call the separa-
tion of the o and B rainbows Af,,". Then

25 ( 4—n? )1/2

MO =\
P, \8nl2+nsl -4

(2)

from Eqs. (1a) and (1b). Because the coating is a
thin film, the rainbow pattern in the far field will be
the superposition of two Airy functions whose param-
eters depend on only 2, and a (or, equivalently, x; =
2ma;/N.) The electric field amplitude for either of
the rainbows will then be proportional to

E ~ Ai[—(x,**/h"?)(0 — 0,)], 3

where E is the amplitude of the electric field, 6 is the
scattering angle in the far field, Ai(z) is the Airy
integral,4142 and

PO V-t e
P D7

(4)

For the primary rainbow, p = 2 and forn, = 1.5, h =
2.13. When the definition given by Abramowitz and
Stegun is used,*! the first peak of Ai(—z) occurs for
z = 1.01879 and the first zero at z = 2.33811. We
use a Rayleigh-like criterion and state that the rain-
bows cannot be resolved when the angular separation
of the two bows is less than the separation of the first
maximum and the first minimum of the diffraction
pattern. Using Eqs. (1) and (2) and approximation
(3), we arrive at

2

3ny” +n,? — 4\
5/a, > 0.660(h1/3/x12/3)<n24m) 5)
-
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Fig. 2. Theoretical values for the scattering intensity near the
primary rainbow for a coated sphere. The calculations are based
on the Aden—Kerker extension to Mie theory. Refractive indices:
n; = 1.5, ny, = 1.33, a; = 2.6 mm. The intensity is shown on a
linear scale to make a comparison with Fig. 5(b) easier: (a)8/a; =
2% 1072, (b) 8/a; = 1072, (c) §/a; =3 X 1073,

for two separate rainbows to be seen. For a; = 2.6
mm, A = 0.6328 um (i.e., x; = 2.6 X 10%), n, = 1.5,
and ny, = 1.33, this corresponds to 3/a; > 1.35 X
1073, This result is extremely close to that of Ref. 33
in which the criterion for the rainbow separation was
given as 8/a; > 10"3. We can compare these results
to the Aden—Kerker theory by calculating the scat-
tering phase function for a coated sphere at angles
near the rainbow angle.33 Figure 2 shows the inten-
sity of light near the rainbow angle for the parame-



Polarizer

Coated Cylinder

HeNe Laser

Knife Edge 9.~

ND Filter

Fig. 3. Experimental diagram. Laser power is 3 mW and the
distance from the cylinder center to the cameraisd = 5.6 cm. The
laser was polarized parallel to the cylinder axis. The neutral-
density (ND) filter had an optical density of 0.3.

ters used above. In Fig. 2(a), 8/a; = 2.0 X 1072, in
Fig. 2(b), 8/a; = 1.0 X 1073, and in Fig. 2(c), 8/a; =
3 X 10°2. As can be seen, the criterion works well
for predicting the coating thickness where the rain-
bows merge.

3. Experimental Setup and Results

A. Singly Coated Cylinder

Figure 3 shows the experimental setup used in this
experiment. The unexpanded beam from a He—Ne
laser is incident on the coated cylinder at an angle
near the impact angle of the rainbow ray. Because
the beam is not expanded, considerable power can be
channeled into the rainbow, making the phenomena
we report here considerably easier to observe than if
the beam uniformly illuminated the cylinder. In ad-
dition, this eliminates interferences between the
rainbow and the reflections off of the surface of the
cylinder. We also have a knife edge that can be
inserted into the beam to eliminate extraneous rays
that do not contribute to the formation of rainbows.
This beam blocking proved useful in the investigation
of the doubly coated cylinder (see Subsection 3.B).

The beam was polarized parallel to the cylinder
axis. The CCD camera was set up so that the pri-
mary rainbow was normally incident on its active
surface at a distance of d = 5.6 cm from the center of
the rod. We did not use a lens on the camera. The
video signal was captured on a computer for analysis.

