Hydrogenase Inhibition by O2: Density Functional Theory/Molecular Mechanics Investigation

Daniela Dogaru
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Chemistry Commons

Recommended Citation
https://engagedscholarship.csuohio.edu/etdarchive/80

This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.
HYDROGENASE INHIBITION BY O$_2$:
DENSITY FUNCTIONAL THEORY/MOLECULAR MECHANICS INVESTIGATION

DANIELA B. DOGARU

Bachelor of Science in Chemistry
University of Bucharest, Romania
July, 2000

Master of Science in Chemistry
University of Bucharest, Romania
July, 2002

submitted in partial fulfillment of requirements for the degree
DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY
at the
CLEVELAND STATE UNIVERSITY
December, 2008
In Memoriam – My Dear Aunt Mariana Bobarnac Dogaru
[Fe-Fe]-hydrogenases are enzymes that reversibly catalyze the reduction of protons to molecular hydrogen, which occurs in anaerobic media. In living systems, [Fe-Fe]-hydrogenases shift the reversible reaction towards H₂ formation. The [Fe-Fe]-hydrogenase H-cluster is the active site, which contains two iron atoms (Feₚ-Feₜ, i.e., proximal and distal iron). Because most experimental and theoretical investigations confirm that the structure of di-iron air inhibited species is Feₚ^II-Feₜ^II-O-O-H⁻, O₂ has to be prevented from binding to Feₜ in all di-iron subcluster oxidation states in order to retain a catalytically active enzyme. By understanding the catalytic processes of metalloenzymes, researches are enabled to produce an excellent source of fuel and energy storage (H₂) for the future, which is clean and highly energetic when reacted with oxygen.

H-cluster oxidation in gas phase, and in aqueous enzyme phase, has been investigated by means of quantum mechanics (QM) and combined quantum mechanics-molecular mechanics (QM/MM).

The inhibitory process occurs at the coordination site, distal iron (Feₜ), of the catalytic H-cluster. The processes involved in the H-cluster oxidative pathways are O₂.
binding, e− transfer, protonation, and H\textsubscript{2}O removal. We found that oxygen binding is non-spontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the protein environment the O\textsubscript{2}-inhibited H-cluster is obtained by means of exergonic reaction pathways.

A unifying endeavor has been carried out for the purpose of understanding the thermodynamic results vis-à-vis several other performed electronic structural methods, such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), and H-cluster geometrical analysis.

Since hydrogenases become O\textsubscript{2} inactivated, residue mutations were carried out in order to make them O\textsubscript{2} resistant. Residue mutations consist of deletions and substitutions 8 Å radially outward from Fe\textsubscript{d}. In order to screen the polar residues (in the 8 Å apoenzyme layer), individual residue deletions were carried out to determine what residue substitutions should be made to improve O\textsubscript{2} inhibition. Residue deletions and substitutions were performed for three di-iron subcluster oxidation states, Fe\textsubscript{p}II-Fe\textsubscript{d}II, Fe\textsubscript{p}II-Fe\textsubscript{d}I, and Fe\textsubscript{p}I-Fe\textsubscript{d}I of [Fe-Fe]-hydrogenase. From the screened residues, two deletions (ΔThr\textsubscript{152}, and ΔSer\textsubscript{202}) were found most effective in hindering O\textsubscript{2} binding to Fe\textsubscript{d}. The two-residue deletions, ΔThr\textsubscript{152} and ΔSer\textsubscript{202}, on Fe\textsubscript{p}II-Fe\textsubscript{d}II hydrogenase, gave ΔG\textsubscript{QM/MM} = +5.4 kcal/mol, which evidently hinders O\textsubscript{2} binding. An improvement in Gibbs’ energy (+4.4 kcal/mol) has also been found for Fe\textsubscript{p}I-Fe\textsubscript{d}I hydrogenase. Comparing the simultaneous residue deletions (ΔThr\textsubscript{152} and ΔSer\textsubscript{202}) with the dual residue substitutions (Thr\textsubscript{152}Ala, and Ser\textsubscript{202}Ala), a small difference in Gibbs’ energy has been found (ΔG\textsubscript{QM/MM} ~ +2 kcal/mol), for O\textsubscript{2} binding, which is attributed to an overall charge
of approximately zero for alanine. The eventual propose hydrogenase mutation in molecular biology laboratory should avail researchers in using it for the full cells of the future.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER I: THE CHEMISTRY OF THE H-CLUSTER INHIBITION BY O₂</td>
<td></td>
</tr>
<tr>
<td>1.1. General Considerations</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Background and Significance</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1. Hydrogenases Structure and Function</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2. Desulfovibrio Desulfuricans Hydrogenase Structure</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3. Desulfovibrio Desulfuricans Hydrogenase Biosynthesis</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4. Desulfovibrio Desulfuricans Hydrogenase Main Domains</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 1: References</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER II: COMPUTATIONAL ANALYSIS OF H-CLUSTER AND O₂</td>
<td></td>
</tr>
<tr>
<td>INHIBITORY PROCESS IN GAS PHASE AND WATER</td>
<td></td>
</tr>
<tr>
<td>2.1. General Considerations</td>
<td>16</td>
</tr>
<tr>
<td>2.2. Methodology</td>
<td>17</td>
</tr>
<tr>
<td>2.3. Thermodynamics of the H-cluster Oxidation</td>
<td>17</td>
</tr>
<tr>
<td>2.4. NBO Charges and Geometry Modification of Intermediates in the Oxidation of H-cluster</td>
<td>25</td>
</tr>
<tr>
<td>2.5. Thermodynamics of H₂O Removal from the Oxidized H-cluster</td>
<td>27</td>
</tr>
<tr>
<td>2.6. Study the H-Cluster Electronic Structure to Ascertain the</td>
<td></td>
</tr>
</tbody>
</table>
2.7. Perform Calculations on the Inhibitory Mechanism of [Fe-Fe]-Hydrogenase by O₂.

2.7.1. Evaluation of the Inhibitory Effect of O₂ for the Wild Type [Fe-Fe]-Hydrogenase

2.7.2. Engineer an [Fe-Fe]-Hydrogenase which Shall not React with O₂ via Conservative Mutations

CHAPTER II: References

CHAPTER III: INACTIVATION OF [Fe-Fe]-HYDROGENASE BY O₂. THERMODYNAMICS AND FRONTIER MOLECULAR ORBITALS ANALYSES

3.1. General Considerations

3.2. Quantum Mechanics/ Molecular Mechanics Hybrid Method

3.3. H-cluster Thermodynamics for O₂ Binding, Reduction, and Protonation

3.4. NBO Charges and Geometry Adjustment of Intermediates in the Oxidation of H-cluster

3.5. Thermodynamics and NBO Charges Relationship for H₂O Removal from the Oxidized H-cluster

3.6. Frontier Molecular Orbital Analysis

CHAPTER III: References

CHAPTER IV: RESIDUE MUTATED [Fe-Fe]-HYDROGENASE IMPEDES O₂ BINDING: A QM/MM INVESTIGATION

4.1. General Considerations
4.2. Methodology ... 80
4.3. [Fe-Fe]-hydrogenase H-cluster Thermodynamics for O₂ Binding 82
4.4. DdH Geometrical Readjustment upon Oxidation 94
4.5. Frontier Molecular Orbital Analysis 97
4.6. Conclusions .. 100
CHAPTER IV: References .. 102
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>I. H-cluster Quantum Mechanical, E_{QM}, and Solvation Free Energies, ΔG_{sol}</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td></td>
</tr>
<tr>
<td>II. Wild-type and Residue Removed DdH - First 14 Amino Acids - Gibbs’ Energies for O_2 Binding</td>
<td>84</td>
</tr>
<tr>
<td>III. Wild-type and Residue Removed DdH - Next 16 Amino Acids - Gibbs’ Energies for O_2 Binding</td>
<td>85</td>
</tr>
<tr>
<td>IV. Wild-type and Residue Mutated DdH Gibbs’ Energies for O_2 Binding</td>
<td>93</td>
</tr>
<tr>
<td>V. Interatomic Distances for Wild-type DdH, Between, Fe_p and CO_b, Fe_d and CO_b, Fe_d and O_1, and O_1-O_{II} Before and After O_2 Binding - the Angle $Fe_d-O_1-O_{II}$ Is also Given</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
</table>

CHAPTER I

1-1. A depiction of the prosthetic groups located in [Fe-Fe]-hydrogenase H-cluster, and cubanes, where the atom colors, for the H-cluster and cubanes, are red = O, green = C, blue = N, yellow = S, and burgundy = Fe (from the X-ray crystal structure protein data bank code 1HFE\(^{31}\))… 7

1-2. DdH is comprised of the ferrodoxin-like domains (blue spheres), and of the H-domain (greenish background), with the small, red chain surrounding the former domains (from the X-ray crystal structure protein data bank code 1HFE\(^{31}\))……………………………………… 9

1-3. Hydrogen-bond network (dashed lines) extends from the H-cluster to the surface of the [Fe-Fe]-hydrogenase; Thr-90 residue belongs to the small chain, while the visible amino acid residues consist of the large chain (as presented in references 29 and 31)……………………………………… 11

CHAPTER II

2-1. The H-cluster and its subunits, i.e., the cubane, and the 2Fe (or di-iron) subunit (as presented in references 17, 19 and 41)……………………………………… 18
2-2. Compound 9 is a key compound because it resembles the most with the active site of CPI obtained by X-ray crystallography. Selected distances (Å) of the H-cluster, theoretical model vs. X-ray crystallographic structure: Fe$_5$-Fe$_4$ 2.605 (2.617), S$_6$-N$_3$ 2.877 (2.702), S$_7$-N$_3$ 2.848 (2.642), Fe$_4$-Cb 2.225 (2.100), Fe$_5$-Cb 1.883 (2.043)...

2-3. The general oxidation mechanisms for H-clusters that are fully (1) and partially oxidized (5), and reduced (6)..............................

2-4. O$_2$ binding mechanisms to H-clusters that are fully oxidized (1), partially oxidized (5) and reduced (6). The charges and multiplicities are given in square brackets. The first enthalpy value (kcal/mol) is for gas phase, and the second is for aqueous phase..........................

2-5. Reaction mechanism for H$_2$O elimination from the inhibited H-cluster. The H$_2$O is being removed from a closed-shell cluster..................

2-6. Reaction mechanism for H$_2$O removal from the inhibited H-cluster. The H$_2$O is eliminated from an open-shell cluster....................

2-7. Frontier molecular orbitals for H-clusters LUMO (2), HOMO$_\alpha$ (3), HOMO$_\beta$ (3), LUMO$_\alpha$ (4), LUMO$_\beta$ (4), SOMO$_\alpha$ (4), SOMO$_\beta$ (4), HOMO (6), HOMO (7) (where the atom colors, for the H-clusters, are
O = red, C = grey, N = blue, S = yellow, Fe = burgundy, and H = white)... 34

2-8. Frontier molecular orbitals for H-clusters HOMO (9'), LUMO (9'), LUMO (11), HOMO_α (12), HOMO_β (12), SOMO_α (12), LUMO_α (13), SOMO_β (13), HOMO_α (15).. 35

2-9. The key amino acid residues that are contiguous with the H-cluster (as presented in reference 63)... 40

CHAPTER III

3-1a. Reaction pathways I - IV: Oxidation mechanisms of H-clusters that are fully oxidized (1), partially oxidized (5). The charges and multiplicities are given in square brackets. The first energy value is for gas phase, and the second is for ONIOM calculations. Fe_p is the proximal iron, and Fe_d is the distal iron... 49

3-1b. Reaction pathways I - IV: Oxidation mechanisms of H-cluster that is reduced (6). The charges and multiplicities are given in square brackets. The first energy value is for gas phase, and the second is for ONIOM calculations. Fe_p is the proximal iron, and Fe_d is the distal iron.. 50
3-2. Reaction mechanism for isomerization, protonation, H₂O elimination, and reduction of the inhibited [Fe-Fe]-hydrogenase H-cluster. The H₂O is being removed from a closed-shell cluster (the charges, multiplicities, and energy values are presented as in Figure 3-1a.)…… 51

3-3. Reaction mechanism for reduction, protonation, and H₂O removal from the inhibited [Fe-Fe]-hydrogenase H-cluster. Here, the H₂O is being eliminated from an open-shell cluster (the charges, multiplicities, and energy values are presented as in Figure 3-1a.)…… 52

3-4. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO (2), HOMO_{α} (3), HOMO_{β} (3), LUMO_{α} (4), LUMO_{β} (4), SOMO_{α} (4), SOMO_{β} (4), HOMO (6), and HOMO (7)................................. 63

3-5. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters HOMO (9), LUMO (9), LUMO (11), HOMO_{α} (12), HOMO_{β} (12), SOMO_{α} (12), LUMO_{α} (13), SOMO_{β} (13), and HOMO_{α} (15)................. 64

CHAPTER IV

4-1a The NBO charges of 2Fe subunit with (MM layer) neighboring charges…………………………………………………………………………………………………… 86

4-1b The NBO charges of 2Fe subunit without (MM layer) neighboring
Oxidation reactions of O_2 with the fully oxidized (1), partially oxidized (3), and reduced (5) di-iron subunits. Also, the protonation with the reduced (5) di-iron subunit is depicted. The charge and multiplicity are provided in square brackets.

Frontier molecular orbitals (aqueous enzyme phase) for H-clusters: LUMO (1), HOMO (2), LUMO$_\alpha$ (3), LUMO$_\beta$ (3), HOMO$_\alpha$ (4), HOMO$_\beta$ (4), LUMO (5), and HOMO (6) (where the atom colors, of the H-clusters, are $O =$ red, $C =$ grey, $N =$ blue, $S =$ yellow, $Fe =$ burgundy, and $H =$ white).
CHAPTER I

THE CHEMISTRY OF THE H-CLUSTER INHIBITION BY O$_2$

1.1. General Considerations

The goal of the present research is to engineer an O$_2$ resistant (H$_2$ producing) hydrogenase that is found in Desulfovibrio desulfuricans (DdH). Moreover, the endeavour is to understand the chemistry of O$_2$ inhibition of [Fe-Fe]-hydrogenase H-cluster (where the latter is the active site), by identifying the chemical species involved in the aerobic inhibition:

1. Finding reaction intermediates, their molecular structure (bond lengths, angles, dihedrals, etc.), thermodynamic functions for different reaction steps (reaction
enthalpies, i.e., investigate the potential energy surface of H-cluster inhibition by O₂ in vacuum.

2. Investigating the potential energy surface of H-cluster inhibition by O₂ in solution.

3. Identifying the essential structural moieties of the enzyme (e.g., amino acid residues), which are responsible for the enzymatic inhibition.

The current undertaking ensues because DdH has a great turnover number in an anaerobic milieu¹ (9000 s⁻¹). However, it is economically desirable to set off DdH to function aerobically for the purpose of H₂ evolution*.

Finally, burning hydrogen as fuel will benefit our convalescing planet from the current deleterious plight is currently in.

