
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

4-2009

Proactive Service Migration for Long-Running Byzantine Fault-Proactive Service Migration for Long-Running Byzantine Fault-

Tolerant Systems Tolerant Systems

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

H. Zhang
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, and the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
Zhao, W. W., & Zhang, H. H. (2009). Proactive service migration for long-running Byzantine fault-tolerant
systems. IET Software, 3(2), 154-164. doi:10.1049/iet-sen.2008.0065

Repository Citation
Zhao, Wenbing and Zhang, H., "Proactive Service Migration for Long-Running Byzantine Fault-Tolerant Systems"
(2009). Electrical Engineering and Computer Science Faculty Publications. 78.
https://engagedscholarship.csuohio.edu/enece_facpub/78

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/78?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

1

Proactive service migration for long-running
Byzantine fault-tolerant systems
W. Zhao H. Zhang
Department oj Electrical and Computer Engineering, Cleveland Stote University, 2121 Euclid Ave., Cleveland, OH 44115, USA
E-mail: wenbing@ieee,org

Abst ract: A proactive recovery scheme based on service migration for long-running Byzantine fau lt-to lerant systems
is described. Proactive recovery is an essential method for ensuring the long-term reli ability of fau lt -t olerant systems
that are under continuous threats from malicious adversaries. The primary benefit of our proactive recovery scheme
is a reduced vulnerability window under normal operation. This is achieved in two ways. First, the time-consuming
reboot step is removed from the criti ca l path of proactive recovery. Second, the response time and the serv ice
migration latency are continuously profiled and an optimal service migration interva l is dynamically determined
during runtime based on the observed system load and the user-specified availability requ irement.

Introduction
We have seen increasing reliance on services provided over the
Internet. T hese services are expected to be continuously
available over an extended period of time (typically 24 x 7
and all year long). Unfortunately, the vulnerabilities due to
insufficient design and poor implementation are often
exploited by adversaries to cause a variety of damages, for
example, crash of applications, leak of confidential
information, modification or deletion of critical data, or
injection of erroneous information into the system. These
malicious faults are often modelled as Byzantine faults [IJ,
and they are detrimental to any online service provider. Such
threats can be dealt with using Byzantine fault-tolerance
(BFT) techniques, as demonstrated by many research results
[2- 5]. BFT algorithms assume that only a small portion of
the replicas can be faulty. When the number of faulty replicas
exceeds a threshold, BFT may f.1il. Consequently, Castro and
Liskov [2] proposed a proactive recovery scheme (for BFT)
that periodically reboots replicas and refreshes their state, even
before it is known that tht-y have failed. Furthermore, they
introduced a term called window of vulnerability (or
vulnerability window) referring to the time window in which
all replicas are proactively recovered at least once. As long as
the number of compromised replicas does not exceed the
threshold within the vulnerability window, the integrity of the
BFT algorithm holds and the services being protected remain
highly reliable over the long term.

However, the proactive recovery scheme in [2J has a
number of issues. First, it assumes that a simple reboot (i.e.
power cycle of the computing node) can be the basis for
repairing a compromised node (of course, in addition [Q

the reboot, which could wipe out all memory-resident
malware, a copy of clean executable code and the current
state must be fetched and restored, and all session keys
must be refreshed upon recovery), which might not be the
case (e.g. some attacks might cause hardware damages) as
pointed out in [6] . Second, even if a compromised node
can be repaired by a reboot, it is often a prolonged process
(typically over 30 s for modern operating s)'Stems). During
the rebooting step, the BFT service might not be available
to its clients (e.g. if the rebooting node happens to be a
non-f:1ulty replica needed for the replicas to reach a
Byzantine agreement). Third, there lacks coordination
among replicas to ensure that no more than a smail portion
of the replicas (ideally no more than / replicas in a system
of 3/+ 1 replicas to tolerate up to / faults) is undergoing
proactive recovery at any given time, otherwise the service
may be unavailable for an extended period of time. The
static watchdog timeout used in [2] also contributes to the
problem because it cannot automaticaily adapt to various
system loads, which means that the timeout value must be
set to a conservative value based on the worst-case scenario.
The staggered proactive recovery scheme in [2] is not
sufficient to prevent this problem from happening if the
timeout value is set too short. Recognising these issues, a

number of researchers have proposed various methods to
enhance the original proactive recovery scheme.

The issue of uncoordinated proactive recovery due to system
asynchrony has been studied by Sousa et al. [7, 8]. They resort
to the use of a synchronous subsystem to ensure the timeliness
of each round of proactive recovery. In particular, the proactive
recovery period is determined a priori based on the worst-case
execution time so that even under heavy load, there will be no
more than f replicas going through proactive recovery.

The impact of proactive recovery schemes on system
availability has also been studied by Sousa et al. [9] and Reiser
and Kapitza [10]. In the former scheme, extra replicas are
introduced to the system and they actively participate in
message ordering and execution so that the system is always
available when some replicas are undergoing proactive
recovery. In the latter scheme [10], a new replica is launched
by the hypervisor on the same node when an existing replica
is to be rebooted for proactive recovery so that the availability
reduction is minimised.

In this paper, we present an alternative proactive recovery
scheme based on service migration. Similar to the work in
[7–10], the objective of our approach is to provide proactive
recovery for long-running BFT applications without suffering
from the issues of [2]. In the following, we first present an
overview of our scheme and then compare with similar
approaches reported in [7–10].