In this experiment, the end of a glass rod (typically,
a stirring rod used for mixing chemicals) was dipped
in water and pulled out. We made a movie of the
twin rainbows as the coating thickness changed as
the water pooled up at the end of the rod under the
influence of gravity. The rainbows were measured
approximately 5 mm above the bottom end of the rod,
where a water film could persist for longer than 6
min. The diameter of the stirring rod is d = 0.485
mm, and it had an index of refraction of n; = 1.502 =
0.03, which was determined by rainbow refractome-
try of the uncoated cylinder.43 For the rest of the
paper we assume n; = 1.5 and n, = 1.33 when we
evaluate our data.

When making a movie, we would dip the rod into
distilled water to a depth of a few centimeters and

Glass Rod

Laser Beam

Water Droplet

Fig. 4. Diagram of a typical pendant droplet investigated in the
experiment. The cylinder diameter is 2a; = 5.2 mm. The laser
beam is incident a distance roughly 5 mm above the end of the rod.

then lift the rod out. The behavior of the water coat-
ing on the rod is complicated. Typically, a pendant
droplet would form on the end of the rod and drop off
within a few seconds. Following that, a second pen-
dant droplet would form and hang on to the end of the
rod for times of up to several minutes. In our exper-
iments, we waited until after the first droplet fell off
to start taking data. As the pendant drop forms, the
water coating on the rod itself decreases continually
as water pooled onto the droplet under the influence
of gravity. Figure 4 is a diagram of the rod with a
typical pendant droplet hanging off of it. Because of
the continual thinning of the water layer, the twin
rainbows would approach each other and eventually
merge. Following this, the rainbow will then dim
and brighten periodically because of the interference
of the two bows as the water layer continued to thin.

The movie we made for our experiment lasted ap-
proximately 5.5 min before the pendant droplet fell
off the end of the rod. The twin rainbows are visible
separately for the first 4 min, 28 s of filming: During
the remaining minute, the effect of the continually
thinning water film can be seen as the rainbow
brightens and dims because of constructive and de-
structive interference of the rainbows.

Figure 5(a) is a digitized image of the rainbow ap-
proximately 1 min into the experiment. As can be
seen, two rainbows are clearly visible. Because the
water—glass interface is optically softer than the in-
terface between water and air, the B rainbow is
brighter than the o rainbow. Figure 5(b) shows the
intensity profile of the two rainbows. The angular
separation of the two bows in this frame is 0.8°. The
intensity profile was a vertical average of the data in
the highlighted box in Fig. 5(a). Note that there is a
moiré interference pattern visible in the supernumer-
ary region in this picture. The interference pattern
is due to gravitational sagging of the water film:
The coating thickness at the bottom is thicker than at
the top, so the separation of the two rainbows (and

20 March 2001 / Vol. 40, No. 9 / APPLIED OPTICS 1551
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hence the phase difference between them) is a func-
tion of height.

Figure 6 is a graph of the angular deviation of each
bow from 6,7 as a function of time, for as long as the
twin bows were visible. After the first few seconds,
the angular deviation decreases exponentially over
time, indicating that the coating thickness decreases
exponentially. Although it is not immediately ap-
parent from Fig. 6, the angular separation of the twin

bows decreases exponentially as well. From Egs.
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Fig. 6. Angular deviation of each bow from 6,% as a function of
time.
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1(a) and 1(b), we can derive an equation for the coat-
ing thickness:
ay (3n2 +n—4\"?
dh=—|———] (0,F—06,). 6
2( 4—n? (6.7 = 85 ©

We refer to this as a theoretical value for the coating
thickness because we do not have an independent
measurement of it, although we believe that it is at
worst in error by approximately 25%. We discuss
this point below. Figure 7 is a graph of 3" as a
function of time. The coating thickness decreases
from approximately 80 pm to approximately 4 pm;
for thicknesses below 4 pm, the coating was thin
enough that the twin rainbows could not be distin-
guished. After the first several seconds, the coating
thickness decreased exponentially in time, with a
time constant of 118 s.