Calculations in vacuum yield basic information regarding the reaction steps and intermediates i.e., molecular geometry, electronic structure (e.g., partial charges), vibrational frequencies, and thermodynamic functions. Moreover, such calculations provide an expedient way of mapping the potential energy surfaces of the reaction mechanisms. Because the in-vacuum (or, gas phase) calculations are inexpensive relative to the enzyme matrix calculations, it is reasonable that the initial calculations be carried out in gas phase. To achieve the current aim, the following studies are performed:

1. Thermodynamic analysis of H-cluster and O₂ inhibitory process in gas phase and water.

2. Electronic structure examination of the H-cluster in order to ascertain the thermodynamics analysis.

¹ It is cost effective to work in the ambient atmosphere rather than an artificial (N₂) atmosphere.
Furthermore, since gas phase results (Chapter I and II) confirm that the reaction mechanism of H-cluster and O₂ is reversible, the next investigation shall perforce deal with the inhibitory mechanism of H-cluster by O₂ using hybrid classical mechanics and quantum mechanics calculations for the enzyme matrix. Thus, three examinations need to be performed, i.e., Chapter 3 and 4.

1. Perform calculations on the inhibitory mechanism of [Fe-Fe]-hydrogenase by O₂.
2. Evaluate the inhibitory effect of O₂ for the wild type hydrogenase.
3. Engineer an [FeFe]-hydrogenase, which shall not react with O₂, via residue mutations.

1.2. Background and Significance

1.2.1. Hydrogenases Structure and Function

[Fe-Fe]-hydrogenases as well as [Ni-Fe]-hydrogenases are enzymes that are implicated in H₂ metabolism (2H⁺ + 2e⁻ ↔ H₂), which occurs in anaerobic media. Of these two bi-metal enzymes, [Fe-Fe]-hydrogenases are most attractive for H₂ production, with a reactivity of up to 2 orders of magnitude larger than [Ni-Fe]-hydrogenases. In hydrogenases, H₂ evolution, emerging from proton reduction (2H⁺ + 2e⁻ → H₂), is essential in the disposal of excess electrons. Low-molecular weight biomolecules such as

* The excess electrons are generally low potential electrons that are also involved in fermentation.
ferredoxins, cytochrome c3, and cytochrome c6 can act as physiological electron acceptors or donors.

The hydrogenase H-cluster is the active site and is comprised of two subunits, the 2Fe subunit, and the cubane, $[\text{Fe}_4\text{S}_4]^{2+}$, subunit. The 2Fe subunit is composed of two iron atoms ($\text{Fe}_p\text{-Fe}_d$, i.e., proximal and distal iron) that are bridged by 1,3-di(thiomethyl)amine (DTMA) chain, and are coordinated by endogenous ligands, i.e., two cyanides, two terminal carboxyls, and a bridging carbonyl (CO$_b$). Moreover, the S$_\gamma$ (of Cys382) is the connecting atom from an Fe atom of the (proximal) cubane subunit and the Fe$_p$ of the 2Fe subunit.

The reason for studying biological H$_2$ production is because the eventual elucidation of the mechanism (for hydrogen synthesis) may help researchers to produce clean fuel through using certain anaerobic prokaryotes.

Previous Density Functional Theory (DFT) as well as hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been successful in clarifying some aspects of the catalytic properties of the H-cluster.

As in similar computational studies, cysteine is substituted with CH$_3$-S$^-$, whereas cubane is replaced with a H$^+$. Further, computational and experimental [Fe-Fe]-hydrogenase H-cluster (and synthetic H-cluster-like compounds) research sheds light on the potential redox states of the 2Fe H-cluster subunit, $\text{Fe}_p\text{-Fe}_d$, where $\text{Fe}_p^{1}\text{-Fe}_d^{1}$ is the reduced 2Fe H-

* The truncation of the cubane, $[\text{Fe}_4\text{S}_4]^{2+}$, and its replacement by a H$^+$ (as well as the replacement of CH$_3$-S for cysteine-S) had been done in order to obtain the best compromise with regard to the computational cost.
cluster subunit, Fe_p^{II}-Fe_d^I is the partially oxidized enzyme subunit, and Fe_p^{II}-Fe_d^{II} is the fully oxidized, inactive enzyme H-cluster subunit.

The fully oxidized H-cluster, Fe_p^{II}-Fe_d^{II}, has a H_2O molecule, OOH$^-$ or an OH$^-$ bound to the Fe_d^{II}. In our previous investigation21, we have inferred that a vacant (fully oxidized) Fe_p^{II}-Fe_d^{II} (Figure 1-1) could also be a viable intermediate in H_2 synthesis. Regardless of the 2Fe H-cluster subunit redox states, the proximal cubane – or more precisely a cuboid (point group: D_2d) – always retains a 2+ oxidation state, $[\text{Fe}_4\text{S}_4]^{2+}$.

The partially oxidized H-cluster (Fe_p^{II}-Fe_d^I, Figure 1-1), H_{ox}, is the active form of the hydrogenase enzyme*. The reduced H-cluster (Fe_p^I-Fe_d^I, Figure 1-1) has both iron atoms in oxidation states I (being an intermediate in H_2 metabolism). According to Liu and Hu9, 6 is the cluster having great affinity for protonation (6 \rightarrow 8), in capturing a proton from the side chain of a near by amino-acid, such as Lys237.

X-ray crystallography and spectroscopic studies of hydrogenases, with the latter having been obtained from Clostridium pasteurianum (CPI)43 and Desulfovibrio desulfuricans (DdH)31 (Figure 1-1), led to a better understanding of the biochemical roles of these enzymes. The X-ray crystal structure of CPI hydrogenase shows an oxygen species that may be OH$^-$, or H_2O bound to the Fe_d of the H-cluster. Based on the computational results of Liu and Hu2 (CPI has OH$^-$ in its inactive form according to X-ray crystal structure), we try to ascertain whether the air oxidized H-cluster (Fe_p-Fe_d-O_2) converts to Fe_p-Fe_d-OH species21.

* Voltametric42 studies show the transition of $\text{H}_{\text{ox}}^{\text{inact}}$ to $\text{H}_{\text{ox}}^{\text{cat}}$ occurring via a reversible e^- transfer process to the hydrogenase transient state followed by a putative two e^- transfer (with the latter not reaching the bimetals of the H-cluster).
1.2.2. *Desulfovibrio Desulfuricans* Hydrogenase Structure

DdH31 is an enzyme comprised of two types of FeS clusters, i.e., an H-cluster (Fe$_4$S$_4$-Fe$_2$S$_2$) and two cubanes (Fe$_4$S$_4$). It also consists of 511 amino acids (amino acids) with an approximate molecular weight of 53,000 g/mol. Furthermore, DdH consist of two chains, one being light and the other heavy (Figure 2-1).
Figure 1-1. A depiction of the prosthetic groups located in [Fe-Fe]-hydrogenase H-cluster, and cubanes, where the atom colors, for the H-cluster and cubanes, are red = O, green = C, blue = N, lighter orange = S, and darker orange = Fe (from the X-ray crystal structure protein data bank code 1HFE).
Theses FeS clusters are situated in the heavy chain and are bound to twelve cysteines, i.e., four cysteines are bound to each FeS cluster and bridge the gap between the polypeptide (heavy) chain and the FeS clusters groups.

Hydrogenases catalyze the reversible reduction of protons to hydrogen molecules \((2H^+ + 2e^- \rightarrow H_2)\) in anaerobic media. The hydrogen molecule acts as physiological energy storage. One way to produce hydrogen is by harnessing the hydrogenase enzyme. The eventual elucidation of the catalytic mechanism of hydrogen synthesis may help researchers to produce clean hydrogen fuel for the future using certain organisms.*4-8

1.2.3. *Desulfivibrio Desulfuricans* Hydrogenase Biosynthesis

The translation of DdH occurs mostly on the ribosomes of the rough endoplasmic reticulum, where the FeS clusters are covalently bound to the rest of the polypeptide, which is mediated by certain enzymes called accessory proteins. The FeS-polypeptide joining occurs during the enzymatic folding while the FeS cluster groups are buried inside DdH. Molecular chaperons also contribute to the folding of DdH.*44,45* Furthermore, after being assembled and folded, the (periplasmic) DdH enzyme is delivered to the cell membrane.

* Hydrogenases are ubiquitous; they are encountered from the depths of the ocean to the surface of the earth (e.g. in eukaryotes like green algae).
Figure 1-2. DdH is comprised of the ferrodoxin-like domains (blue spheres), and of the H-domain (greenish background), with the small, red chain surrounding the former domains (from the X-ray crystal structure protein data bank code 1HFE31).
1.2.4. *Desulfivibrio Desulfuricans* Hydrogenase Main Domains

The active domain (H-domain) has a hydrogen-bond network extending from the H-cluster to the surface of the molecule (Figure 1-3). This hydrogen-bond network is potentially involved in the H$^+$ transfer, which is a vital step in H$_2$ synthesis ($2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2$).

The cubane clusters are found buried inside ferrodoxin-like domains. These cubane clusters, as well as the small chain, are crucial in the electron transfer mechanism and are interconnected with redox partners1,46 such as cytochrome c3 or c6.
Figure 1-3. Hydrogen-bond network (dashed lines) extends from the H-cluster to the surface of the [Fe-Fe]-hydrogenase; Thr-90 residue belongs to the small chain, while the visible amino acid residues consist of the large chain (as presented in references 29 and 31).
References

(34) Lai, C.-H.; Lee, W.-Z.; Miller, M. L.; Reibenspies, J. H.; Daresbourg, D. J.;

258, 572.

(36) Pierik, A. J.; Hagen, W. R.; Redeker, J. S.; Wolbert, R. B. G.; Boersma, M.;
Verhagen, M. F.; Grande, H. J.; Veeger, C.; Mustsaers, P. H. A.; Sand, R. H.;

(38) Patil, D. S.; Moura, J. J. G.; He, S. H.; Teixeira, M.; Prickril, B. C.; Der
263, 18732.

1987, 262, 38.

(42) Roseboom, W.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Albracht,

(43) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282,

CHAPTER II
COMPUTATIONAL ANALYSIS OF H-CLUSTER AND O₂
INHIBITORY PROCESS IN GAS PHASE AND WATER

2.1. General Considerations

Computational and experimental¹⁻²³ [Fe-Fe]-hydrogenase H-cluster (and synthetic H-cluster-like compounds) research elucidates the potential hydrogenase O₂ inhibition pathways.

Density Functional Theory* (DFT²⁴⁻²⁸) methodology is used to calculate the geometry and the electronic structure of the intermediates in the O₂ inhibition pathways. Previous calculations²⁹⁻³⁴ using DFT have also been successful in elucidating some

* Density functional theory (DFT) is a quantum mechanical method, which studies the electronic structure of many-body systems, specifically molecules and the condensed phases.
aspects of the catalytic properties of H-cluster.

2.2. Methodology

The electronic structure of the hydrogenase active site is investigated by the B3LYP functional of DFT, with 6-31+G(d,p)** basis set (implemented in Gaussian35 software). For Fe an effective-core36-38 potential with a double zeta polarization basis set (LANL2DZ) was used to replace the interaction of core electrons. In accordance with experimental39-42 and in-silico data19, low spin states (singlet, and doublet), and low oxidation states (I, and II) for the iron atoms have been selected.

Finally, calculations are performed for the polarized continuous model*** (PCM43-45) of the solvent and then have been checked against the gas phase calculations46.

2.3. Thermodynamics of the H-cluster Oxidation

Figure 2-4 represents different O\textsubscript{2} inhibition pathways of the hydrogenase H-cluster. Reaction 1 \(\rightarrow\) 2 (path I) is slightly exothermic for the gas phase (\(\Delta H_{\text{gas}} = -0.94\) kcal/mol;

** B3LYP/6-31+G(d,p) = Becke-style 3-Parameter Density Functional Theory (using the Lee-Yang-Parr correlation functional) with the orbitals 6-31+G(d,p).

*** PCM model performs calculations in the presence of a solvent that uses the Polarized Continuum (overlapping spheres) model of Tomasi et al.
Figure 2-1. The H-cluster and its subunits, i.e., the cubane, and the 2Fe (or di-iron) subunit (as presented in references 17, 19 and 41).
Figure 2-2. Compound 9 is a key compound because it most closely resembles the active site of CPI obtained by X-ray crystallography17. Selected distances (Å) of the H-luster, theoretical model vs. X-ray crystallographic structure: Fe\textsubscript{5}-Fe\textsubscript{4} 2.605 (2.617), S\textsubscript{6}-N\textsubscript{3} 2.877 (2.702), S\textsubscript{7}-N\textsubscript{3} 2.848 (2.642), Fe\textsubscript{4}-C\textsubscript{b} 2.225 (2.100), Fe\textsubscript{5}-C\textsubscript{b} 1.883 (2.043).
Figure 2-3. The general oxidation mechanisms for H-clusters that are fully oxidized (1), partially oxidized (5), and reduced (6)
Figure 2-4. O₂ binding mechanisms to H-clusters that are fully oxidized (1), partially oxidized (5) and reduced (6). The charges and multiplicities are given in square brackets. The first enthalpy value (kcal/mol) is for gas phase, and the second is for aqueous phase.
Figure 2-5. Reaction mechanism for H_2O elimination from the inhibited H-cluster. The H_2O is being removed from a closed-shell cluster.
Figure 2-6. Reaction mechanism for H₂O removal from the inhibited H-cluster. The H₂O is eliminated from an open-shell cluster.
gas = gas phase) as well as for the aqueous phase ($\Delta H_{\text{aq}} = -1.65$ kcal/mol; aq = aqueous phase) when O_2 binds to the fully oxidized H-cluster (1).

Subsequently, the reduction $2 \rightarrow 3$ ($\Delta H_{\text{gas}} = -109.93$ kcal/mol; $\Delta H_{\text{aq}} = -133.81$ kcal/mol) as well as the protonation $3 \rightarrow 4$ ($\Delta H_{\text{gas}} = -136.22$ kcal/mole; $\Delta H_{\text{aq}} = -29.30$ kcal/mol) proceed exothermically. In reactions $2 \rightarrow 3$ and $3 \rightarrow 4$, the enthalpy differences in gas versus aqueous phases is due to the solvation free energy (ΔG_{solv}) of H-clusters 2, 3, and 4, and also from the solvation free energy of the hydronium ion (H_3O^+) in $3 \rightarrow 4$ (Table 2-1). In particular, the solvation free energy is larger for H-cluster 3 because it has a more negative charge (-1 a.u.) relative to 2 and 4 (which are neutral).