Our proactive recovery scheme requires the availability of a
pool of standby computing nodes in addition to the active
nodes where the replicas are deployed. Furthermore, we
assume the availability of a trusted configuration manager.
The main components for our scheme are shown in Fig. 1.
The basic idea is outlined below. Periodically, the replicas
initiate a proactive recovery by selecting a set of active replicas
and a set of target standby nodes for a service migration. At
the end of the service migration, the target nodes are
promoted to the group of active nodes and the source active
nodes will be put under a series of preventive sanitising and
repairing steps (such as rebooting and swapping in a clean

system withFigure 1 Main components of the BFT
migration-based proactive recovery

hard drive with the original system binaries) before they are
assigned to the pool of standby nodes. The sanitising and
repairing step is carried out off the critical path of proactive
recovery and, consequently, it could lead to a smaller
vulnerability window under normal operation and has
minimum negative impact on the availability of the services
being protected. In addition, our migration-based proactive
recovery scheme also ensures a coordinated periodical recovery
and the dynamic adjustment of the proactive recovery period
based on the synchrony of the system and the load, which
prevents harmful excessive concurrent proactive recoveries.

As can be seen from previous descriptions, although our
scheme largely shares the same objectives with similar
approaches [7–10], they differ significantly in a number of
ways.

To prevent uncoordinated proactive recovery, our scheme
relies on an explicit coordination mechanism, while the
approach proposed by Sousa et al. [7, 8] resorts to a priori
worst-case execution time estimation. Furthermore, the
proactive recovery period in [7, 8] is fixed throughout the life-
cycle of the application. Inevitably, the proactive recovery
period has to be set pessimistically, which would lead to a
potentially large window of vulnerability. Even though we
also require a priori worst-case execution time estimation, in
our scheme the proactive recovery period can be dynamically
adjusted depending on the observed system load. When the
system load is light, the vulnerability window can be reduced
accordingly, even if it is set to a large conservative value in the
beginning of the execution. However, we should note that
under certain attacks, in particular, the denial-of-service
attacks, the advantage of our scheme over other approaches
disappears.

The ways to attain better availability are also very different
between our scheme and others [9, 10], despite the fact that
all these approaches require the availability of extra replicas. It
might appear that our scheme is rather similar to that in [10],
because in both schemes a correct replica is made ready at the
beginning of each round of proactive recovery. The major
difference is that in our scheme the correct replica is
located on a different physical node, while in the scheme of
[10] the new replica is launched in a different virtual
machine located in the same physical node. Apparently, in
the scheme of [10], the proactive recovery time could be
shorter and fewer physical nodes are needed, which reduces
the hardware and software costs. However, our scheme
offers better fault isolation. In particular, if an attack has
caused physical damage on the node that hosts the replica
to be recovered, or it has compromised the hypervisor of
the node [11], the new replica launched in the same node
in the scheme of [10] is likely to malfunction.

The difference between our scheme and that in [9] is more
subtle. In our scheme, the number of active replicas remains
the optimal value (i.e. 3f þ 1) and the standby replicas (i.e.
extra replicas) do not participate in normal server processing

2

(unless they are promoted to the active replicas pool) and they
are not directly accessible from external clients. In the scheme
of [9], on the other hand, the recovering replicas are regarded
as failed, and therefore a higher degree of replication is
needed to tolerate the same number of Byzantine faults and
all the replicas would have to participate in the Byzantine
agreement process. Consequently, our scheme has a number
of advantages: (a) the replicated server operation could be
more efficient because there are fewer multicast messages due
to the use of an optimal number of active replicas, (b) the
standby nodes are less likely to be compromised because they
are isolated from the active replicas, and (c) the standby nodes
can be probed more frequently without reducing the system
performance.

Finally, because of the use of a pool of standby nodes, our
scheme makes it possible to carry out time-consuming repairs
of faulty nodes (possibly with physical damages due to
attacks), which is not addressed by the work of [7–10].

System model
The nature of this research entails a synchrony requirement on
the system, that is, we assume that all message exchanges and
processing related to proactive recovery can be completed
within a bounded time. However, the safety property of the
Byzantine agreement on all proactive recovery-related
decisions (such as the selection of source nodes and
destination nodes for service migration) is maintained without
any system synchrony requirement.

As shown in Fig. 1, to enable the migration-based proactive
recovery, the BFT system contains three main components:
a pool of nodes for active server replicas, a pool of standby
nodes and a trusted configuration manager. Each of the three
components is deployed at a separate subnet for fault isolation
and they are connected by an advanced managed switch such
as Cisco Catalyst 6500. Each node in the pool of active nodes
and the pool of standby nodes has three network interfaces:
NIC1 for connection to external clients, NIC2 for connection
between the two pools of nodes and NIC3 for connection to
the configuration manager. However, only an active node
(running a server replica) has all three interfaces enabled. A
standby node has NIC1 disabled. The trusted configuration
manager can dynamically enable and disable the NIC1 and
NIC2 interfaces of any node, for example, it disables NIC1
when removing a node from the pool of active nodes and it
enables NIC1 when promoting a standby node to the pool of
active nodes.