Although we do not have an independent measure-
ment of 3, we can apply the following check using the
rest of the data from our movie (i.e., from times fol-
lowing the merging of the twin rainbows.) Alternate
dimming and brightening of the rainbow correspond
to coating thicknesses giving destructive and con-
structive interference between the two bows. Figure
8 shows the intensity of the first Airy peak of the
primary bow as a function of time, showing just this
effect. If we assume that the coating continues to
thin exponentially with the same time constant as
determined above, we can predict the values of the
coating thicknesses at the intensity maxima and min-
ima. We can then determine the change in coating
thickness between a bright fringe and a dark fringe.
From our data, this value is 0.15 * 0.04 pm.

The theoretical value for this change can be calcu-
lated by elementary considerations: Using Eq. (19)-
(23) of Ref. 33, we find that, to change a bright fringe
into a dark fringe, the coating layer thickness should
change by 0.145 pum, close to the value we predict
based on our data. This leads us to believe that we
are measuring the coating thickness accurately. We
return to this point in the conclusions.

Finally, Fig. 9(a) is a digitized image of the rainbow
after the two bows have merged (approximately 5
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min into the experiment). Figure 9(b) shows the in-
tensity profile of the rainbow. The intensity profile
was a vertical average of the intensity in the area
enclosed by the dashed lines in Fig. 9(a). If we view
Fig. 9 as being due to the interference between two
rainbows whose angular separation is too small to
resolve, it is clear from the spatial pattern that the
phase difference between the bows is a function of
both height and scattering angle.
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Fig. 9. (a) Digitized image of the rainbow at ¢ = 30 s after the
merging. (b) Intensity profile of data from image (a). The inten-
sity profile was made from the area enclosed by the dashed lines in

(a).

Fig. 10. Doubly coated particle geometry. Core index, ny; coat-
ing 1 index, n,; coating 2 index, n;. The hypothesized ray paths
for the «, B, and vy rainbows are shown.

B. Doubly Coated Cylinder

Multiply coated particles present a much greater the-
oretical challenge than ones with a single coating.
However, they are relatively easy to make, but not so
easy to understand. In our laboratory we took a
pipet tube filled with water and dipped its end into
olive oil to obtain a doubly coated cylinder. Figure
10 shows the geometry that this represents. The
index of refraction of the glass is approximately 1.5,
whereas that of olive oil is 1.47 = 0.02, measured by
rainbow refractometry on a pendant droplet. For
this experiment, a; = 0.25 cm, 8; = 0.1 cm, and 3,
varied over time as the olive oil dripped off the rod.

For this experiment, the angular positions of the a
and B rainbows were determined before we coated the
end of the test tube. These are 6.F = 108.8° and
QBR = 125.2°. Because the coating thickness is a
significant fraction of the core thickness, we cannot
use Eqgs. 1(a) and 1(b) to predict the twin-rainbow
positions. Usin%e our coated sphere scattering pro-
gram, we find 6, = 107° and OBR = 128°, which is
close to the measured values.? Any deviation is
probably due to uncertainty in the index of refraction
and the exact shape of the test tube.

We expect to see three primary rainbows (triplets)
from the ray paths highlighted in Fig. 10. These are
due to reflections from the air—glass, glass—oil, and
oil-air interfaces (labeled «, B, and y). We therefore
expect that the vy rainbow will be brightest, followed
by the a rainbow, whereas the B rainbow will be dim
because of the near match of the oil and glass indices.
We also expect, on physical grounds, that the «a rain-
bow will be near the o rainbow angle for the uncoated
water-filled test tube, whereas the B and vy rainbows
will be near the B rainbow. We did indeed observe
three rainbows in the right position, one much dim-
mer than the other two. Figure 11 is a video image
of the three rainbows. The dimmest rainbow was
the B rainbow, located between the o and y bows.
Figure 12 shows the positions of the three rainbows

20 March 2001 / Vol. 40, No. 9 / APPLIED OPTICS 1553
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Fig. 11. Video image of the triplet rainbows («, B, and ) and the
three vy’ rainbows. The B rainbow is almost invisible on camera,
but its position is indicated.

as a function of time. For these experiments, the
angular separation of the three rainbows was too
large to capture directly on the camera face. In-
stead, they were projected onto a viewing screen,
which was imaged onto the camera. In Fig. 12, and
in Fig. 13, the angular displacements of the triplet
rainbows are measured from the center of the visual
field of the camera. As the olive oil layer thinned,
the B and y rainbows merged, whereas the a rainbow
stayed separate from the two. This is the expected
behavior: As the second coating thins, the rainbow
angles should approach the scattering angles for a
singly coated cylinder.