Regarding gas versus aqueous phases, the above trend in enthalpy differences is observed for all pathways involving O_2 inhibition (Figure 2-4, Figure 2-5, and Figure 2-6), i.e., the reaction enthalpy increases for the electron transfer and decreases for protonation. Furthermore, cluster (4) undergoes reduction, and the reaction $4 \rightarrow 9$ proceeds exothermically as well ($\Delta H_{\text{gas}} = -80.21$ kcal/mole; $\Delta H_{\text{aq}} = -109.64$ kcal/mol). The iron binding of O_2 ($Fe^{I}_d-O_2$) $5 \rightarrow 3$ (path II) is much firmer ($\Delta H_{\text{gas}} = -48.47$ kcal/mole; $\Delta H_{\text{aq}} = -44.48$ kcal/mol) than the binding in $1 \rightarrow 2$ ($Fe^{II}_d-O_2$, path I). The remaining two reactions $3 \rightarrow 4$, and $4 \rightarrow 9$ (path II) are identical to the last two steps of path I. In path III, $6 \rightarrow 7$, the heat of reactions ($\Delta H_{\text{gas}} = -48.89$ kcal/mole; $\Delta H_{\text{aq}} = -41.67$ kcal/mol) are almost identical to the enthalpies of reaction $5 \rightarrow 3$. The enthalpy similarities may ensue from the fact that both loci of oxygen binding ($Fe^{I}_d-O_2$) are on similar oxidized species, Fe^{I}_d. In path III, the protonation reaction ($7 \rightarrow 9$) is, once again, exothermic for both phases ($\Delta H_{\text{gas}} = -243.17$ kcal/mole; $\Delta H_{\text{aq}} = -60.63$ kcal/mol). Finally, in path IV, the protonation $6 \rightarrow 8$ is the second most exothermic reaction in the gas phase ($\Delta H_{\text{gas}} = -
220.08 kcal/mole), compared to $7 \rightarrow 9$, while in the aqueous phase is less exothermic ($\Delta H_{aq} = -33.53$ kcal/mol). The enthalpy differences ($\Delta H_{gas} = -220.08$ kcal/mole vs. $\Delta H_{aq} = -33.53$ kcal/mol), between the above phases in $6 \rightarrow 8$, are attributed to the large solvation free energy ($\Delta G_{sol} = -167.46$ kcal/mol) of cluster 6, which has a -2 a.u. charge.

In the final step $8 \rightarrow 9$ of path IV ($\Delta H_{gas} = -71.99$ kcal/mole; $\Delta H_{aq} = -68.77$ kcal/mol), O$_2$ is interposed between Fe$_d$ and the exogenous hydride (Fe$_d$O$_2$-H, 9).

Furthermore, path IV shows that the oxidation of Fe$_p$-Fe$_d$ H-cluster is similar* to the Ni$_p$-Fe$_d$ hydrogenase H-cluster obtained from experimental data47.

Thus, from the above thermodynamic results, it is observed that every reaction of each path is exothermic and leads to the oxidized species 9. Each vacant H-cluster (1, 5, or 6), regardless of its oxidation state, gets poisoned aerobically.

2.4. NBO Charges and Geometry Modification of Intermediates in the Oxidation of H-cluster

The atoms of the vacant H-clusters 1, 5, and 6 have similar natural bond orbital (NBO) charge distributions. For instance, for cluster 1 the NBO charges of Fe$_p$-Fe$_d$ are $q_{Fe_p} = 0.137$ and $q_{Fe_d} = -0.096$ a.u., whereas in 5, the partial charges are somewhat reversed, i.e. -0.024 on Fe$_p$ and 0.078 on Fe$_d$. Then the NBO charges for the Fe$_p$-Fe$_d$ in

*The similarity for these clusters is they are first found as hydride containing H-clusters, and then undergo oxidation.
cluster 6 are more negative, \(q_{Fe_p} = -0.104 \), and \(q_{Fe_d} = -0.117 \) a.u. because both metals are in a reduced state (Figure 2-4), unlike clusters 1 and 5.

As for charges on the nitrogen atom, N3, (of the DTMA bridge), one can see even more charge similarities among clusters 1, 5, and 6, than for the Fe\(_p\)-Fe\(_d\) atoms mentioned above; the partial charges for N3 are approximately -0.700 a.u., which makes this nitrogen a relatively strong base within the H-cluster.

The non-bridging sulfur (S\(_{nb}\)) is positively charged for 0.204 a.u. (1), 0.142 a.u. (5), and 0.079 a.u. (6). A drop in NBO charges can be seen for S\(_{nb}\) belonging to clusters 1 to 5 and 5 to 6, with a concomitant increase in the negative charge of Fe\(_p\).

When H-cluster 1 is in an oxidized state, Fe\(_p\)\(^{II}\) - Fe\(_d\)\(^{II}\), the CO\(_b\) shifts towards the Fe\(_d\)\(^{II}\), and becomes bonded to the Fe\(_d\)\(^{II20}\). The shifted CO\(_b\) (measured from its bridging carbon, C\(_b\), to the iron atoms) bond distance between C\(_b\)--Fe\(_p\)\(^{II}\) is 3.067 Å, whereas C\(_b\)--Fe\(_d\)\(^{II}\) is 1.819 Å. When the carbonyl is close to Fe\(_d\)\(^{II}\), CO\(_b\)-Fe\(_d\)\(^{II}\), the fully oxidized H-cluster 1 becomes more stable which can also be seen from the NBO charge on C in CO\(_b\) (0.664 a.u.). This is caused by charge repulsion between \(q_{Cb} \) (0.664 a.u.) and \(q_{Fe_p} \) (0.137 a.u.), whereas the CO\(_b\) migration towards Fe\(_d\) ensues due to the attraction between \(q_{Cb} \) and \(q_{Fe_d} \) (-0.096 a.u.). For clusters 5 and 6, the partial charges (\(q_{Cb} = 0.462 \) and \(q_{Cb} = 0.466 \) a.u., respectively) are less than in 1 because CO\(_b\) is bonded to both iron atoms.

Comparing the heat of reactions for O\(_2\) binding which renders clusters 2, 3, and 7, one may notice that 3 and 7 are more stable than 2. The reason for this stability is mostly due to the formation of a hydrogen bond between the exogenous oxygen and the hydrogen H9 (bonded to N of the DTMA bridge) in 3 and 7. The hydrogen bond length is 2.016 Å in 3, and 1.765 Å in 7, which correlates with the NBO charges on exogenous
oxygen and H9; the partial charges on oxygen are $q_{O1} = -0.235$ in 3, and $q_{O2} = -0.493$ a.u. in 7, whereas the charge on H9 is 0.439 in 3, and 0.454 a.u. in 7. Note that CO$_b$ is located almost symmetrically in clusters 2, 3, and 7.

Structurally, clusters 4 and 9 are similar in that both have a hydrogen bond (H9...O1), whereas CO$_b$ is found to reside quasi-symmetrically in 9, but asymmetrically in 4 bound only to Fe$_p^{II}$.

2.5. Thermodynamics of H$_2$O Removal from the Oxidized H-cluster

Figure 2-5 depicts a series of reactions (9 → 9', 9' → 10, 10 → 11, 11 → 12, 12 → 13, and 13 → 14) which present the net conversion of 9 to 14.

The compounds 9 and 9' are isomers, with 9' being more stable by +44.17 kcal/mole (due to hydrogen bond formation between H$_2$O and the N3 of DTMA bridge (N3...H-OH)). The hydrogen bond length, N3...H, is 1.939 Å (and the angle formed by N3...H-O is 168.7°). The distance between the iron atoms is larger in 9' (2.796 Å) than in 9 (2.605 Å). During reaction 9 → 9', CO$_b$ moves away from Fe$_p^{II}$ (i.e., for C$_b$–Fe$_p^{II}$ 2.225 Å (9) → 2.771 Å (9')). The protonation of 9' (9' → 10) produces a quaternary ammonium (NR$_4^+$) in the DTMA bridge, and is exothermic for both phases ($\Delta H_{gas} = -131.60$ kcal/mole; $\Delta H_{aq} = -27.63$ kcal/mol). Species 9' possesses a charge of -1.0 a.u., which is responsible for its relatively large proton affinity. In 10 → 11, H$_2$O is removed from N3 by means of hydrogen bond breaking; this reaction (vs. 9' → 10) proceeds
endothermically in gas phase \(\Delta H_{\text{gas}} = +12.31 \text{ kcal/mole} \), however in the aqueous phase it barely proceeds exothermically \(\Delta H_{\text{aq}} = -1.11 \text{ kcal/mol} \).

The first reduction \(11 \rightarrow 12 \) (Figure 2-5) is subjected to an increase in the partial charge of the exogenous oxygen \(q_{O_1} = -0.568 \text{ a.u.} \) \((11) \rightarrow -0.594 \text{ a.u.} \) \((12); \Delta H_{\text{gas}} = -68.72 \text{ kcal/mole}; \Delta H_{\text{aq}} = -99.12 \text{ kcal/mol} \). Regarding geometrical changes in \(11 \) \((11 \rightarrow 12) \), the bond distance between Fe\(^{II}\)-Fe\(^{II}\) is increasing from 2.792 Å to 3.261 Å, while the CO\(_b\) departs from Fe\(^{II}\) (for C\(_b\)-Fe\(^{II}\) 2.766 Å \((11) \rightarrow 3.183 \text{Å} \) \((12) \)). Due to the high negative charge on O\(_1\) \((12) \), the latter readily captures a proton \((12 \rightarrow 13; \Delta H_{\text{gas}} = -150.55 \text{ kcal/mole}; \Delta H_{\text{aq}} = -29.04 \text{ kcal/mol} \). Finally, in Figure 2-5, an e\(^-\) is acquired by the OH group \((13 \rightarrow 14; \Delta H_{\text{gas}} = -77.33 \text{ kcal/mole}; \Delta H_{\text{aq}} = -115.06 \text{ kcal/mol} \). Note that the H-cluster \(14^{19,20} \) is the starting compound in the reactivation pathway, which ends in the reduced H-cluster \(6 \) (Fe\(^{I}\)-Fe\(^{I}\)).

In Figure 2-6, an alternative pathway \((9' \rightarrow 15, 15 \rightarrow 16, 16 \rightarrow 12, 12 \rightarrow 13, \) and \(13 \rightarrow 14) \) has been investigated. The pathway starts with an electron transfer rather than a proton transfer. Reaction \(9' \rightarrow 15 \) is slightly endothermic for the gas phase \(\Delta H_{\text{gas}} = +1.15 \text{ kcal/mole} \), but highly exothermic for the aqueous phase \(\Delta H_{\text{aq}} = -90.08 \text{ kcal/mol} \), since \(15 \) has higher solvation free energy than \(9' \) (Table 2-1). Cluster \(15 \) has a high proton affinity \((15 \rightarrow 16) \) particularly for the gas phase \(\Delta H_{\text{gas}} = -201.72 \text{ kcal/mole}; \Delta H_{\text{aq}} = -37.99 \text{ kcal/mol} \) because \(15 \) has a charge of -2 a.u. For \(16 \rightarrow 12 \), the heat of reaction for the gas phase is endothermic \(\Delta H_{\text{gas}} = +12.57 \text{ kcal/mole} \) whereas for the aqueous phase it is only slightly endothermic \(\Delta H_{\text{aq}} = +0.21 \text{ kcal/mol} \). Note that both \(10 \) (Figure 2-5) and \(16 \) (Figure 2-6) lead to the same compound \(12 \) by H\(_2\)O elimination. The thermodynamic data are similar for both reactions \((10 \rightarrow 12 \) and \(16 \rightarrow 12 \) because Fe\(^{I}\)
is found in the same oxidation state (Fe_d^I) in both 10 and 16, but Fe_p (being further away from the reaction center) has different oxidation states (Fe_p^{II} (10); Fe_p^{I} (16)). Next, reactions 12 → 13, and 13 → 14 proceed exothermically [(ΔH_{gas} = -150.55 \text{ kcal/mol}; ΔH_{aq} = -29.04 \text{ kcal/mol}), and (ΔH_{gas} = -77.33 \text{ kcal/mol}; ΔH_{aq} = -115.06 \text{ kcal/mol}), respectively], as previously discussed in Figure 2-5. Unlike 10 → 12 (Figure 2-5), 16 → 12 is endothermic in both phases (ΔH_{gas} = +12.57 \text{ kcal/mol}; ΔH_{aq} = +0.21 \text{ kcal/mol}) which indicates (Figure 2-6) that the oxidation of H-cluster has difficulties proceeding to 14 in both phases.

From above, it can be seen that there is only one exothermic path from the oxidized H-cluster 9' to the hydroxylated cluster 14. A path starts with H^+ transfer, while the other begins by e^- transfer. The gas phase H_2O elimination from the oxidized H-cluster 9' proceeds endothermically in both pathways, whereas the aqueous phase H_2O removal is slightly exothermic for one path (Figure 2-5) and slightly endothermic for the other path (Figure 2-6).
<table>
<thead>
<tr>
<th>Clusters &ligands</th>
<th>(\Delta G_{\text{sol}}^a)</th>
<th>(E_{\text{QM}}^b) gas phase</th>
<th>(E_{\text{QM}}) solution</th>
<th>(E^{a,c})</th>
<th>(%^{a,d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-24.01</td>
<td>-2141.7418</td>
<td>-2141.7938</td>
<td>-32.64</td>
<td>35.95</td>
</tr>
<tr>
<td>2</td>
<td>-27.91</td>
<td>-2292.0094</td>
<td>-2292.0639</td>
<td>-34.23</td>
<td>22.65</td>
</tr>
<tr>
<td>3</td>
<td>-47.53</td>
<td>-2292.1845</td>
<td>-2292.2771</td>
<td>-58.11</td>
<td>22.27</td>
</tr>
<tr>
<td>4</td>
<td>-21.26</td>
<td>-2292.6753</td>
<td>-2292.7247</td>
<td>-30.97</td>
<td>45.68</td>
</tr>
<tr>
<td>5</td>
<td>-53.25</td>
<td>-2141.8412</td>
<td>-2141.9388</td>
<td>-61.22</td>
<td>14.96</td>
</tr>
<tr>
<td>6</td>
<td>-167.46</td>
<td>-2141.7980</td>
<td>-2142.0681</td>
<td>-169.49</td>
<td>1.21</td>
</tr>
<tr>
<td>7</td>
<td>-158.33</td>
<td>-2292.1419</td>
<td>-2292.4019</td>
<td>-163.15</td>
<td>3.05</td>
</tr>
<tr>
<td>8</td>
<td>-55.61</td>
<td>-2142.4224</td>
<td>-2142.5224</td>
<td>-62.73</td>
<td>12.81</td>
</tr>
<tr>
<td>9</td>
<td>-50.84</td>
<td>-2292.8032</td>
<td>-2292.8994</td>
<td>-60.40</td>
<td>18.80</td>
</tr>
<tr>
<td>9'</td>
<td>-48.38</td>
<td>-2292.8735</td>
<td>-2292.9710</td>
<td>-61.19</td>
<td>26.47</td>
</tr>
<tr>
<td>10</td>
<td>-27.45</td>
<td>-2293.3570</td>
<td>-2293.4159</td>
<td>-37.00</td>
<td>34.78</td>
</tr>
<tr>
<td>11</td>
<td>-37.31</td>
<td>-2216.9033</td>
<td>-2216.9693</td>
<td>-41.40</td>
<td>10.95</td>
</tr>
<tr>
<td>12</td>
<td>-66.92</td>
<td>-2217.0128</td>
<td>-2217.1272</td>
<td>-71.80</td>
<td>7.29</td>
</tr>
<tr>
<td>13</td>
<td>-22.27</td>
<td>-2217.5265</td>
<td>-2217.5744</td>
<td>-30.07</td>
<td>35.01</td>
</tr>
<tr>
<td>14</td>
<td>-62.57</td>
<td>-2217.6497</td>
<td>-2217.7577</td>
<td>-67.80</td>
<td>8.36</td>
</tr>
<tr>
<td>15</td>
<td>-137.81</td>
<td>-2292.8717</td>
<td>-2293.1146</td>
<td>-152.42</td>
<td>10.60</td>
</tr>
<tr>
<td>16</td>
<td>-60.00</td>
<td>-2293.4669</td>
<td>-2293.5760</td>
<td>-68.46</td>
<td>14.10</td>
</tr>
<tr>
<td>(O_2)</td>
<td>1.91</td>
<td>-150.2661</td>
<td>-150.2675</td>
<td>-0.88</td>
<td>-146.08</td>
</tr>
<tr>
<td>(H_3O^+)</td>
<td>-87.90</td>
<td>-76.7078</td>
<td>-76.8493</td>
<td>-88.81</td>
<td>1.04</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>-8.06</td>
<td>-76.4340</td>
<td>-76.4484</td>
<td>-9.03</td>
<td>12.03</td>
</tr>
</tbody>
</table>

\(^a \) Kcal/mol
\(^b \) Hartrees/molecule
\(^c \) Between gas and aqueous phases
\(^d \) Percent difference between the solvation free energy and \(\Delta E \).
2.6. Study the H-Cluster Electronic Structure to Ascertain the Thermodynamics Analysis

Electronic contributions are now presented which are adduced by the frontier orbitals in conjunction with the previously presented enthalpies of reaction.