We assume that there are 3f þ 1 active nodes to tolerate up to
f Byzantine faulty replicas [2, 12]. The pool size of standby
nodes (� f) should be large enough to repair damaged nodes
while enabling frequent service migration for proactive
recovery. Both active nodes and standby nodes can be subject
to malicious attacks (in addition to other non-malicious faults
such as hardware failures). However, we assume that the far

adversaries (either malicious clients or those impersonated as
clients) via malformed requests to the replicated server. In
light of this assumption, the system is configured such that
the standby nodes are not directly accessible by external
entities (i.e. NIC1 is disabled). The purpose of this
configuration is to ensure that the rate of successful attacks on
the standby nodes is much smaller than that on active nodes.

Similar to [8, 9], we assume a fail-stop model on the
trusted configuration manager. To ensure high availability,
the trusted configuration manager is replicated using the
Paxos algorithm [13]. The duty of the trusted configuration
manager is similar to what has been described in [6], that
is, it is used to manage the pool of standby nodes and to
assist service migration. Example tasks include frequently
probing and monitoring the health of each standby node
and repairing any faulty node detected.

Other assumptions regarding the system are similar to those
in [2] and they are summarised here. All communicating
entities (clients, replicas and standby nodes) use a secure hash
function such as SHA1 to compute the digest of a message
and use the message authentication codes (MACs) to
authenticate messages exchanged, except for key exchange
messages, which are protected by digital signatures. For
point-to-point message exchanges, a single MAC is included
in each message, whereas multicast messages are protected by
an authenticator. Each entity has a pair of private and public
keys. The active and standby nodes are each equipped with a
secure coprocessor and sufficiently large read-only memory.
In these nodes, the private key is stored in the coprocessor
and all digital signing and verification is carried out by the
coprocessor without revealing the private key. The read-only
memory is used to store the execution code for the server
application and the BFT framework. We do not require the
presence of a hardware watchdog timer because of the
coordination of migration and the existence of a trusted
configuration manager. Finally, we assume that an adversary
is computational bound so that it cannot break the above
authentication scheme.

3 Proactive service migration
mechanisms
The proactive service migration mechanisms collectively ensure
the following objectives: (a) to ensure that correct active replicas
have a consistent membership view of the available standby
nodes, (b) to determine when to migrate and how to initiate a
migration, (c) to determine the set of source and target nodes
for migration, (d) to transfer a correct copy of the system state
to the new replicas, and (e) to notify the clients the new
membership after each proactive recovery.

3.1 Standby nodes registration
Each standby node is controlled by the trusted configuration
manager and is undergoing constant probing and

majority of malicious attacks are imposed by external sanitisation procedures such as reboot. If the configuration

manager suspects the node to be faulty and cannot repair it
automatically, a system administrator will be called in to
manually fix the problem. Each time a standby node
completes a sanitisation procedure, it notifies the active
replicas with a JOIN-REQUEST message in the form of
k JOIN-REQUEST, l , i l , where l is the counter values sis
maintained by the secure coprocessor of the standby node, is
is the identifier of the standby node and sis

is the
authenticator. The registration protocol is illustrated in Fig. 2.

An active replica accepts the JOIN-REQUEST if it has not
accepted one from the same standby node with the same or
greater l. The JOIN-REQUEST message, once accepted by the
primary, is ordered the same way as a regular message with a
sequence number nr, except that the primary also assigns a
timestamp as the join time of the standby node and
piggybacks it with the ordering messages. The total ordering
of the JOIN-REQUEST is important so that all active nodes
have the same membership view of the standby nodes. The
significance of the join time will be elaborated later in this
section.

When a replica executes the JOIN-REQUEST message, it
sends a JOIN-APPROVED message in the form of k JOIN-

APPROVED, l , n l to the requesting standby node. The r si

requesting standby node must collect 2f þ 1 consistent
JOIN-APPROVED messages with the same l and nr from
different active replicas. The standby node then initiates a
key exchange with all active replicas for future communication.

A standby node might go through multiple rounds of
proactive sanitisation before it is selected to run an active
replica. The node sends a new JOIN-REQUEST reconfirming
its membership after each round of sanitisation. The active
replicas subsequently update the join time of the standby node.

It is also possible that the configuration manager deems a
registered standby node as faulty and it requires a lengthy
repair, in which case the configuration manager deregisters
the faulty node from active replicas by sending a LEAVE

REQUEST. The LEAVE-REQUEST is handled by the active
replicas in a similar way as that for JOIN-REQUEST.

Figure 2 Protocol used for a standby node to register with
active replicas

3.2 Proactive service migration
3.2.1 When to initiate a proactive service
migration? The proactive service migration is triggered by
the software-based migration timer maintained by each
replica. The timer is reset and restarted at the end of each
round of migration. An on-demand service migration may
also be carried out upon the notification from the
configuration manager (to be discussed later).

We require the user to specify several parameters:

1. The maximum response time to order and execute a request
0T oe based on the worst-case analysis. Note that T oe

0 does not
include the queueing delay for the request being ordered.

2. The minimum number of requests served p0 during each
proactive service migration round.

3. The maximum latency to carry out a service migration T s
0,

that is, the maximum time it takes to swap out an active
replica and to replace it with a clean standby replica.

Based on these parameters, our proactive service migration
mechanism determines an initial migration timeout value T 0

w
and dynamically adjusts the migration timeout value Tw at
runtime. The timeout value is capped by the initial timeout
value to prevent an adversary from indefinitely increasing
the proactive recovery period.