We also observed three additional primary rain-
bows at a larger scattering angle (see Fig. 11). We
refer to these as the vy’ family of rainbows, for reasons
explained below. They are labeled as v,’, v5', and
vs', from the smallest to the largest scattering angle.
These are almost certainly due to multiple reflections
inside the coating, as discussed below. They are not
easily seen (being very dim) unless a beam-blocking
technique is used to eliminate background light.43.44
The same beam-blocking technique can be used to
establish that they are some form of the primary
rainbow: As the beam is progressively blocked by a
knife edge, the «, B, and vy rainbows vanish once the
incoming rays are blocked at their impact parame-
ters. The vy’ rainbows vanish at almost exactly the
same values of the impact parameter.

Scattering Angle {deg)

_ZOE‘..‘.‘..\WH\“‘J.‘.‘\H‘
o} 10 20 30 40 50 60
t(s)
Fig.12. Angular position of the a, 3, and y rainbows as a function
of time. The angle is measured from the center of the visual field
on the camera.
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Fig. 13. Angular position of the y' complex of rainbows as a
function of time. The angle is measured from the center of the
visual field on the camera. After ¢ = 3 s, the v," and vy3' rainbows
appear to pass through each other, making the identification of
either one ambiguous.

Figure 13 shows the position of these rainbows as a
function of time. The same general behavior can be
seen as for the «, B, and vy rainbows, except for two
things: First, the displacement of the rainbows as
the coating thins is generally in the opposite direction
of the o, B, and y bows. This is consistent with these
bows being due to additional reflections of rays inside
the coating. Second, the v,' and v5' rainbows seem
to move past each other after ¢ = 3 s, although it is
extremely difficult to tell which rainbow is which at
this point. As the coating layer thinned, these three
rainbows asymptotically approached a scattering an-
gle of 144.5°.

4. Discussion of Results

A. Singly Coated Cylinder

It is obvious that the results presented in this paper
are in good qualitative agreement with previous the-
oretical predictions. We observed two of the three
regimes predicted in Ref. 33: coating thicknesses
large enough to see twin-rainbow formation and thin-
film behavior for 8/a, ~ 102 or less. Although we
do not have a direct check on the quantitative agree-
ment with theory, our indirect check indicates that
we are probably measuring the coating thickness rea-
sonably accurately. However, here we discuss the
following possible sources for error and inaccuracy in
these measurements:

(1) Discretization error. There is a 1.5 pixel un-
certainty in measurement of the position of the main
Airy peak for either rainbow. This corresponds to
an uncertainty in the angle of the rainbow of =0.01°.
The width of the main Airy peak itself is approxi-
mately 0.1°, much broader than the measurement
uncertainty. One other point: In this paper we use
the position of the maximum of the main Airy peak as
the rainbow angle; this is not quite correct, as the
Airy peak differs slightly from the position of the



rainbow as determined by geometrical optics.36:37:42
Although the theory of rainbow scattering for a
coated cylinder has not been worked out in wave
theory, the angular correction for this should be
roughly the same for both rainbows. Because the
thickness was computed by use of the angular differ-
ence between the twin bows, the deviations will can-
cel out.

(2) The rainbow angle as predicted by geometrical
optics is exactly correct only infinitely far away from
the cylinder. Because we took all the measurements
at a distance of approximately 20 cylinder radii, there
should be a small correction to each rainbow angle
because of the curvature of the twin-rainbow caus-
tics. We did not make this correction because the
shapes of the rainbow caustics of a coated cylinder
have not been worked out.