Upon reduction of most open-shell H-clusters, it is observed that an e\(^{-}\) is obtained by a virtual molecular orbital (SOMO), while the closed-shell clusters receive an e\(^{-}\) into the lowest virtual molecular orbital (LUMO).

However, when a H\(^{+}\) is in the proximity of an open-shell H-cluster, it forms a \(\sigma\) bond through the interaction of the e\(^{-}\) in the highest occupied molecular orbital (HOMO), or through the contributions of both HOMO and SOMO, with the proviso that the SOMO is sufficiently low in energy relative to HOMO. Alternatively, when a H\(^{+}\) is near a closed-shell cluster, the \(\sigma\) bond ensues mainly due to the contribution of e\(^{-}\)s from HOMO with the H\(^{+}\).

Thermodynamic properties, of the reactions in Figures 2-4, 2-5, and 2-6, are now examined with regard to frontier molecular orbitals (FMO). Thus, in 2 the LUMO (Figure 2-7) is localized on the exogenous O\(_{2}\) and N\(_{DTMA}\), which is also corroborated by an increase of NBO charges on O\(_{2}\) and N\(_{DTMA}\) (N\(_{3}\)) in 3 upon reduction of H-cluster 2 \((q_{O_{1}} = -0.046 \text{ a.u. (2) } \rightarrow -0.235 \text{ a.u. (3)}; q_{N_{3}} = -0.568 \text{ a.u. (2) } \rightarrow -0.717 \text{ a.u. (3)})\).

For open-shell clusters, unrestricted B3LYP calculations have been performed which resulted in different quantum mechanical (QM) energies and molecular orbital (MO) coefficients for \(\alpha\) and \(\beta\) electrons.
The HOMO$_\alpha$ (the lower energy HOMO containing a spin up e^-) of 3 is predominantly localized on the exogenous O$_2$, where the protonation also occurs. However, the HOMO$_\beta$ (the higher energy HOMO with its spin down e^-) is localized on the DTMA bridge (Figure 2-7).

The SOMO$_\alpha$ of compound 4 is mostly localized on the DTMA bridge, partially on the exogenous oxygen and the iron atoms. SOMO$_\beta$ (the higher energy virtual SOMO) is more delocalized than SOMO$_\alpha$ (Figure 2-7). The main change in partial charges occurs on the iron atoms ($q_{Fe_p} = -0.141$ a.u (4) \rightarrow -0.003 a.u. (9); $q_{Fe_d} = 0.464$ a.u (4) \rightarrow 0.025 a.u. (9)). The above NBO observed changes in 4 \rightarrow 9 can be corroborated by LUMO$_\alpha$ (4; Figure 2-7). It is noteworthy that the e$^-$ is transferred into the LUMO$_\alpha$ (-0.15381 Hartrees), for its energy is lower than that of SOMO$_\beta$ (-0.14425 Hartrees).

The HOMO of 6 is localized on the Fe$_d$ and the CO$_b$, whereas the HOMO of 7 is primarily localized on the exogenous O$_2$ but is less diffused over CO$_b$ (Figure 2-7). The high proton affinity (especially in gas phase) of clusters 6 (Path IV) and 7 is explained because the HOMO orbital is localized on proton binding loci. In particular, 7 shows clearly as to where the protonation ought to occur; the exogenous O$_2$ captures the H$^+$ (Figure 2-7). Antithetically, in 6, in spite of the fact that both Fe$_d$ and the CO$_b$ are engulfed in an about similar size MOs, Fe$_d$ seems to have the propensity for capturing a H$^+$.

The HOMO of 9', which is delocalized throughout the cluster, has a smaller proton affinity than 6 and 7. However, higher HOMO amplitude is found on the exogenous O$_1$, DTMA bridge, and the two irons and this may explain why the N$_3$ is protonated in this case. For cluster 11, the LUMO is more localized over the Fe$_p$ than on Fe$_d$, extending
from the irons towards the CO$_b$ via a linear combination between the e_g orbitals of the iron atoms with the CO$_b$ π orbitals48, thus the e^- transfer $11 \rightarrow 12$ shall change the oxidation state of Fe$_p$. Both HOMO$_\alpha$ and HOMO$_\beta$ of 12 are generally localized on the Fe$_p$ (Figure 8). However, in this case the protonation does not occur at the Fe$_p$, instead it occurs at the exogenous O1 since its NBO charge is very negative, i.e., $q_{O1} = -0.594$ a.u. as opposed to $q_{Fe} = 0.126$ a.u.
Figure 2-7. Frontier molecular orbitals for H-clusters LUMO (2), HOMO\(_\alpha\) (3), HOMO\(_\beta\) (3), LUMO\(_\alpha\) (4), LUMO\(_\beta\) (4), SOMO\(_\alpha\) (4), SOMO\(_\beta\) (4), HOMO (6), HOMO (7) (where the atom colors, for the H-clusters, are O = red, C = grey, N = blue, S = yellow, Fe = burgundy, and H = white).
Figure 2-8. Frontier molecular orbitals for H-clusters HOMO (9'), LUMO (9'), LUMO (11), HOMO_α (12), HOMO_β (12), SOMO_α (12), LUMO_α (13), SOMO_β (13), HOMO_α (15).
In the reduction process of H-cluster 13, the in silico data clearly shows that the orbital energy of LUMO_α (E_{\text{LUMO}_\alpha} = -0.14850 \text{ Hartrees}) is lower than the energy of SOMO_β (E_{\text{SOMO}_\beta} = -0.13886 \text{ Hartrees}). Thus, upon reduction of cluster 13, the e^- goes into LUMO_α having lower orbital energy relative to SOMO_β (Figure 2-8). Analyzing the NBO charges of cluster 13 and 14, it is noticeable that the OH and Fe_d of 14 acquire most of the partial charge ceded by Fe_p and the reductive process 13 \rightarrow 14. H-cluster 15 undergoes a protonation reaction on N_{\text{DTMA}}, which is substantiated by the NBO negative charge decrease on N_{\text{DTMA}} (q_{N_3} = -0.267 \text{ a.u (15) } \rightarrow -0.187 \text{ a.u. (16))}.

2.7. Perform Calculations on the Inhibitory Mechanism of [Fe-Fe]-Hydrogenase by O_2

The subsequent investigation deals with the inhibition mechanism of H-cluster by O_2, which uses the hybrid ONIOM^* method on the enzyme matrix.

* ONIOM scheme (Acronym: Our own N-layered Integrated molecular Orbital + molecular mechanics Method) is a fast hybrid method developed by Morokuma et al.2,3 to execute different levels of theory on the same molecule. The algorithm consists of high-level (QM) calculations that are performed on a small part of the system (e.g., active site of an enzyme), and low-level (classical mechanics) calculations for the influence of the rest of the system.
2.7.1. Evaluation of the inhibitory effect of O_2 for the wild type [Fe-Fe]-hydrogenase

The ONIOM method is a QM/MM method. The QM methods of calculations are described above. However, the MM$^{49-52}$ method* uses a universal force field$^{53-55}$ (UFF**), described by Rappe et al.56, comprised of simple point charges (SPC). In order to use ONIOM, the enzyme is solvated in water and, then, is subjected to energy minimization procedures via QM/MM algorithm. The total charge of the DdH hydrogenase is –6 a.u., and, therefore, counterions, such as Na$^+$ cations, are added in order to render the enzyme neutral57,58. Within the H-domain, the existent hydrogen bonds, are encountered between the H-cluster and the juxtaposed key amino acids, are monitored implementing Chem3D, Molden, and Pymol software programs$^{59-61}$:

1. Discover the sole amino acids possessing the least O_2 binding potential for [Fe-Fe]-hydrogenase.

2. Monitor the hydrogen bonds during the energy minimization process.

* Molecular mechanics makes use of Newtonian mechanics for the purpose of modeling molecular systems.

MM (ignores electrons) is based on a model of molecules as a collection of atoms (balls) held together by bonds (springs). By changing the molecular† geometry until the lowest energy is attained, one finds a (molecular) geometry optimization.

\dagger The shapes of molecules - bond lengths, angles, and dihedrals.

** A force field consists of a mathematical form of terms, such as bond stretching, angle bending, dihedral angles, and nonbonded interactions, and the parameters in them describing the potential energy of a system of particles.
2.7.2. Engineer an [Fe-Fe]-hydrogenase which shall not react with O_2 via conservative mutations

QM gives relatively precise results, but it is rather time consuming, hence costly from a computational point of view. However, one can still use this method, especially on small enzyme residues such as the hydrogenase H-cluster. Moreover, for the whole enzyme, ONIOM calculations are performed, and thus intermediate structures of the enzyme are obtained which are energetically minimized. These intermediate structures are then studied implementing QM procedures, such as FMO.

The technique below follows the subsequent steps:

1. Solvate the enzyme by adding H_2O molecules within and around the enzyme, where the surrounding layer is 1 nm.

2. Perform energy minimizations using ONIOM by implementing QM calculations on the H-cluster, and MM computational analysis on whole enzyme.

3. Carry out exploratory mutations on the key amino acids (Figure 2-9, to know which residues posses the least O_2 binding potential for [Fe-Fe]-hydrogenase) of the H-domain by turning off their charges.

4. Within a given class of amino acids, mutations are being tried on the amino acids that was found to have the least O_2 binding potential for the referred to enzyme.

To summarize, mutations deal with amino acid substitutions within the same class, (i.e., amino acids that have similar chemical (polar) properties - conservative mutations)
or residue substitutions in different classes. Such mutations should not drastically change the enzymatic stability and function, but could accelerate the O\textsubscript{2} removal process, which is a desideratum in order to enhance H\textsubscript{2} formation. Once mutations have been achieved (for the purpose of enzymatic stability and proper function) the ambient amino acids have to be studied also in detail62.
Figure 2-9. The key amino acid residues that are contiguous with the H-cluster (as presented in reference 63)
References

(50) Burkert, U.; Allinger, N. L. Molecular Mechanics, 1982, ACS Monograph 177, American Chemical Society, Washington, D.C.

CHAPTER III

INACTIVATION OF [FE-FE]-HYDROGENASE BY O₂.

THERMODYNAMICS AND FRONTIER MOLECULAR ORBITALS ANALYSES

3.1. General Considerations

H-cluster\(^{1,83}\) oxidation in gas phase, and in aqueous enzyme phase, has been investigated by means of quantum mechanics (QM) and combined quantum mechanics-molecular mechanics (QM/MM). Several potential reaction pathways (in the above mentioned chemical environments) have been studied, wherein only the aqueous enzyme phase has been found to lead to an inhibited hydroxylated cluster. Specifically, the inhibitory process occurs at the distal iron (Fe\(_d\)) of the catalytic H-cluster (which is also
the atom involved in H₂ synthesis). The processes involved in the H-cluster oxidative pathways are O₂ binding, e⁻ transfer, protonation, and H₂O removal.

We found that oxygen binding is non-spontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the protein environment the hydroxylated H-cluster is obtained by means of completely exergonic reaction pathway starting with proton transfer.

A unifying endeavor has been carried out for the purpose of understanding the thermodynamic results vis-à-vis several other performed electronic structural methods, such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), and H-cluster geometrical analysis.

Our investigation is composed of three different parts. 1) Thermodynamic analysis, for every reaction path mechanism (Figures 3-1a, 3-1b, 3-2 and 3-3), implicated in the eventual H-cluster 14 inhibition by means of O₂ → OH⁻. 2) Electronic analysis, for the same paths referred to above, which deals with Natural Bond Orbitals (NBO), as well as Frontier Molecular Orbitals (FMO). 3) Geometrical analysis carried out only for appropriate bond breaking, and bond formation.