The initial timeout value T 0 is set to be pT 0 . The user-w oe

provided parameters also implicitly specify a target availability
A0 of the system:

T 0
oeA0

¼ p (1)
p0T 0 þ T 0

oe s

A0 corresponds to the availability under the worst-case scenario.
During runtime, our mechanism continuously measures the
average response time Toe to order and execute a request for
the most recent p0 requests, and the service migration latency
Ts. A notification is sent to the system administrator if either
the response time or the service migration latency exceeds the
worst-case values. The migration timeout value Tw is
dynamically adjusted to pT , where the parameter p isoe

calculated based on the following equation

!
A0T

p ¼ max p0, s (2)
(1 A0)Toe

to satisfy both the requirements on the minimum number of
requests served in each migration period and the target system
availability.

3.2.2 How to initiate a proactive service
migration? How to properly initiate a proactive service
migration is quite tricky. We cannot depend on the primary

to initiate a proactive recovery because it might be faulty.
Therefore, the migration initiation must involve all replicas.

On expiration of the migration timer, a replica chooses a
set of f active replicas and a set of f standby nodes, and
multicasts an INIT-MIGRATION request to all other
replicas in the form kINIT-MIGRATION, v, l , S, D, il ,si

where v is the current view, l is the migration number
(determined by the number of successful migration rounds
recorded by replica i), S is the set of identifiers for the
f active replicas to be migrated, D is the set of identifiers
for the f standby nodes as the targets of the migration, i is
the sending replica id and si is the authenticator for the
message.

On receiving an INIT-MIGRATION message, a replica j
accepts the message and stores the message in its data
structure provided that the message carries a valid
authenticator, it has not accepted an INIT-MIGRATION

message from the same replica i in view v with the same or
higher migration number, and the replicas in S and D are
consistent with the sets determined by itself according to
the selection algorithm (to be introduced next).

Each replica waits until it has collected 2f þ 1 INIT

MIGRATION messages from different replicas (including its
own INIT-MIGRATION message) before it constructs a
MIGRATION-REQUEST message. The MIGRATION-REQUEST

message has the form kMIGRATION-REQUEST, v, l , S, Dlsp
.

The primary, if it is correct, should place the MIGRATION

REQUEST message at the head of the request queue and
order it immediately. The primary orders the MIGRATION

REQUEST in the same way as that for a normal request
coming from a client, except that (a) it does not batch the
MIGRATION-REQUEST message with normal requests and
(b) it piggybacks the MIGRATION-REQUEST and the 2f þ 1
INIT-MIGRATION messages (as a proof of validity of the
migration request) with the PRE-PREPARE message. The
reason for ordering the MIGRATION-REQUEST is to ensure
a consistent synchronisation point for migration at all
replicas. An illustration of the migration initiation protocol
is shown as part of Fig. 3.

Figure 3 Proactive service migration protocol

Each replica starts a view change timer when the
MIGRATION-REQUEST message is constructed so that a
view change will be initiated if the primary is faulty and
does not order the MIGRATION-REQUEST message. The
new primary, if not faulty, should continue this round of
proactive migration.

3.2.3 Migration set selection: The selection of the set
of active replicas to be migrated is relatively straightforward. It
takes four rounds of migration (each round for f replicas) to
proactively recover all active replicas at least once. The replicas
are recovered according to the reverse order of their
identifiers, similar to that used in [2]. For example, for the
very first round of migration, replicas with identifiers of 3f,
3f 2 1, . . . , 2f þ 1 will be migrated, and this will be followed
by replicas with identifiers of 2f, 2f 2 1, . . . , f þ 1 in the
second round, replicas with identifiers of f, f 2 1, . . . , 1 in
the third round and finally replicas with identifiers of 0,
3f, . . . , 2f þ 2 in the fourth round. Note that only replica 0 is
required to be migrated in the fourth round. We choose to
migrate f replicas in this round anyway because (a) it is easier
to implement this selection algorithm and (b) the cost of
having f parallel proactive recovery operations is not much
more than that of a single replica, as analysed in [2]. (The
example assumed f . 2. It is straightforward to derive the
selections for the cases when f ¼ 1, 2.) The selection is
deterministic and can be easily computed based on the
migration number. Note that the migration number
constitutes part of the middleware state and will be transferred
to all recovering replicas. The selection is independent of the
view the replicas are in.

The selection of the set of standby nodes as the target of
migration is based on the elapsed time since the standby
nodes were last sanitised. That is why each replica keeps
track of the join time of each standby node. For each round
of migration, the f standby nodes with the least elapsed time
will be chosen. This is because the probability of these nodes
to have been compromised at the time of migration is the
least (assuming brute-force attacks by adversaries).

3.2.4 Migration synchronisation point
determination: It is important to ensure that all (correct)
replicas use the same synchronisation point when performing
the service migration. This is achieved by ordering the
MIGRATION-REQUEST message. The primary starts to order
the message by sending a PRE-PREPARE message for the
MIGRATION-REQUEST to all backups, as described previously.