(3) The cross section of the cylinder is not exactly
circular. We measured an ellipticity parameter for
this cylinder of 5.4 X 102 using rainbow refractom-
etry.43 The ellipticity parameter quoted is in fact a
value measured near the center of the rod (in the
vertical direction), whereas the coated rainbows are
all measured near the end of the rod. Because the
end of the rod was cut and melted to round it off, the
ellipticity of the rod near the end may be higher than
in the center. In addition, the water layer may not
be precisely concentric with the glass cylinder. Sur-
face inhomogeneities and the oscillation of the water
droplet may change the water layer thickness by a
good deal. As above, the theory for the position of
the twin bows exists for only two concentric cylinders
with a circular cross section.

For these reasons, we believe that our measure-
ments are currently good only to approximately 25%.
We will be starting several experiments on optical
quality glass cylinders with nearly perfect circular
cross sections in the near future. We are also in the
process of designing an experiment to allow us to
measure the thickness of the coating layer indepen-
dently.

2. Doubly Coated Cylinder

One can find the approximate values for the positions
of the «, B, and vy rainbows by the following means:
For a given ray path through the particle, we calcu-
lated all the angles of reflection and refraction. The
deflection angle of the ray with respect to the initial
direction of incidence was determined. This expres-
sion was differentiated and set to zero to obtain the
rainbow condition. Because the expression is a
transcendental equation, it cannot be solved analyt-
ically. The angle of incidence and all angles of re-
fraction and reflection were determined to first order
in the coating thickness and substituted back into the
original expression, which was then truncated to first
order in coating thickness as well, to obtain the ap-
proximate value for the rainbow angles. This is the
same method used to find the positions of the a and B
rainbows in Ref. 33. We define the following quan-
tities: a is the core radius, 8, is the inner-coating

(a) (b)

Fig. 14. Ray paths and scattering angles for rainbows that are
due to multiple internal reflections inside the coatings. We label
these the vy’ paths.

thickness, 85 is the outer-coating thickness, n is the
core index, n, is the inner-coating index, ns is the
outer-coating index, and

2(4 — n,?)Y?

My, = 7
- (8ny? +n — 4 (T2)
24— )
31 (3n32 + n12 - 4)1/2,
2(4 — 2\1/2
N, =2 onO s (70

GV
The positions of the «, B, and y rainbows are then

03

o
eaR = OOR + i (le - N1) + g (M?,l - Nl)a (83')

) b}
GBR = eoR + f (2My, — Ny) + f (M3, — Ny, (8b)

R R 82 83
ey = 60 +g(2M21 _Nl) +g(2M31 _Nl) (80)

We do not expect Eq. (8) to be accurate for the exper-
iment we are doing here, as 8,/a ~ 10!, which is
probably too thick for the approximations made to
derive it. However, with the combination of indices
we gave above (n; = 1.33, ny, = 1.5, and ngy = 1.47),
Eq. (7) and (8) do predict that, as the water layer
thins, the three rainbows will move in the same di-
rection. Thisis what we see in Fig. 12. To test this,
we dipped the test tube in water. With ngy = 1.33,
the B and vy rainbows should move in the opposite
direction of the a rainbow as the coating thins. This
is exactly what can be seen.

What of the other three rainbows that are seen?
Figure 14 shows two possible ray paths involving a
second internal reflection between the core—inner-
coating and outer-coating—air interfaces. We label
these the v’ rainbows. The scattering angle for the
rainbows produced by each of the different ray paths
is

R R ) 93
0, =6 + g (8My — Ny) + g (8M3, —N,). (9)
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(Because of the circular symmetry that we assumed
in deriving these expressions, the two different ray
paths lead to rainbows emerging at the same angle.)
We believe that the reflections leading to the addi-
tional rainbows seen in this experiment are due to
these paths. In the limit 83 << 8,, the scattering
angle for the vy’ rainbows approaches 141.5° in theory,
which is in reasonable agreement with the asymp-
totic value of 144.5° that we measured. Although
there are other ray paths involving internal reflec-
tions leading to rainbows near these scattering an-
gles, we do not believe that they produce the three
rainbows we see, as all of them produce a rainbow
that is an order of magnitude dimmer than the vy’ ray
paths. Why we see three rainbows and why two
appear to merge while one stays at an approximately
constant angular distance from the other two rain-
bows is unknown.