From the investigated subdivisions, thermodynamics analysis (Figure 3-2, and 3-3) is of pivotal importance since it shows that there is just an exergonic path from H-cluster 9' to the hydroxylated cluster 14 occurring in the aqueous enzyme phase. However, from the thermodynamic results (Figure 3-1a), it is observed that most reaction steps proceed exergonically (except 1 → 2, gas phase), leading to the oxidized cluster 9. Moreover, at
the end of each path, every vacant H-cluster 1, 5, and 6, in spite of its oxidation states, becomes aerobically inactivated, 9.
Figure 3-1a. Reaction pathways I and II: Oxidation mechanisms of H-clusters that are fully oxidized (1), partially oxidized (5). The charges and multiplicities are given in square brackets. The first Gibbs’ energy value is for gas phase, and the second is for ONIOM calculations. Fe_p is the proximal iron, and Fe_d is the distal iron.
Figure 3-1b. Reaction pathways III and IV: Oxidation mechanisms of H-cluster that is reduced (6). The charges and multiplicities are given in square brackets. The first Gibbs’ energy value is for gas phase, and the second is for ONIOM calculations. Fe\textsubscript{p} is the proximal iron, and Fe\textsubscript{d} is the distal iron.
Figure 3-2. Reaction mechanism for isomerization, protonation, H₂O elimination, and reduction of the inhibited [Fe-Fe]-hydrogenase H-cluster. The H₂O is being removed from a closed-shell cluster (the charges, multiplicities, and energy values are presented as in Figure 3-1a).
Figure 3-3. Reaction mechanism for reduction, protonation, and H₂O removal from the inhibited [Fe-Fe]-hydrogenase H-cluster. Here, the H₂O is being eliminated from an open-shell cluster (the charges, multiplicities, and energy values are presented as in Figure 3-1a).
3.2. Quantum Mechanics/ Molecular Mechanics Hybrid Method

In the current study, both QM [DFT (in gas phase)] and QM/MM [DFT/UFF\(^8^4\) (in aqueous enzyme phase)] methodologies have been used. The ONIOM\(^8^5\) method (DFT for the QM region, and the universal force field, UFF, for the MM region, implemented in Gaussian03\(^8^6\)) has been applied to determine the reaction thermodynamics, i.e., \(\Delta G\), for the inactivation pathways of the H-cluster, and the [Fe-Fe]-hydrogenase H-cluster (positioned within the enzyme matrix). Subsequently, the DFT results have been compared with the ONIOM calculations. The electronic structure of the hydrogenase active site (except the proximal cubane) is investigated by quantum mechanics (Gaussian 03) using DFT method (B3LYP functional\(^8^7,8^8\), and QM/MM with 6-31+G(d,p) basis set. For Fe an effective-core potential with a double zeta polarization basis set (LANL2DZ\(^8^9,9^0\)) was used for DFT gas phase calculations, and a 6-31+G(d,p) basis set for the ONIOM calculations. In accordance with experimental and in-silico data low spin states (singlet, and doublet), and low oxidation states (I, and II) have been selected for the Fe atoms\(^2,1^4,3^5\). Gromacs program\(^9^1,9^2\) was employed to add hydrogen atoms, water, and counter ions to the X-ray crystal structure of DdH [Brookhaven Protein Data Bank id.1HFE]. Hydrogen atoms and a 1 nm layer of water (2043 molecules) have been added to the PDB DdH structure. Moreover, Na\(^+\) ions have been randomly inserted\(^*\) into the solvent to neutralize the negative charges encountered therein, e.g., the -2 a.u. found on

\(^*\) In a real biological system, a protein has counter ions in its proximity.
the cubane/cysteine moieties. For both basic and acidic amino acids, charges were assigned by Gromacs algorithm to be at pH 7. ONIOM geometry optimizations have been performed on the DdH, with the low layer (MM region) being frozen, with the exception of the proximal cubane, while the high layer (QM) had only the iron atoms, Fe₄-Fe₄, and the N₃, (of the DTMA bridge) kept frozen; “freezing atoms” is practiced to reduce computational time. The low layer consists of all the hydrogenase amino acids as well as its constituent cubanes, i.e., proximal, medial, and distal. The high layer is comprised of 2Fe subunit, (which is the moiety of the H-cluster), and Cβ and Sγ (appertaining to the bridging Cys382). Moreover, two linking hydrogen atoms were added between Cα and Cβ of Cys382, and between Sγ and an Fe atom of the proximal cubane. The charge equilibration method of the UFF was used to describe the electrostatic interactions within the low layer of the system. The DdH partial charges were obtained using the charge equilibration method, whereas the solvent charges were acquired from literature (qO = -0.706 a.u. and qH = 0.353 a.u.).

3.3. H-cluster Thermodynamics for O₂ Binding, Reduction, and Protonation

Figure 3-1a illustrates different O₂ inhibition pathways of the hydrogenase H-cluster; the H-clusters, 1, 5, 6, and 8, of the pathways are obtained in the reversible catalysis of H₂. Reaction 1 → 2 (path I) is endergonic for the gas phase (ΔG_gas = +9.8 kcal/mol; gas = gas phase) when O₂ binds to the fully oxidized H-cluster (1). ONIOM

Each of the three cubane/cysteine moieties (found in DdH) is comprised of a cubane plus four surrounding, depotoned cysteines which are bound to the four iron atoms of every cubane.

Where “frozen” means that the x, y, z coordinates for the atoms are kept fixed.
calculations, on the other hand, show that O$_2$ binding occurs exergonically ($\Delta G_{\text{QM/MM}} = -16.6$ kcal/mol), shedding light on the sensitivity of hydrogenases to O$_2$.

Reduction $2 \rightarrow 3$ ($\Delta G_{\text{gas}} = -110.2$ kcal/mol) as well as protonation $3 \rightarrow 4$ ($\Delta G_{\text{gas}} = -136.0$ kcal/mol) proceed exergonically; ONIOM calculations, for the hydrogenase matrix, show that e$^-$ transfer is considerably less exergonic ($\Delta G_{\text{QM/MM}} = -80.4$ kcal/mol) relative to protonation which is more exergonic ($\Delta G_{\text{QM/MM}} = -154.1$ kcal/mol). The free energy differences, in gas vs. aqueous enzyme phases for reactions $2 \rightarrow 3$ and $3 \rightarrow 4$, ensue from the effect of the electric field of the protein on the H-clusters 2, 3, and 4, and from the different phase geometries.

Cluster 4 undergoes reduction, and it ($4 \rightarrow 9$) proceeds exergonically in both gas and aqueous hydrogenase phase ($\Delta G_{\text{gas}} = -79.1$ kcal/mol; $\Delta G_{\text{QM/MM}} = -78.3$ kcal/mol).

Path II starts with the partially oxidized H-cluster 5, (Fe$_p^{\text{II}}$-Fe$_d^{\text{I}}$). The binding of O$_2$ to Fe$^\text{I}$ (Fe$_d^{\text{I}}$-O$_2$), $5 \rightarrow 3$, is firmer ($\Delta G_{\text{gas}} = -36.1$ kcal/mol) than for Fe$^{\text{II}}$ in $1 \rightarrow 2$ (Fe$_d^{\text{II}}$-O$_2$, path I). In contrast, ONIOM results show that O$_2$ binds to the partially oxidized H-cluster (Fe$_p^{\text{II}}$-Fe$_d^{\text{I}}$, $\Delta G_{\text{QM/MM}} = -7.9$ kcal/mol) as well as to the fully oxidized cluster (Fe$_p^{\text{II}}$-Fe$_d^{\text{II}}$, $\Delta G_{\text{QM/MM}} = -16.6$ kcal/mol, $1 \rightarrow 2$, path I). The remaining two reactions $3 \rightarrow 4$, and $4 \rightarrow 9$ (path II) are the same as the last two steps of path I.

In path III (Figure 3-1b), $6 \rightarrow 7$, which starts with the fully reduced H-cluster 6, (Fe$_p^{\text{I}}$-Fe$_d^{\text{I}}$), the reaction spontaneity ($\Delta G_{\text{gas}} = -36.0$ kcal/mol) is almost identical to the free energies of reaction $5 \rightarrow 3$. The gas phase free energy similarity may ensue because both loci of oxygen binding (Fe$_d^{\text{I}}$-O$_2$) are on similar oxidized species, Fe$_d^{\text{I}}$. However, ONIOM calculations show smaller reaction spontaneity difference between aqueous enzyme ($\Delta G_{\text{QM/MM}} = -20.7$ kcal/mol) and gas phase results ($\Delta G_{\text{gas}} = -36.0$ kcal/mol, $6 \rightarrow 7$), than
for O₂ binding in path I and II. In path III, protonation (7 → 9) is, once again, largely exergonic for both phases (ΔG_{gas} = -241.9 kcal/mol; ΔG_{QM/MM} = -244.9 kcal/mol). Moreover, from Figures 3-1a and 3-1b, the above ONIOM calculations show the highest H⁺ affinity because H-cluster 7 has a charge of -2 a.u., and also the H⁺ binds to a rather electronegative atom, viz., oxygen.

In the final path (IV), protonation 6 → 8 is the second most exergonic reaction in gas phase (ΔG_{gas} = -220.6 kcal/mol) mostly because of the over-all charge of -2 on the H-cluster 6. ONIOM data (as in 7 → 9) show very high H⁺ affinity (ΔG_{QM/MM} = -219.2 kcal/mol) for the hydrogenase H-cluster (in spite of the fact that the H⁺ is seized by the Fe_d as opposed to the more electronegative Fe_d-O₂, 7 → 9), which is comparatively similar to the gas phase result (ΔG_{gas} = -220.6 kcal/mol).

In the last step (8 → 9; path IV), O₂ is interposed between Fe_d and the hydride (Fe_d-O₂-H, 9). For this insertion reaction, the O₂ binding occurs exergonically in both ONIOM (ΔG_{QM/MM} = -46.4 kcal/mol) and the gas phase (ΔG_{gas} = -57.3 kcal/mol) results.

N.B., path IV shows that oxidation of Fe_p-Fe_d H-cluster is similar[‡] to the Ni_p-Fe_d hydrogenase H-cluster obtained from experimental data⁹⁶.

From the above thermodynamic results, most reaction steps proceed exergonically (except 1 → 2, gas phase), leading to oxidized cluster 9. At the end of every path, each vacant H-cluster 1, 5, or 6, in spite of its oxidation states, becomes aerobically inactivated.

[‡]The similarity for these clusters is they are first found as hydride containing H-clusters, and then undergo oxidation.
3.4 NBO Charges and Geometry Adjustment of Intermediates in the Oxidation of H-cluster

The atoms of the vacant H-clusters 1, 5, and 6 have slightly different natural bond orbital (NBO) charge distributions. For instance, for cluster 1 the NBO charges of Fe\textsubscript{p}-Fe\textsubscript{d} are $q^g_{Fe\textsubscript{p}} = 0.137$ a.u. ($q^e_{Fe\textsubscript{p}} = -0.230$ a.u.) and $q^g_{Fe\textsubscript{d}} = -0.096$ a.u. ($q^e_{Fe\textsubscript{d}} = 0.187$ a.u.), whereas in 5, the sign of the partial charges are reversed only in gas phase, i.e. $q^g_{Fe\textsubscript{p}} = -0.024$ a.u. ($q^e_{Fe\textsubscript{p}} = -0.227$ a.u.) and $q^g_{Fe\textsubscript{d}} = 0.078$ a.u. ($q^e_{Fe\textsubscript{d}} = 0.061$ a.u.). Then, the NBO charges for the Fe\textsubscript{p}-Fe\textsubscript{d} in cluster 6 (in both phases) are more negative, $q^g_{Fe\textsubscript{p}} = -0.104$ a.u. ($q^e_{Fe\textsubscript{p}} = -0.297$ a.u.), and $q^g_{Fe\textsubscript{d}} = -0.117$ a.u. ($q^e_{Fe\textsubscript{d}} = -0.160$ a.u.) because both metals are in a reduced state, unlike clusters 1 and 5. Regarding charges on the nitrogen, N\textsubscript{3}, (of the DTMA bridge), similarities are seen amongst clusters 1, 5, and 6; the NBO charges for N\textsubscript{3} are approximately -0.700 a.u., making this amine (within the above H-clusters) a relatively important H+ acceptor/donor (vs. amino acids with similar function in the juxtaposed enzyme matrix, e.g., Lys237) as suggested by Liu and Hu9. The non-bridging S\textsubscript{γ} (of Cys382) has the following charges: for 1 $q^g_{S\textsubscript{γ}} = 0.204$ a.u. ($q^e_{S\textsubscript{γ}} = 0.474$ a.u.), for 5 $q^g_{S\textsubscript{γ}} = 0.142$ a.u. ($q^e_{S\textsubscript{γ}} = 0.425$ a.u.), and for 6 $q^g_{S\textsubscript{γ}} = 0.079$ a.u. ($q^e_{S\textsubscript{γ}} = 0.285$ a.u.). Comparing clusters 1, 5 and 6, a sequential drop in NBO charges for Fe\textsubscript{p} and S\textsubscript{γ} is observed.

When H-cluster 1 is in an oxidized state (in gas phase), Fe\textsubscript{p}II-Fe\textsubscript{d}II, the CO\textsubscript{b} shifts9 towards the Fe\textsubscript{d}II, and becomes bonded to Fe\textsubscript{d}II. The shifted CO\textsubscript{b} bond distance (measured from its bridging carbon, C\textsubscript{b}, to the iron atoms) between C\textsubscript{b}—Fe\textsubscript{p}II is 3.067 Å, whereas

9 The NBO charges and bond lengths are found in the supporting information addendum. q^g represents the charges for the gas phase, while q^e stands for the aqueous enzyme phase charges.
C_b—Fe_d^{II} is 1.819 Å. When the carbonyl is close to Fe_d^{II}, CO_b-Fe_d^{II}, the fully oxidized H-cluster 1 becomes relatively stable vs. the quasi-symmetric cluster^{21} (ΔH = 14 kcal/mol), which is also shown by the NBO charge on C_b in CO_b, (0.664 a.u.). This may be due to repulsion of charges between \(q_C^C \) (0.664 a.u.) and \(q_{Fe}^p \) (0.137 a.u.), whereas for the clusters 5 and 6, the partial charges (\(q_C^C = 0.462 \) a.u., and \(q_C^C = 0.466 \) a.u., respectively) are less than in 1 because CO_b is bonded to both iron atoms. However, in the enzyme phase less shifting of the bridging carbonyl occurs, with the charges on C_b being similar (\(q_C^C = 0.536 \) a.u. for 1, \(q_C^C = 0.497 \) a.u. for 5, and \(q_C^C = 0.493 \) a.u. for 6). Comparing the reaction spontaneity for O_2 binding (in gas phase), which renders clusters 2, 3, and 7, one may observe that 3 and 7 are more stable than 2. The reason for this stability is essentially due to the formation of a hydrogen bond between the exogenous O_2 and the hydrogen H9 (bonded to N3 of the DTMA bridge) in both 3 and 7. The O_1—H9 bond distance is 2.016 Å in 3, and O_2—H9 bond distance is 1.765 Å in 7, which correlates with the NBO charges on the mentioned oxygens and hydrogens; the partial charges on oxygens are \(q_{O_1}^e = -0.235 \) a.u. in 3, and \(q_{O_2}^e = -0.493 \) a.u. in 7, whereas the charge on H9 is 0.439 a.u. in 3, and 0.454 a.u. in 7. Note that CO_b is located almost symmetrically in clusters 2, 3, and 7. Structurally, clusters 4 and 9 are similar in view of the fact that both possess a hydrogen bond (H9...O1), whereas CO_b is found to reside quasi-symmetrically in 9, but asymmetrically in 4 bonded only to Fe_p^{II}. In the enzyme phase both hydrogen bonds (in clusters 3 and 7) are formed between H9 and O2 of the exogenous oxygen (\(q_{O_2}^e = -0.210 \) a.u. in 3, \(q_{O_2}^e = -0.452 \) a.u. in 7, \(q_{H9}^e = 0.443 \) a.u. in 3, and \(q_{H9}^e = 0.445 \) a.u. in 7; O2—H9 bond distance is 1.890 Å in 3, and O2—H9 bond distance is 1.760 Å in 7).
3.5. Thermodynamics and NBO Charges Relationship for H₂O Removal from the Oxidized H-cluster

Figure 3-2 depicts a series of reactions (\(9 \rightarrow 9', 9' \rightarrow 10, 10 \rightarrow 11, 11 \rightarrow 12, 12 \rightarrow 13, \) and \(13 \rightarrow 14\)), which present the net conversion of 9 to 14. The compounds 9 and 9' are isomers; 9' is more stable by 47.2 kcal/mol, [which may be, to a certain extent, attributed to the hydrogen bond formation between H₂O and the N₃ of DTMA bridge (N₃...H-OH; i.e., 2 bonds being broken vs. 3 being formed for 9 \(\rightarrow\) 9', respectively)]. The hydrogen bond length, N₃...H, is 1.939 Å (and the angle formed by N₃...H-O is 168.7°). The distance between the iron atoms is larger in 9' (2.796 Å) than in 9 (2.605 Å). During reaction 9 \(\rightarrow\) 9', CO₅ moves away from Fe_p^[II] [i.e., for C_b-Fe_p^[II] 2.225 Å (9) \(\rightarrow\) 2.771 Å (9')]. Also, in Figure 3-2 (hydrogenase H-cluster 9, and 9'), ONIOM geometry optimizations for 9, and 9' resulted in in the same structure for the hydrogenase H-clusters (\(\Delta G_{QM/MM}\) corresponding to 9 \(\rightarrow\) 9' is 0 kcal/mol). The protonation of 9' (9' \(\rightarrow\) 10) produces a quaternary ammonium ion (NR₄⁺) within the DTMA bridge, which is exergonic for both phases, viz., \(\Delta G_{gas} = -130.7\) kcal/mol, and \(\Delta G_{QM/MM} = -138.4\) kcal/mol. To wit, the observed high reaction spontaneity for both phases is attributed to the negatively charged H-cluster 9'. In 10 \(\rightarrow\) 11, H₂O is removed from N₃ by means of hydrogen bond breaking; this reaction (vs. 9' \(\rightarrow\) 10) occurs slightly endergonically in gas phase (\(\Delta G_{gas} = +3.3\) kcal/mol), while for QM/MM results, the H₂O removal step, 10 \(\rightarrow\) 11, is exergonic (\(\Delta G_{QM/MM} = -24.1\) kcal/mol).