A backup verifies the piggybacked MIGRATION-REQUEST

in a similar fashion as that for the INIT-MIGRATION

message, except now the replica must check that it has
received all the 2f þ 1 init-migration messages that the
primary used to construct the MIGRATION-REQUEST, and
the sets in S and D match those in the INIT-MIGRATION

messages. The backup requests the primary to retransmit
any missing INIT-MIGRATION messages. The backup accepts
the PRE-PREPARE message for the MIGRATION-REQUEST

provided that the MIGRATION-REQUEST is correct and it has
not accepted another PRE-PREPARE message for the same
sequence number in view v. From now on, the replicas
execute according to the three-phase BFT algorithm [2] as
usual until they commit the MIGRATION-REQUEST.

3.2.5 State transfer: When it is ready to execute the
MIGRATION-REQUEST, a replica i takes a checkpoint of its
state (both the application and the BFT middleware state),
and multicasts a MIGRATE-NOW message to the f standby
nodes selected and all replicas of the configuration
manager. The MIGRATE-NOW message has the form
kMIGRATE-NOW, v, n, C, P, il , where n is the sequence si

number assigned to the MIGRATION-REQUEST, C is the
digest of the checkpoint and P contains f tuples. Each
tuple contains the identifiers of a source-node and target-
node pair ks, d l. The standby node d, once it completes the
proactive recovery procedure, assumes the identifier s of the
active node it replaces. A replica sends the actual
checkpoint (together with all queued request messages, if it
is the primary) to the target nodes in separate messages.

If a replica belongs to the f nodes to be migrated, it is
expected to disable the NIC1 interface and stops accepting
new request messages. Of course, if the replica is faulty, it
might not do that. That is why the trusted configuration
manager must be informed of the migration by all correct
active replicas (it will take action only if it has received
f þ 1 migration-now notifications). In case the faulty
replica fails to comply, the configuration manager changes
the switch configuration to forcefully disable the NIC1
interface (from the switch end) and performs other
sanitising operations on the faulty node.

Before a standby node can be promoted to run an active
replica, it must collect 2f þ 1 consistent MIGRATE-NOW

messages with the same sequence number and the digest of
the checkpoint from different active replicas. Once a
standby node obtains a stable checkpoint, it applies the
checkpoint to its state and starts to accept clients’ requests
and participate in the BFT algorithm as an active replica.

3.3 New membership notification
A faulty node could continue sending messages to the active
replicas and clients, even if it has been migrated, before it is
sanitised by the configuration manager. It is important to
inform the clients of the new membership so that they can
ignore such messages sent by the faulty replica. The
membership information is also important for clients to
accept messages sent by new active replicas and to send
messages to these replicas. This is guaranteed by the new
membership notification mechanism.

The new membership notification is performed in a lazy
manner to improve the performance unless a new active
replica which inrole, primarytheassumes case the
notification is sent immediately to all known clients (so

that the clients can send their requests to the new primary).
Furthermore, the notification is sent only by the existing
active replicas (i.e. not the new active replicas because the
clients do not know them yet). Normally, the notification is
sent to a client only after the client has sent a request that
is ordered after the MIGRATION-REQUEST message, that is,
the sequence number assigned to the client’s request is
bigger than that of the MIGRATION-REQUEST.

The notification message has the form kNEW-

MEMBERSHIP, v, n, P, il (basically the same as thesi

MIGRATION-NOW message without the checkpoint), where
v is the view in which the migration occurred, n is the
sequence number assigned to the MIGRATION-REQUEST

and P contains the tuples of the identifiers for the replicas
in the previous and the new membership.

3.4 On-demand migration
On-demand migration can happen when the configuration
manager detects a node to be faulty after it has been
promoted to run an active replica. It can also happen when
replicas have collected solid evidence that one or more
replicas are faulty, such as a lying primary. The on-demand
migration mechanism is rather similar to that for proactive
recovery, with only two differences: (a) The migration is
initiated on-demand, rather than by a migration timeout.
However, replicas must still exchange the INIT-MIGRATION

messages before the migration can take place. (b) The
selection procedure for the source node is omitted because
the nodes to be swapped out are already decided, and the
same number of target nodes are selected accordingly.

4 Performance evaluation
The proactive service migration mechanisms have been
implemented and incorporated into the BFT framework
developed by Castro et al. [2, 3]. Owing to the potential
large state, an optimisation has been made, that is, instead
of every replica sending its checkpoint to the target nodes
of migration, only one actually sends the full checkpoint.
The target node can verify if the copy of the full
checkpoint is correct by comparing the digest of the
checkpoint with the digests received from other replicas. If
the checkpoint is not correct, the target node asks for a
retransmission from other replicas.

Similar to [2], the performance measurements are carried
out in general-purpose servers without hardware coprocessors.
The related operations are simulated in software.
Furthermore, the trusted configuration manager is not fully
implemented because we currently lack the sophisticated
hardware equipment that could facilitate the dynamic
control of subnet formation. All the components (the
configuration manager, the three pools of replicas and the
clients) are located in the same physical local area network.
The motivation of the measurements is to assess the

runtime performance of the proactive service migration
scheme.

Our testbed consists of a set of Dell SC440 servers
connected by a 100 Mbps local-area network. Each server
is equipped with a single Pentium dual-core 2.8 GHz CPU
and 1 GB of RAM, and runs the SuSE Linux 10.2
operating system. The micro-benchmarking example
included in the original BFT framework is adapted as the
test application. The request and reply message length is
fixed at 1 kB, and each client generates requests
consecutively in a loop without any think time. Each server
replica injects a 1 ms processing delay (using busy waiting)
to simulate some actual workload before it echoes the
payload in the request back to the client.