5. Conclusions

We have reported the first detailed study to our
knowledge of rainbow scattering by coated particles
in a system in which the coating thickness can be
varied by nearly 2 orders of magnitude. To our
knowledge, this is the first experimental study ever
made of a doubly coated particle under any condition.
There is a good deal of interest in such experimental
studies because of rainbow refractometry. Although
the coated cylinder cannot mimic all the behavior of a
coated droplet, as it is essentially a two-dimensional
scatterer, there is much that can be done withit. As
mentioned above, there have been several theoretical
studies of rainbow scattering by radially inhomoge-
neous spheres.2’-31  Comparison of these studies
with experiment can be done with a properly fabri-
cated inhomogeneous cylinder with a circular cross
section. Research such as this opens up a promising
new method for testing the practicality of rainbow
refractometry.

In addition, it also presents a promising method for
measuring the index of refraction and thickness of
thin liquid films and associated parameters such as
temperature and the contact angle of a pendant drop-
let. The experiments we performed here indicate
that the separation of the rainbows can be used to
measure coating thicknesses as little as a few mi-
crometers thick. However, thisis not all: After the
rainbows merge, the thin-film interference effects
should allow measurements of films as thin as ap-
proximately 0.5 pm. We have dubbed this tech-
nique twin-rainbow metrology and have begun a
series of experiments designed to test its practicality
for the accurate measurement of thin liquid and solid
films. The results of this research will be presented
in a future paper.

A further point is that the complicated two-
dimensional moiré pattern that is due to the inter-
ference of the twin bows contains much information
about the vertical gradient of the coating thickness.
To examine this further, we projected the twin rain-
bows (from a water-coated rod) onto a screen and
imaged them by using the CCD camera. To view a
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Fig. 15. Video image of a large vertical section of the twin rain-
bows from a water-coated glass cylinder. The water coating is
thicker at the bottom because of gravitational sagging of the water
layer.

large vertical section of the rod, we expanded the
laser beam to a length of 4 cm by using a cylindrical
lens. Figure 15 shows the twin-rainbow image.
The fact that the water layer is thicker near the
bottom of the rod is clear from the separation of the
rainbows.

We tried to simulate the moiré pattern by calculat-
ing the far-field diffraction pattern as the square of
the superposition of two Airy integrals with a coating-
thickness-dependent phase shift between them. If
one normalizes coordinates so that z = (xlz/ 3/R1/3)
(0.F — 0,%) and Az = (x,%/3/h'/3)A8,, a simple the-
ory based on the Airy approximation predicts that

I(2) = [c,Ai(—2)F + {cAi[— (2 — Az ]
+ 2¢,cAi(—2)Al[— (2
2( lhl)l/3
- AZ“B)]COS[’:;W Azaﬁ} ,

where I(z) is the intensity of the far-field diffraction
pattern, c, and cq are the amplitudes of the « and 8
rainbows, and

(10)

(11)

4 — n12 1/2
3n,” )

sin ¢g* = (

Figure 16 shows the results of one of these simula-
tions. Az,g changes linearly from 10 at the top of
Fig. 16 to 11 at the bottom. The values of x4, n,, and
ng, were chosen to match our experimental conditions.
The amplitudes of the Airy functions and the relative
displacements were chosen to match Fig. 15 as best
as we could. The results are suggestive, indicating
that we may be able to interpret the moiré interfer-
ence pattern using a simple theory. In particular,
the shape of the bright and dark bands in Figs. 15 and
16 are remarkably similar. We will present a de-
tailed analysis of the interference pattern in a future

paper.



Fig. 16. Computer simulation of the moiré interference pattern
shown in Fig. 15. Vertical and horizontal scales are in normalized
units.
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