Reduction 11 \(\rightarrow\) 12 (Figure 3-2) is subjected to an increase in the partial charge of the exogenous oxygen (\(q''_{Oi} = -0.568\) a.u. (11) \(\rightarrow\) -0.594 a.u. (12); \(\Delta G_{gas} = -72.8\) kcal/mol).
kcal/mol). Regarding geometrical changes in 11 → 12, the bond distance between FeII\textsubscript{p}–Fe\textsubscript{d}I is increasing from 2.792 Å to 3.261 Å, while the CO\textsubscript{b} departs from FeII\textsubscript{p} [for C\textsubscript{b}–FeII\textsubscript{p} 2.766 Å (11) → 3.183 Å (12)]. For the aqueous enzyme phase result, 11 → 12 occurs with a relatively large free energy ($\Delta G_{QM/MM} = -95.4$ kcal/mol; compared to other neutral H-cluster reductions), versus the gas phase outcome ($\Delta G_{gas} = -72.8$ kcal/mol); the charge remains constant on the exogenous oxygen [$q'_{O_1} = -0.530$ a.u. (11) → -0.527 a.u. (12)].

Due to excess electron density accumulation on O\textsubscript{1} (12), the latter readily captures a proton (12 → 13; $\Delta G_{gas} = -148.9$ kcal/mol). ONIOM calculations, 12 → 13, confirm the high H+ affinity (in Figure 3-2, $\Delta G_{QM/MM} = -141.6$ kcal/mol) for the hydrogenase H-cluster, which is close to the gas phase result ($\Delta G_{gas} = -148.9$ kcal/mol). The free energy differences between the given protonations, 12 → 13 vs. 9' → 10, may arise because of the greater stability of cluster 13 vs. 10.

Finally, in Figure 3-2, an e- is acquired by the hydroxyl group (13 → 14; $\Delta G_{gas} = -77.4$ kcal/mol; $\Delta G_{QM/MM} = -86.3$ kcal/mol). Note that the H-cluster 142,21 is the starting compound in the reactivation pathway that ends in the reduced H-cluster 6 (Fe\textsuperscript{1–Fe\textsubscript{d}}).

In Figure 3-3, an alternative pathway (9' → 15, 15 → 16, 16 → 12, 12 → 13, and 13 → 14) has been investigated. The pathway starts with a reductive step, rather than with a protonation. Reaction 9' → 15 is slightly exergonic for the gas phase ($\Delta G_{gas} = -1.8$ kcal/mol), while ONIOM calculations indicate an endergonic process ($\Delta G_{QM/MM} = +25.6$ kcal/mol). 9' → 15 is another O\textsubscript{2} inhibitory step (in addition to 10 → 11 for the gas phase, Figure 3-2) which seems to explain the O\textsubscript{2} sensitivity of wild type DdH. Therefore, mutagenic studies ought to be performed on [Fe-Fe]-hydrogenase H-cluster 9' to eliminate its inhibitory path (viz., 9' → 15). When a H+ is in the vicinity of H-cluster
15, 15 → 16 proceeds with the greatest spontaneity (of Figures 3-2 and 3-3) in gas phase ($\Delta G_{\text{gas}} = -199.7$ kcal/mol) because 15 has a net charge of -2 a.u. Note that the ONIOM findings, for step 15 → 16, confirm the highest free energy ($\Delta G_{\text{QM/MM}} = -259.9$ kcal/mol) of all the potential reaction mechanisms analyzed for the [Fe-Fe]-hydrogenase H-cluster, while the gas phase result is about 60 kcal/mol less exergonic. Water elimination in gas phase, (16 → 12) is slightly endergonic ($\Delta G_{\text{gas}} = +1.3$ kcal/mol), whereas for the aqueous enzyme phase it is significantly exergonic ($\Delta G_{\text{QM/MM}} = -23.6$ kcal/mol). Note that both 10 (Figure 3-2) and 16 (Figure 3-3) lead to the same compound (12) by H_2O elimination. The thermodynamic data are similar for both reactions, 10 → 11 and 16 → 12, because Fe_d is found in the same oxidation state (Fe$_d^I$) in both 10 and 16, but Fe_p (being further away from the focal catalytic locus, Fe$_d$) has different oxidation states [Fe$_p^{II}$ (10); Fe$_p^I$ (16)]. The in silico ONIOM result of the H_2O removal step (Figure 3, 16 → 12), is exergonic ($\Delta G_{\text{QM/MM}} = -23.6$ kcal/mol), just like in step 10 → 11, (Figure 3-2, $\Delta G_{\text{QM/MM}} = -24.1$ kcal/mol). Also, close free energies are observed for the gas phases of 16 → 12 ($\Delta G_{\text{gas}} = +1.3$ kcal/mol) and 10 → 11 ($\Delta G_{\text{gas}} = +3.3$ kcal/mol). Next, reactions 12 → 13, and 13 → 14 proceed exergonically [(\$\Delta G_{\text{gas}} = -148.9$ kcal/mol; $\Delta G_{\text{QM/MM}} = -141.6$ kcal/mol), and ($\Delta G_{\text{gas}} = -77.4$ kcal/mol; $\Delta G_{\text{QM/MM}} = -86.3$ kcal/mol), respectively], just as (previously discussed) in Figure 3-2. The following reactions, 10 → 11 (Figure 3-2) and 16 → 12 (Figure 3-3), show that the entire (oxidative inhibitory H-cluster) path has difficulties proceeding to 14 in gas phase.

From the above, it can be seen that there is only one exergonic path (Figure 3-2) from the oxidized H-cluster 9' to the hydroxylated cluster 14 in aqueous enzyme phase. A path starts with H^+ transfer (Figure 3-2), while the other begins by e$^-$ transfer (Figure
3). The gas phase H_2O elimination, from the oxidized H-cluster, proceeds endergonically in both pathways (Figure 3-2 and 3-3).

3.6. Frontier Molecular Orbital Analysis

Electronic contributions are now presented for both phases, which are adduced by the frontier molecular orbitals in conjunction with the previously presented free energies.

Upon reduction of open-shell H-clusters, it is observed that an e^- is obtained by a semi-occupied molecular orbital (SOMO), while the closed-shell clusters receive an e^- into the lowest virtual molecular orbital (LUMO). However, when a H^+ is in the proximity of an open-shell H-cluster, it can form a σ-bond probably through the interaction of the e^- in the highest occupied molecular orbital (HOMO), or through the contributions of both HOMO and SOMO, with the proviso that the SOMO is sufficiently low in energy relative to HOMO. Alternatively, when a H^+ is near a closed-shell cluster, the σ-bond probably ensues mainly due to the contribution of e^-s from HOMO with the H^+.

Gas phase thermodynamic properties, of the reactions in Figures 3-1a, 3-1b, 3-2, and 3-3, are being examined with regard to frontier molecular orbitals (FMO). Thus, in 2 the LUMO (Figure 3-4) is mostly localized on the exogenous O_2 and N_3, which is also corroborated by an increase of NBO charges on O_2 and N_3 in 3 upon reduction of H-cluster 2 \[q'_{\text{O}_2} = -0.046 \text{ a.u.} \rightarrow -0.235 \text{ a.u.} \quad (2) \rightarrow -0.568 \text{ a.u.} \rightarrow -0.717 \text{ a.u.} \quad (3) \].

Aqueous enzyme phase thermodynamic properties are next being examined for the reactions of Figs. 3-1, 3-2, and 3-3 relative to the frontier molecular orbitals (FMO).
Figure 3-4. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO (2), HOMO\(_{\alpha}\) (3), HOMO\(_{\beta}\) (3), LUMO\(_{\alpha}\) (4), LUMO\(_{\beta}\) (4), SOMO\(_{\alpha}\) (4), SOMO\(_{\beta}\) (4), HOMO (6), and HOMO (7).
Figure 3-5. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters HOMO (9), LUMO (9), LUMO (11), HOMO_α (12), HOMO_β (12), SOMO_α (12), LUMO_α (13), SOMO_β (13), and HOMO_α (15).
For 2, LUMO [Figure 3-4, (compare gas phase)] is mostly localized on Sγ of Cys
(as opposed to cluster 2 in gas phase) owing to the electronic contribution of the proximal
cubane. Additionally, the localization of LUMO is supported by a decrease of NBO
charge on Sγ in 3 upon reduction of H-cluster 2 \([q^c_{S\gamma} = 0.471 \text{ a.u. (2)} \rightarrow 0.388 \text{ a.u. (3)}] \).

For open-shell clusters, unrestricted B3LYP calculations have been performed
which resulted in different quantum mechanical (QM) energies and molecular orbital
(MO) coefficients for α and β electrons.

In gas phase, the HOMO_α (the lower energy HOMO containing a spin up e_) of 3 is
predominantly localized on the exogenous O_2, where the protonation also occurs. However, the HOMO_β (the higher energy HOMO with its spin down e_) is localized on
the DTMA bridge (Chapter II).

For the aqueous enzyme phase, the HOMO_α of 3 is less localized on the exogenous
O_2 (relative to the gas phase situation), but this orbital is essentially localized on the
DTMA bridge.

The HOMO_β, relative to the gas phase electronic distribution, is more localized on
the exogenous O_2 (Figure 3-4), supporting the greater spontaneity of H\(^+\) transfer (3 \(\rightarrow \) 4).

The SOMO_α of compound 4, in gas phase, is mostly localized on the DTMA
bridge, and, to some extent, on the exogenous O_2 and the Fe atoms (Figure 4). SOMO_β is
more delocalized than SOMO_α. Following the e\(^-\) transfer 4 \(\rightarrow \) 9, the main change in
partial charges occurs on the iron atoms \([q^c_{Fe\beta} = -0.141 \text{ a.u. (4)} \rightarrow -0.003 \text{ a.u. (9)}]; q^c_{Fe\alpha} = 0.464 \text{ a.u. (4)} \rightarrow 0.025 \text{ a.u. (9)}] \). The change in NBO charges in 4 \(\rightarrow \) 9 can be
corroborated by LUMO_α. It is noteworthy that the e\(^-\) is transferred into the LUMO_α (-0.15381 Hartrees), for its energy is lower than that of SOMO_β (-0.14425 Hartrees).
the hydrogenase, LUMO_{α} (4, Figure 3-4) is also lower in energy than SOMO_{β} (4, Figure 3-4) (E_{LUMO_{α}^{\text{Enzyme}}} = -0.35944 Hartrees, E_{SOMO_{β}^{\text{Enzyme}}} = -0.35907 Hartrees), implying that the e^{-} is transferred to and localized on S_{γ} of Cys^{382}. However, this difference in electron localization is not reflected in the reaction thermodynamics, because 4 \rightarrow 9 is similarly exergonic in both phases.

The HOMO of 6, in gas phase, is localized on the Fe_{d} and the CO_{b}, whereas the HOMO of 7 is primarily localized on the exogenous O_{2} but is less diffused over CO_{b} (Chapter II). The proton binds with high affinity to Fe_{d} of H-clusters 6 (Path IV) and 7 (Path III) because the HOMO orbitals of these clusters are localized on Fe_{d} and exogenous O_{2}, respectively. In particular, 7 manifestly displays where protonation occurs, viz., on the exogenous O_{2} (Figure 3-1b).

In aqueous enzyme phase, similar electron orbital distributions are encountered for clusters 6 (Path IV) and 7 (Path III), except that S_{γ} (of Cys^{382}) incurs MO distributions, which may be sustained by the proximal cubane (that facilitates the e^{-} transfer).

The HOMO of 9', is delocalized throughout the cluster and, has smaller proton affinity in comparison to 6 and 7. However, higher HOMO 9' amplitude is found on the exogenous O_{1}, DTMA bridge, and the two irons which may explain why the N3 is being protonated in this case.

For cluster 11, the LUMO is more localized over the Fe_{p} than on Fe_{d}, extending from the irons towards the CO_{b} via a linear combination between the e_{g} orbitals of the iron atoms with the CO_{b} π orbitals\(^{9}\), thus the e^{-} transfer, 11 \rightarrow 12, changes the oxidation state of Fe_{p}. However, for ONIOM, the LUMO is localized on S_{γ} which is being bereft of
e’s via an inductive effect of the vicinal cubanes \(q'_{\text{cy}} = 0.464 \text{ a.u. (11) vs. 0.333 \text{ a.u. (12)}} \).

Both HOMO\(_{\alpha}\) and HOMO\(_{\beta}\), of 12, are generally localized on the Fe\(_p\) (Figure 5). However, in this case, the protonation does not occur at the Fe\(_d\), instead it occurs at the exogenous O1 since its NBO charge is very negative, i.e., \(q_{\text{O1}} = -0.594 \text{ a.u. as opposed to} \), \(q_{\text{Fe}} = 0.126 \text{ a.u.} \). On the other hand, for the aqueous enzyme phase, both HOMO\(_{\alpha}\) and HOMO\(_{\beta}\), of 12, differ in their distribution, especially HOMO\(_{\alpha}\) having orbital amplitude on the exogenous oxygen, making it a good H\(^+\) acceptor.