We carry out two sets of experiments. In the first set, we
profile the runtime cost of the service migration scheme
with a fixed migration period. In the second set, we
characterise how the migration period can be dynamically
adjusted under various conditions. In each set of
experiments, we use two configurations, one to tolerate a
single faulty replica in each component (referred to as the
f ¼ 1 configuration where there are four replicas in each
component, except the trusted configuration manager,
which employs three replicas) and the other to tolerate two
faulty replicas in each component (referred to as the f ¼ 2
configuration where there are seven replicas in each
component, except the trusted configuration manager,

which has five replicas). Up to eight concurrent clients are
used in each run.

4.1 Runtime cost of service migration
To characterise the runtime cost of the service migration
scheme, we measure the recovery time for a single replica with
and without the presence of clients, and the impact of
proactive migration on the system performance perceived by
clients. In each run, the service migration interval is kept at
10 s. The recovery time is determined by measuring the time
elapsed between the following two events: (a) the primary
sending the PRE-PREPARE message for the MIGRATION

REQUEST and (b) the primary receiving a notification from
the target standby node indicating that it has collected and
applied the latest stable checkpoint. We refer to this time
interval as the service migration latency. The impact on the
system performance is measured at the client by counting the
number of calls it has made during a period of 50 s, which is
slightly longer than four rounds of service migration (so that
all replicas have been proactively recovered once), with and
without proactive migration-based recovery.

Fig. 4 summarises the measured service migration latency
with respect to various state sizes and the number of
concurrent clients. Figs. 4a and 4c show the service
migration latency for various state sizes (from 1 MB to
about 80 MB) for the two configurations (labelled as ‘With
f ¼ 1’ and ‘With f ¼ 2’), respectively. It is not surprising to
see that the cost of migration is limited by the bandwidth

Figure 4 Service migration latency with respect to various state sizes and number of concurrent clients
a Service migration latency for different state sizes measured (1) when the replicas are idle (other than the service migration activity),
labelled as ‘Without Client’ and (2) in the presence of one client, for the f ¼ 1 configuration
b Impact of system load on migration latency for f ¼ 1 configuration
c Migration latency with respect to state size for the f ¼ 2 configuration
d Migration latency with respect to system load for the f ¼ 2 configuration

available (100 Mbps), because in our experiment the time it
takes to take a local checkpoint (to memory) and to restore
one (from memory) is negligible. This is intentional for
two reasons: (a) the checkpointing and restoration cost is
very application dependent and (b) such a cost is the same
regardless of the proactive recovery schemes used. The
migration latency is slightly larger when the replication
degree is higher, especially with the presence of a client.

Furthermore, we measure the migration latency as a function
of the system load in terms of the number of concurrent clients.
The results for the two configurations are shown in Figs. 4b and
4d. As can be seen, the migration latency increases more
significantly for larger state when the system load is higher.
When there are eight concurrent clients, the migration
latency for a state size of 50 MB is close to 10 s. This
observation suggests that if a fixed watchdog timer is used,
the watchdog timeout must be set to a very conservative
worst-case value. If the watchdog timeout is too short for the
system to go through four rounds of proactive recovery (of
f replicas at a time), there will be more than f replicas going
through proactive recoveries concurrently, which will decrease
the system availability, even without any fault.

Fig. 5 shows the performance impact of proactive service
migration as perceived by a single client in terms of the
number of calls made in a 50-s interval. During this
period, four rounds of migration would take place so that
all replicas can be proactively recovered at least once. As
can be seen, the impact of proactive migration on system
performance is quite acceptable. For a state smaller than
30 MB, the throughput is reduced by only 10% or less
compared with the no-proactive-recovery case.

4.2 Dynamic adjustment of migration
interval
To demonstrate the capability of dynamic adjustment of the
migration interval, we carry out another set of experiments.
We assume the following parameters are supplied by the user:

† worst-case response time Toe
0 ¼ 5 ms

† worst-case migration latency T 0s ¼ 10 s

† minimum number of requests processed in each migration
round p0 ¼ 10 000.

This gives a target availability of 83.3%. The objective of
these experiments is to show how the migration interval
changes under the following two scenarios: (a) different
system loads due to the presence of concurrent clients and
(b) different system loads due to state size changes.

During runtime, our mechanism profiles the average response
time Toe and the migration latency Ts, and calculates the
appropriate number of requests to be processed p for the next
round of migration based on equation (2), which determines
the migration timeout value for the next round of migration.

The results for scenario (a) with the f ¼ 1 configuration are
shown in Figs. 6(a) and 6(b), where (a) shows the p values
and (b) illustrates the corresponding migration timeout values.
When the replica state is kept at 5 and 10 MB, the given

0minimum number of requests p ¼ 10 000 is used because
the calculated p value to meet the target availability
requirement is smaller. For the state size of 50 MB, a higher
number of requests than p0 are processed in each migration
interval in order to meet the availability requirement because
the migration latency is very significant. It is interesting to
note that for state sizes of 5 and 10 MB, the migration
timeout value actually decreases when the number of
concurrent clients increases. This might appear to be
counterintuitive. However, it can be easily explained. This is
an artefact caused by the aggressive batching mechanism in
the BFT framework [2] we used. With batching, the cost of
message ordering per request is reduced. Consequently, the
response time for each request is reduced, which results in a
smaller migration timeout value. (Recall that T does not oe
include the queueing delay of the request being ordered.)
Another interesting observation is that the migration timeout
values determined at runtime are much smaller than the
worst-case value except when the state size is large and
the number of concurrent clients is significant. Figs. 6(c)
and 6(d) present similar results for the f ¼ 2 configuration.