Cluster 13 is an open-shell cluster, so upon its reduction an e' may either enter a LUMO\(_{\alpha}\) or a SOMO\(_{\beta}\) depending on their relative orbital energies. In the reductive process of H-cluster 13 (for gas phase), the in silico data explicitly shows that the orbital energy of LUMO\(_{\alpha}\) (\(E_{\text{LUMO}_{\alpha}^{\text{gas}}} = -0.14850 \text{ Hartrees} \)) is lower than the energy of SOMO\(_{\beta}\) (\(E_{\text{SOMO}_{\beta}^{\text{gas}}} = -0.13886 \text{ Hartrees} \)). Nevertheless, these energies are almost identical in the aqueous enzyme phase (\(E_{\text{LUMO}_{\alpha}^{\text{enzyme}}} = -0.35177 \text{ Hartrees}, E_{\text{SOMO}_{\beta}^{\text{enzyme}}} = -0.35185 \) Hartrees). Thus, upon reduction of cluster 13, the e' could enter into LUMO\(_{\alpha}\) (Figures 5 and 7 of both phases). Upon analysis of the NBO charges of clusters 13 and 14, the OH\(^-\) and Fe\(_d\) of 14 acquire most of the partial charge ceded by Fe\(_p\) during the reductive process 13 \(\rightarrow \) 14.

Finally, in gas phase H-cluster 15 undergoes a protonation reaction on N3, which is substantiated by the NBO negative charge decrease, for both phases, on N3 \([q'_{\text{N3}} = -0.267 \text{ a.u. (15)} \rightarrow -0.187 \text{ a.u. (16)}] \), while in protein environment the exogenous O\(_2\) is protonated \([q'_{\text{O2}} = -0.510 \text{ a.u. (15)} \rightarrow -1.024 \text{ a.u. (16)}] \).
In conclusion, several possible pathways have been investigated for the oxidation of [Fe-Fe]-hydrogenase H-cluster, and they all proceed spontaneously to cluster, 9. Each pathway is initiated by an intermediate (1, 5, 6, and 8) of the catalytic cycles in H\textsubscript{2} metabolism.

In gas phase, O\textsubscript{2} binding is endergonic for the fully oxidized H-cluster 1 and exergonic for 8; however, it is exergonic for the partially oxidized 5 and reduced 6 clusters. But for aqueous enzyme phase, the O\textsubscript{2} binding is exergonic for all oxidation states. This suggests that the fully oxidized state of the H-cluster 1 in enzyme environment is more sensitive to O\textsubscript{2} inhibition.

Our calculations show that in the protein environment (Figure 3-2, and 3-3) the hydroxylated H-cluster 14, which is the end product of hydrogenase inhibition, is obtained from 9 via the fully exergonic reaction pathway that starts by means of protonation (Figure 3-2). Antithetically, the reaction pathway that is initiated by means of reduction (Figure 3-3, aqueous enzyme phase) does not proceed to the hydroxylated H-cluster 14 due to this very endergonic step (\(\Delta G\text{QM/MM} = +25.6 \text{ kcal/mol}\)).

The inhibitory steps in gas phase (Figure 3-2, and 3-3) consist of water removal from a closed shell, 10, and an open shell, 16, H-cluster (\(\Delta G\text{gas} = +3.3 \text{ and } +1.3 \text{ kcal/mol, respectively}\), while in the aqueous enzyme phase there is one inhibitory step, i.e., an e- transfer from an open shell H-cluster (9', \(\Delta G\text{QM/MM} = +25.6 \text{ kcal/mol}\)).

From gas phase geometrical analysis CO\textsubscript{b} shows a displacement away from Fe\textsubscript{p}II (9 → 9'), but in the aqueous enzyme phase this CO\textsubscript{b} translocation is not observed; the observed different phase behavior in the protein environment may be due to the imposed immobility on the iron atoms (by means of "freezing" them).
For the gas phase, cluster 11, LUMO is more localized over the Fe$_p$ than on Fe$_d$, extending from the iron atoms towards the CO$_b$ via a linear combination between the e$_g$ orbitals of the iron atoms with the CO$_b$ π orbitals, thus the e$^-$ transfer, 11 → 12, changes the oxidation state of Fe$_p$. However, for the protein environment, the LUMO is localized on S$_γ$ which is being bereft of e$^-$s via an inductive effect of the vicinal cubanes [$q'_{Sγ} = 0.464$ a.u. (11) vs. 0.333 a.u. (12)].

Lastly, an interesting result from the FMO gas phase analysis is that an e$^-$ is transferred to a virtual α orbital rather than to the virtual β orbital. We also found that O$_2$ inhibited [Fe-Fe]-hydrogenase H-cluster has OH$^-$ bonded to the Fe$_d$, and that OH$^-$ is the end product of O$_2$ metabolism, with all aqueous enzyme phase reaction pathways proceeding exergonically.
References

(84) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III.; Skiff, W. M. J.

(85) Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J.
J. Mol. Struct. (Theochem) **1999**, *1*, 461.

(86) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Dapprich, S. D., A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,
S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian,

4.1. General Considerations

[Fe-Fe]-hydrogenases are enzymes that catalyze the reversible reduction of protons to hydrogen \((2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2)\) in anaerobic media\(^{2,3}\), and are considered one of the oldest enzymes in nature\(^4\). The eventual elucidation of the catalytic mechanism of hydrogen synthesis may avail researches produce clean hydrogen fuel, using certain prokaryotes and eukaryotes\(^5-50\).

The hydrogenase H-cluster (Figure 2-1) is the active site and is comprised of two iron atoms (Fe\(_p\)-Fe\(_d\), i.e., proximal and distal iron). The di-iron atoms are coordinated by endogenous ligands, i.e., two cyanides, two terminal carbonyls, and a bridging carbonyl
(CO$_b$). Also, 1,3-di(thiomethyl)amine (DTMA) and propanedithiolate (PDT) are considered potential bidentate ligands of the di-iron subcluster$^{51-53}$.

A cubane cluster, [4Fe-4S] (which also belongs to the H-cluster), is bonded to S_i of Cys382, while the former (S_j) is bound to Fe$_p$ of the H-cluster.

Previous Density Functional Theory (DFT) as well as hybrid quantum mechanics/molecular mechanics (QM/MM) calculations$^{2,54-62}$ have been successful in clarifying some aspects of the catalytic properties of the H-cluster. As in similar computational studies2,55, CH$_3$-S is substituted for cysteine, and a H$^+$ is exchanged for the proximal cubane. Furthermore, computational and experimental$^{1,2,51,53,55,60,62-88}$ [Fe-Fe]-hydrogenase H-cluster (and synthetic H-cluster-like compounds) research sheds light on the mechanism and the potential redox states of the [Fe-Fe]-hydrogenase H-cluster subunit, Fe$_p$-Fe$_d$; Fe$_p$I-Fe$_d$I is the reduced hydrogenase H-cluster subunit, Fe$_p$II-Fe$_d$I is the partially oxidized enzyme subunit, and Fe$_p$II-Fe$_d$II is the fully oxidized, inactive enzyme H-cluster subunit.

The oxidized H-cluster, Fe$_p$II-Fe$_d$II, has a OOH$^-$, H$_2$O molecule or an OH$^-$ bound to the Fe$_d$II55. In our previous investigation67, we have inferred that a vacant Fe$_p$II-Fe$_d$II could also be a viable intermediate in H$_2$ synthesis. Regardless of [Fe-Fe]-hydrogenase H-cluster subunit redox states, the proximal cubane always retains a 2+ oxidation state, [Fe$_4$S$_4$]$^{2+}$. The partially oxidized H-cluster (containing Fe$_p$II-Fe$_d$I), H$_{ox}$, is also the active species of the hydrogenase enzyme. According to Liu and Hu55, Fe$_p$I-Fe$_d$I is also the cluster having a tendency for protonation, when a proton is captured from the side chain of a near by amino acid, such as Lys237.

Hydrogenase X-ray crystallography and spectroscopic studies, with the latter having been obtained from Clostridium pasteurianum (CP) and Desulfovibrio desulfuricans (Dd), led to a more detailed understanding of the biochemical role of these enzymes.

The X-ray crystal structure of CPI hydrogenase shows an oxygen species that may be OH\(^{-}\) or H\(_2\)O bound to Fe\(_d\) of the H-cluster. However, based on computational results of Tye et al., and according to X-ray crystal structure, CPI has OOH\(^{-}\) in its inactive form. Hence, we attempt to ascertain if oxygen binding to distal iron (Fe\(_d\)-O\(_2\)) can be hindered by residue mutations within the surrounding apoprotein of the catalytic site.

The current investigation is comprised of three parts. (1) Wild-type and residue mutated [Fe-Fe]-hydrogenase thermodynamic analysis for O\(_2\) hindering reactions (from binding to Fe\(_d\)) for the three different oxidation states of the di-iron subcluster, viz., Fe\(_p^I\)-Fe\(_d\)^{I}, Fe\(_p^II\)-Fe\(_d\)^{I}, and Fe\(_p^II\)-Fe\(_d\)^{II}. (2) Geometrical analyses that were carried out for significant interatomic distances of Fe\(_d\)-O\(_2\) and the extrinsic ligand, O-O, and of CO\(_b\) bond distances to the di-iron atoms. The remaining subdivision, (3), is the electronic analysis which discusses the frontier molecular orbitals.

4.2. Methodology

In the current investigation, QM/MM [DFT/UFF\(^{89}\)] methodologies have been used for [Fe-Fe]-hydrogenase. The ONIOM\(^{90}\) method (DFT for the QM region, and the universal force field, UFF, for the MM region, implemented in Gaussian03\(^{91}\)) has been
used to determine the reaction thermodynamics, i.e., ΔG, for the oxygen binding reactions to the [Fe-Fe]-hydrogenase H-cluster (situated within the enzyme matrix).

The electronic structure of H-cluster (except the proximal cubane) is investigated by QM (Gaussian 03) using DFT method (B3LYP functional92,93, with 6-31+G(d,p) basis set. In accordance with experimental and in silico data, low spin states (singlet, and doublet) and low oxidation states (I, and II) have been selected for the Fe atoms2,60.

The Gromacs software program94,95 was employed to add hydrogen atoms, water, and counter ions to the X-ray crystal structure of DdH [Brookhaven Protein Data Bank (id.1HFE)]. Hydrogen atoms and 1 nm layer of water (2043 H\textsubscript{2}O molecules) have been added to the PDB DdH structure. Na+ cations have been randomly inserted into the solvent to neutralize the negative charges encountered in DdH, e.g., the -2 a.u. found on the cubane/cysteine moieties, or in the H-cluster (when needed)96. For both basic and acidic amino acids, charges were assigned by Gromacs algorithm to be at pH 7. ONIOM geometry optimizations have been performed on DdH, with the low layer (MM region) being frozen*, with the exception of the proximal cubane; for the high layer (QM), only the iron atoms, Fe\textsubscript{p}-Fe\textsubscript{d}, and the N (of the DTMA bridge) have been kept frozen**.

The low layer consists of all metalloenzyme residues as well as its constituent cubanes, i.e., proximal, medial, and distal. The high layer is comprised of 2Fe subunit, *Where “frozen” means that x, y, z atom coordinates are kept fixed to reduce computational time.

** For the fully and partially oxidized vacant di-iron subunits, additional optimizations have been carried out by freezing these atoms: Fe\textsubscript{p}-CO\textsubscript{t} (where CO\textsubscript{t} stands for terminal carbonyl). The extra optimizations have been done because the above mentioned di-iron subunits are more likely to undergo CO\textsubscript{t} migration.
(which is a moiety of the H-cluster), and Cβ and Sγ (of the bridging Cys382). Two linking hydrogen atoms were added between Cα and Cβ of Cys382, and between Sγ and an Fe atom of the proximal cubane.

The charge equilibration method of the UFF was used to describe the electrostatic interactions within the low layer of the system97. The DdH partial charges were obtained using the charge equilibration method (QEq), whereas the solvent charges were acquired from literature97 (qO = -0.706 a.u. and qH = 0.353 a.u.).

Residue mutations were carried out within the adjacent apoenzyme environment (to H-cluster) in order to hinder O2 from binding to the open coordination site (Fe_d) of DdH H-cluster.

Residue mutations are comprised of deletions and substitutions which are performed 8 Å radially outward from Fe_d. In order to screen the thirty polar residues located in the 8 Å apoenzyme layer, individual residue deletions are carried out to ascertain what residue substitutions should be made in order to impede O2 from bonding to Fe_d.

Residue deletions and substitutions are performed for the three di-iron subcluster oxidation states, viz., Fe_p^{ll}-Fe_d^{ll}, Fe_p^{ll}-Fe_d^{l}, and Fe_p^{l}-Fe_d^{l} of [Fe-Fe]-hydrogenase H-cluster.

4.3. [Fe-Fe]-hydrogenase H-cluster Thermodynamics for O2 Binding

In Table II, two values are given for the wild-type DdH. The first row presents Gibbs’ energies (ΔG°_{QM/MM}) for the wild-type enzyme with all the charges obtained by means of QEq method for the MM layer, which include the neighboring charges of 2Fe
subunit, viz., over proximal cubane, MM section of Cys, C (of the peptide bond) from Gly, and over N of Val (all MM charges are provided in the supplementary material).

The second wild-type DdH energy values ($\Delta G_{\text{QM/MM}}$) have also been calculated [by the same QM/MM method as in the first row calculations], but the neighboring charges of the 2Fe subunit have been deleted.

The deletion of the neighboring charges of the 2Fe subunit is carried out in order to remove the wavefunction distortions. However, the effects of the neighboring charges are investigated because they exist in the studied enzyme.

The difference in the wave function polarization (with or without neighboring charges) is quantified by natural bond orbital charges (NBO, Figure 1a, and 1b). The strongest effect of the MM electric field is on the NBO charges of Sγ of Cys, and the linking atom (Hℓ) attached to it.

First, in the presence of the neighboring charges, abnormal NBO charge differences are observed between Sγ and Hℓ. This charge differences provide highly positive charges on Sγ (ranging from 0.285 to 0.474 a.u.) and highly negative charges on Hℓ (ranging from -0.443 to -0.262 a.u.), which is essentially due to the negatively charged sulfurs of the proximal cubane. When no neighboring charges are used for MM layer, the charge differences between Sγ and Hℓ are much smaller [than in the presence of the neighboring charges; (NBO charges of Hℓ range from 0.219 to 0.288 a.u.; NBO charges of Sγ range from 0.051 to 0.148 a.u.)], for the electronegativity of H is ca. 2.1 and for S is ca. 2.5.