Figure 5 Impact of service migration on system throughput
a Number of calls made by a single client during a 50-s interval for various state sizes
b Percentage reduction in system throughput for various state sizes

Figure 6 Dynamic adaptation of migration interval
a Number of requests processed in each round of migration for three different state sizes in the presence of different number of
concurrent clients for the f ¼ 1 configuration
b Corresponding migration interval with respect to the number of concurrent clients for the f ¼ 1 configuration
c Number of requests processed in each round of migration under different number of clients for the f ¼ 2 configuration
d Corresponding migration interval with respect to number of concurrent clients for the f ¼ 2 configuration

When the replication degree is higher, the migration interval is
slightly larger as expected.

For many applications, their state size might gradually
increase over time as they process more application requests.
A larger state would mean larger migration latency, which
normally would lead to a larger p value, as indicated in (2).
Fig. 7 shows the results of the dynamic adaptation of
migration interval in the presence of a single client, for both
the f ¼ 1 and f ¼ 2 configurations. As expected, when the

0state size is relatively small (20 MB or below), p is used
because the migration latency is small and the number of
requests needed to meet the availability requirement is smaller
than p0. As the state size increases further, a larger p value is
needed to meet the availability requirement. Again, we show

that the migration intervals dynamically determined are much
smaller than the worst-case value except when the state size is
very large.

5 Related work
Ensuring BFT for long-running systems is an extremely
challenging task. Proactive recovery [14] is regarded as a
fundamental technique to defend against mobile attackers,
which might compromise multiple servers over time. The
pioneering work in the context of BFT is carried out by
Castro and Liskov [2] and Rodrigues and Liskov [6]. Our
work is inspired by their work. The comparison of our
scheme and closely related work has been provided in the
Introduction section.

Figure 7 Dynamic adaptation of migration interval
a Number of requests processed in each round of migration when the replica state changes in the presence of a single client
b Corresponding migration interval with respect to state size

6

Proactive recovery for intrusion tolerance has been studied
in [15, 16] with the emphasis of confidentiality protection
using proactive threshold cryptography [17]. Reboot is also
used as the basis to recover compromised replicas, which
suggests that such schemes may also suffer from similar
problems as those in [2].

The idea of moving expensive operations off the critical
execution path is a well-known system design strategy, and
it has been exploited in other fault-tolerant systems, such as
[10, 18, 19]. In our scheme, this principle is used to reduce
the vulnerability window.

The reliance on extra nodes beyond the 3f þ 1 active nodes
in our scheme may somewhat relate to the use of 2f additional
witness replicas in the fast Byzantine consensus algorithm
[20]. However, the extra nodes are needed for completely
different purposes. Nevertheless, one might suggest that we
should utilise the extra standby nodes (if there are 2f or
more of such nodes) and apply the fast Byzantine
consensus algorithm for fast response time. While it is
certainly possible to do so, it is effective only if the
vulnerability window is very large because the sanitising
operations (such as reboot), which can be time consuming,
would now be in the critical path of proactive recovery.
This appears to be orthogonal to the objective of this
research.

Finally, other researchers have carried out substantial work
on the availability and reliability analysis of fault-tolerant
systems, such as [21–25]. These results could potentially
be used to enhance the migration interval determination
algorithm of our scheme.

Conclusion
In this paper, we presented a novel proactive recovery scheme
based on service migration for long-running BFT systems.
We described in detail the challenges and mechanisms
needed for our migration-based proactive recovery to work.
The primary benefit of our migration-based recovery
scheme is a smaller vulnerability window during normal
operation. When the system load is light, the migration
interval can be dynamically adapted to a smaller value from
the initial conservative value, which is usually set based on
the worst-case scenario, and hence resulting in a smaller
vulnerability window. Our scheme also shifts the time-
consuming repairing step out of the critical execution path,
which also contributes to a smaller vulnerability window.
We demonstrated the benefits of our scheme
experimentally with a working prototype. For future work,
we plan to enhance the features of the trusted configuration
manager, in particular, the incorporation of the code
attestation methods [26] into the fault detection
mechanisms, and the application of the migration-based
recovery scheme to practical systems such as networked file
systems.

7 Acknowledgments
We sincerely thank the anonymous reviewers for their
invaluable comments and suggestions. This research has
been supported in part by the US NSF grant CNS 08
21319 and by a Faculty Research Development award from
Cleveland State University.

8 References

[1] LAMPORT L., SHOSTAK R., PEASE M.: ‘The Byzantine generals
problem’, ACM Trans. Program. Lang. Syst., 1982, 4, (3),
pp. 382–401

[2] CASTRO M., LISKOV B.: ‘Practical Byzantine fault tolerance
and proactive recovery’, ACM Trans. Comput. Syst., 2002,
20, (4), pp. 398–461

[3] CASTRO M., RODRIGUES R., LISKOV B.: ‘BASE: using abstraction
to improve fault tolerance’, ACM Trans. Comput. Syst.,
2003, 21, (3), pp. 236–269

[4] COWLING J., MYERS D., LISKOV B., RODRIGUES R., SHRIRA L.: ‘Hq
replication: a hybrid quorum protocol for byzantine fault
tolerance’. Proc. 7th Symp. Operating Systems Design and
Implementations, Seattle, WA, November 2006, pp. 177–190

[5] YIN J., MARTIN J.-P., VENKATARAMANI A., ALVISI L., DAHLIN M.:
‘Separating agreement from execution for byzantine fault
tolerant services’. Proc. ACM Symp. Operating Systems
Principles, Bolton Landing, NY, 2003, pp. 253–267

[6] RODRIGUES R., LISKOV B.: ‘Byzantine fault tolerance in long-
lived systems’. Proc. 2nd Workshop Future Directions in
Distributed Computing, June 2004

[7] SOUSA P., BESSANI A.N., CORREIA M., NEVES N.F., VERISSIMO P.:
‘Resilient intrusion tolerance through proactive and
reactive recovery’. Proc. IEEE Pacific Rim Dependable
Computing Conf., 2007, pp. 373–380

[8] SOUSA P., NEVES N.F., VERISSIMO P.: ‘Proactive resilience
through architectural hybridization’. ACM Symp. Applied
Computing, Dijon, France, 2006, pp. 686–690

[9] SOUSA P., NEVES N.F., VERISSIMO P., SANDERS W.H.: ‘Proactive
resilience revisited: the delicate balance between resisting
intrusions and remaining available’. Proc. IEEE Symp.
Reliable Distributed Systems, 2006, pp. 71–82

[10] REISER H.P., KAPITZA R.: ‘Hypervisor-based efficient
proactive recovery’. Proc. IEEE Symp. Reliable Distributed
Systems, 2007, pp. 83–92

[11] VAUGHAN-NICHOLS S.J.: ‘Virtualization sparks security
concerns’, Computer, 2008, 41, (8), pp. 13–15

[12] FISCHER M., LYNCH N., PATERSON M.: ‘Impossibility of
distributed consensus with one faulty process’, J. ACM,
1985, 32, (2), pp. 374–382

[13] LAMPORT L.: ‘Paxos made simple’, ACM SIGACT News
(Distributed Computing Column), 2005, 32, pp. 18–25

[14] OSTROVSKY R., YUNG M.: ‘How to withstand mobile virus
attacks’. Proc. ACM Symp. Principles of Distributed
Computing, Montreal, Quebec, Canada, 1991, pp. 51–59

[15] MARSH M.A., SCHNEIDER F.B.: ‘Codex: a robust and secure
secret distribution system’, IEEE Trans. Dependable Secur.
Comput., 2004, 1, (1), pp. 34–47

[16] ZHOU L., SCHNEIDER F., VAN RENESSE R.: ‘Coca: a secure
distributed on-line certification authority’, ACM Trans.
Comput. Syst., 2002, 20, (4), pp. 329–368

[17] CACHIN C., KURSAWE K., LYSYANSKAYA A., STROBL R.:
‘Asynchronous verifiable secret sharing and proactive
cryptosystems’. Proc. 9th ACM Conf. Computer and
Communications Security, Washington, DC, 2002, pp. 88–97

[18] MALEK M., POLZE A., WERNER M.: ‘A framework for
responsive parallel computing in network-based systems’.
Proc. Int. Workshop Advanced Parallel Processing
Technologies, Bejing, China, September 1995, pp. 335–343

[19] POLZE A., SCHWARZ J., MALEK M.: ‘Automatic generation
of fault-tolerant corba-services’. Proc. Technology of

Object-Oriented Languages and Systems, Santa Barbara,
CA, 2000, IEEE Computer Society Press, pp. 205–213

[20] MARTIN J., ALVISI L.: ‘Fast byzantine consensus’, IEEE Trans.
Dependable Secur. Comput., 2006, 3, (3), pp. 202–215

[21] DAI Y., LEVITIN G., TRIVEDI K.: ‘Performance and reliability of
tree-structured grid services considering data dependence
and failure correlation’, IEEE Trans. Comput., 2007, 56,
(7), pp. 925–936

[22] DAI Y., PAN Y., ZOU X.: ‘A hierarchical modeling and analysis
for grid service reliability’, IEEE Trans. Comput., 2007, 56,
(5), pp. 681–691

[23] DAI Y., XIE M., LONG Q., NG S.: ‘Uncertainty analysis in
software reliability modeling by bayesian analysis with
maximum-entropy principle’, IEEE Trans. Softw. Eng.,
2007, 33, (11), pp. 781–795

[24] DAI Y., XIE M., POH K.: ‘Modeling and analysis of correlated
software failures of multiple types’, IEEE Trans. Reliab.,
2005, 54, (1), pp. 100–106

[25] DAI Y., XIE M., WANG X.: ‘Heuristic algorithm for reliability
modeling and analysis of grid systems’, IEEE Trans. Syst.,
Man Cybern., Part A, 2007, 37, (2), pp. 189–200

[26] CHEN B., MORRIS R.: ‘Certifying program execution with
secure processors’. Proc. 9th Workshop Hot Topics in
Operating Systems, Lihue, HI, May 2003, pp. 133–138

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

	Proactive Service Migration for Long-Running Byzantine Fault-Tolerant Systems
	Original Citation
	Repository Citation