* Except for the cubane sulfur (Sδc) situated diagonally from the cubane Fe, which is bound to cysteinyl sulfur of Cys.
Table II. Wild-type and Residue Removed DdH - First 14 Amino Acids - Gibbs’ Energies for O2 Binding

<table>
<thead>
<tr>
<th>Reaction:</th>
<th>Fell-Fell +O2</th>
<th>Fell-Fel +O2</th>
<th>Fel-Fel +O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type DdH*</td>
<td>-16.6</td>
<td>-7.9</td>
<td>-20.7</td>
</tr>
<tr>
<td>Wild-type DdH</td>
<td>-10.6</td>
<td>+2.6</td>
<td>-20.5</td>
</tr>
<tr>
<td>ΔSer62s**</td>
<td>-9.0</td>
<td>+2.5</td>
<td>-20.4</td>
</tr>
<tr>
<td>ΔArg111</td>
<td>-11.2</td>
<td>+2.2</td>
<td>-22.9</td>
</tr>
<tr>
<td>ΔTyr112</td>
<td>-10.8</td>
<td>-3.2</td>
<td>-21.1</td>
</tr>
<tr>
<td>ΔAsp144</td>
<td>-8.4</td>
<td>+4.6</td>
<td>-20.5</td>
</tr>
<tr>
<td>ΔThr145</td>
<td>-11.1</td>
<td>+3.9</td>
<td>-21.5</td>
</tr>
<tr>
<td>ΔGlu146</td>
<td>-8.7</td>
<td>+2.7</td>
<td>-21.6</td>
</tr>
<tr>
<td>ΔThr148</td>
<td>-10.9</td>
<td>+2.1</td>
<td>-21.2</td>
</tr>
<tr>
<td>ΔAsp150</td>
<td>-9.4</td>
<td>+1.9</td>
<td>-22.8</td>
</tr>
<tr>
<td>ΔThr152</td>
<td>-9.2</td>
<td>+4.1</td>
<td>-18.6</td>
</tr>
<tr>
<td>ΔGlu155</td>
<td>-11.1</td>
<td>+2.2</td>
<td>-21.0</td>
</tr>
<tr>
<td>ΔThr176</td>
<td>-10.1</td>
<td>+3.0</td>
<td>-19.6</td>
</tr>
<tr>
<td>ΔSer177</td>
<td>-10.8</td>
<td>+4.4</td>
<td>-21.3</td>
</tr>
<tr>
<td>ΔGln183</td>
<td>-10.8</td>
<td>+2.9</td>
<td>-19.7</td>
</tr>
<tr>
<td>ΔSer198</td>
<td>-10.5</td>
<td>+2.7</td>
<td>-20.3</td>
</tr>
</tbody>
</table>

*Gibbs’ energies (kcal/mol) for the wild-type enzyme; the MM layer include the neighboring charges of 2Fe subunit, viz., over proximal cubane (except S_{c,d}), MM section of Cys^382, C (of the peptide bond) from Gly^381, and over N of Val^383.

**Residue removed DdH; s = small chain.
Table III. Residue Removed DdH - Next 16 Amino Acids - Gibbs’ Energies for O₂ Binding

<table>
<thead>
<tr>
<th>Reaction:</th>
<th>Fell-Fel +O₂</th>
<th>Fell-Fel +O₂</th>
<th>Fell-Fel +O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔLys<sup>201</sup>*</td>
<td>-10.6</td>
<td>+2.5</td>
<td>-20.9</td>
</tr>
<tr>
<td>ΔSer<sup>202</sup></td>
<td>-7.9</td>
<td>+3.9</td>
<td>-17.3</td>
</tr>
<tr>
<td>ΔAsn<sup>207</sup></td>
<td>-10.3</td>
<td>+2.6</td>
<td>-21.1</td>
</tr>
<tr>
<td>ΔSer<sup>230</sup></td>
<td>-10.3</td>
<td>+2.9</td>
<td>-19.8</td>
</tr>
<tr>
<td>ΔLys<sup>237</sup></td>
<td>-10.0</td>
<td>-2.7</td>
<td>-24.5</td>
</tr>
<tr>
<td>ΔLys<sup>238</sup></td>
<td>-11.7</td>
<td>+2.2</td>
<td>-21.0</td>
</tr>
<tr>
<td>ΔGlu<sup>240</sup></td>
<td>-10.7</td>
<td>+3.6</td>
<td>-20.9</td>
</tr>
<tr>
<td>ΔThr<sup>257</sup></td>
<td>-10.7</td>
<td>-2.9</td>
<td>-20.5</td>
</tr>
<tr>
<td>ΔThr<sup>259</sup></td>
<td>-11.2</td>
<td>-3.0</td>
<td>-20.7</td>
</tr>
<tr>
<td>ΔThr<sup>260</sup></td>
<td>-10.5</td>
<td>+2.7</td>
<td>-20.3</td>
</tr>
<tr>
<td>ΔSer<sup>289</sup></td>
<td>-10.3</td>
<td>-2.9</td>
<td>-20.7</td>
</tr>
<tr>
<td>ΔThr<sup>294</sup></td>
<td>-10.1</td>
<td>+3.2</td>
<td>-20.1</td>
</tr>
<tr>
<td>ΔThr<sup>299</sup></td>
<td>-10.5</td>
<td>-2.8</td>
<td>-20.5</td>
</tr>
<tr>
<td>ΔGlu<sup>374</sup></td>
<td>-10.1</td>
<td>+4.7</td>
<td>-21.5</td>
</tr>
<tr>
<td>ΔTyr<sup>375</sup></td>
<td>-10.4</td>
<td>+2.7</td>
<td>-20.7</td>
</tr>
<tr>
<td>ΔGln<sup>388</sup></td>
<td>-10.8</td>
<td>+2.5</td>
<td>-20.4</td>
</tr>
</tbody>
</table>

*Residue removed DdH; the Gibbs’ energies are given in kcal/mol.
Figure 4-1a. The NBO charges of 2Fe subunit with (MM layer) neighboring charges.
Figure 4-1b. The NBO charges of 2Fe subunit without (MM layer) neighboring charges.
For the Fe atoms of the vacant di-iron subunits, \(\text{Fe}_p^1-\text{Fe}_d^1 \), \(\text{Fe}_p^{II}-\text{Fe}_d^1 \), and \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \), the following trend is observed. When using neighboring charges, the NBO charges of \(\text{Fe}_p \) (for all di-iron subunit oxidation states) become more negative. However, the opposite NBO charge trend is observed for \(\text{Fe}_d \) (with neighboring charges).

On the other hand, for the Fe atoms of the \(\text{O}_2 \) inactivated di-iron subunits, \(\text{Fe}_p^1-\text{Fe}_d^1 \), \(\text{Fe}_p^{II}-\text{Fe}_d^1 \), and \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \), a similar trend is observed for NBO charges (as for the vacant di-iron subunits) of both \(\text{Fe}_p \) and \(\text{Fe}_d \), except that NBO charges shift less.

In both cases, with or without neighboring charges, the NBO charges found on the exogenous \(\text{O}_2 \), of \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \), remain relatively constant. However, for the \(\text{Fe}_p^1-\text{Fe}_d^1 \), \(\text{Fe}_p^{II}-\text{Fe}_d^1 \), and \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \), the NBO charges located on the extrinsic \(\text{O}_2 \), become less negative due to neighboring charge induction, hence hindering \(\text{O}_2 \) from leaving.

Finally, for both vacant and \(\text{O}_2 \) inactivated di-iron subunits, the C charges of \(\text{CO}_b \) remain relatively constant upon utilizing neighboring charges.

Generally, the effect of the neighboring charges on Gibbs’ energy (for \(\text{Fe}_p^1-\text{Fe}_d^1 \), \(\text{Fe}_p^{II}-\text{Fe}_d^1 \), and \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \)) is to increase the spontaneity for \(\text{O}_2 \) binding. However, this effect is rather small for the reduced di-iron subcluster.

Thus, the more realistic approach of \(\text{O}_2 \) inactivation for the di-iron subunits, is when the MM layer is bereft of neighboring charges, for, as shown in the crystal structure of DdH, \(\text{Fe}_p^{II}-\text{Fe}_d^1 \) has little propensity for \(\text{O}_2 \) bonding\(^{53} \).

In Figure 4-2, \(\text{O}_2 \) inhibition pathways are presented, in which three different oxidation states, for the examined H-clusters, are studied, i.e., \(\text{Fe}_p^{II}-\text{Fe}_d^{II} \) (1), \(\text{Fe}_p^{II}-\text{Fe}_d^1 \) (3), and \(\text{Fe}_p^1-\text{Fe}_d^1 \) (5), where (1), (3), and (5), are the cluster identifiers.
Figure 4-2. Oxidation reactions of O_2 with the fully oxidized (1), partially oxidized (3), and reduced (5) di-iron subunits. Also the protonation with the reduced (5) di-iron subunit is depicted. The charge and multiplicity are provided in square brackets.
In gas phase, the 1st reaction, \(1 \rightarrow 2 \), is endergonic (\(\Delta G_{\text{gas}} = +9.8 \text{ kcal/mol; gas = gas phase} \)) when O₂ binds to the fully oxidized H-cluster (1). Hybrid QM/MM calculations in aqueous enzyme phase, on the other hand, show that O₂ binding occurs exergonically (\(\Delta G_{\text{QM/MM}}^{c} = -16.6 \text{ kcal/mol; } \Delta G_{\text{QM/MM}} = -10.6 \text{ kcal/mol} \)), reconfirming the affinity of hydrogenases for O₂.

In gas phase, the 2nd reaction, \(3 \rightarrow 4 \), starts with the partially oxidized H-cluster (3), (Fe^{II}-Fe^I), and the bonding of O₂ to Fe_d¹, in this case, occurs rather exergonically (\(\Delta G_{\text{gas}} = -36.1 \text{ kcal/mol} \)) relative to step 1 \(\rightarrow \) 2.

Alternatively, ONIOM results show that O₂ binding occurs spontaneously when neighboring charges are used (Fe^{II}-Fe^I, \(\Delta G_{\text{QM/MM}}^{c} = -7.9 \text{ kcal/mol} \)) to the partially oxidized H-cluster, but when the MM layer is deprived neighboring charges, then O₂ is barred from binding to the coordination site (\(\Delta G_{\text{QM/MM}} = +2.6 \text{ kcal/mol} \)).

In gas phase, the 3rd reaction, \(5 \rightarrow 6 \), starts with the reduced H-cluster 5, (Fe^I-Fe^I); the process occurs spontaneously (\(\Delta G_{\text{gas}} = -36.0 \text{ kcal/mol} \)), which is almost identical to the Gibbs’ energy of reaction 3 \(\rightarrow \) 4. The gas phase Gibbs’ energy similarity (between 5 \(\rightarrow \) 6 and 3 \(\rightarrow \) 4) may result because both loci of oxygen binding (Fe_d¹-O₂) are on similar oxidized species, Fe_d¹.

However, the hybrid QM/MM calculations 5 \(\rightarrow \) 6 show a small free energy difference between the aqueous enzyme (\(\Delta G_{\text{QM/MM}}^{c} = -20.7 \text{ kcal/mol; } \Delta G_{\text{QM/MM}} = -20.5 \text{ kcal/mol} \)) and gas phase results (\(\Delta G_{\text{gas}} = -36.0 \text{ kcal/mol} \)).

In gas phase, Figure 4-2, the protonation reaction, \(5 \rightarrow 7 \), is very exergonic (\(\Delta G_{\text{gas}} = -220.6 \text{ kcal/mol} \)), essentially because the charge on H-cluster 5 is -2 a.u.. ONIOM calculations also show a very high H⁺ affinity (\(\Delta G_{\text{QM/MM}}^{c} = -219.2 \text{ kcal/mol} \)) for the
hydrogenase H-cluster, which is considerably close to the gas phase result ($\Delta G_{\text{gas}} = -220.6$ kcal/mol).

From Figure 4-2, thermodynamic results show that most reactions considered proceed exergonically with the exception of $1 \rightarrow 2$ (gas phase).

Residue screening on an 8 Å layer surrounding the H-cluster has been carried out. First residue deletions and then residue substitutions were performed.

For O_2 binding to Fe_{d}^{II} (of the oxidized biferrous hydrogenase H-cluster subsite, $Fe_{p}^{II}-Fe_{d}^{II}$, (1)), results were obtained that are a function of stereoelectronic effects from the juxtaposed residues on the catalytic site. Both neutral polar and charged polar residue deletions gave good results, e.g., ΔSer^{62}s, ΔAsp144, ΔGlu146, ΔAsp150, ΔThr152, and ΔSer202, with $\Delta G_{\text{QM/MM}} = -9.0$ kcal/mol, $\Delta G_{\text{QM/MM}} = -8.4$ kcal/mol, $\Delta G_{\text{QM/MM}} = -8.7$ kcal/mol, $\Delta G_{\text{QM/MM}} = -9.4$ kcal/mol, $\Delta G_{\text{QM/MM}} = -9.2$ kcal/mol, and $\Delta G_{\text{QM/MM}} = -7.9$ kcal/mol, respectively.

Moreover, by carrying out residue deletions within the previously mentioned apoenzyme layer, it is observed that O_2 is hindered from binding to Fe_{d}^{I} of the partially oxidized di-iron subsite ($Fe_{p}^{II}-Fe_{d}^{I}$).

Specifically, successful and, therefore, endergonic residue deletion results have been obtained for all tried residues (Table II and III), except for the following: ΔTyr112, ΔLys237, ΔThr257, ΔThr259, ΔSer289, and ΔThr299, with $\Delta G_{\text{QM/MM}} = -3.2$ kcal/mol, $\Delta G_{\text{QM/MM}} = -2.7$ kcal/mol, $\Delta G_{\text{QM/MM}} = -2.9$ kcal/mol, $\Delta G_{\text{QM/MM}} = -3.0$ kcal/mol, $\Delta G_{\text{QM/MM}} = -2.9$ kcal/mol, and $\Delta G_{\text{QM/MM}} = -2.8$ kcal/mol, respectively.

$s = DdH$ small chain
An improving trend has been observed (towards impeding O_2 binding) for residue deletions, relative to the wild-type enzyme (Table II and III), that hinder O_2 from binding to Fe_d^{1}, of the fully reduced di-iron subsite (Fe_p^{1}-Fe_d^{1}), which gave the following results: ΔThr^{152}, and ΔSer^{202}, with $\Delta G_{QM/MM} = -18.6$ kcal/mol, and $\Delta G_{QM/MM} = -17.3$ kcal/mol, respectively.

With the positive results obtained from residue deletions, we were now enabled to carry out residue substitutions (Table IV).

Therefore, by carrying out the two residue deletions, ΔThr^{152} and ΔSer^{202}, favorable Gibbs’ energy have been obtained, which were followed by mutations to alanine, i.e., Thr^{152} Ala, and Ser^{202} Ala.

The dual residue deletions, ΔThr^{152} and ΔSer^{202}, gave successful Gibbs’ energy results ($\Delta G_{QM/MM} = +5.4$ kcal/mol) for the H-cluster subsite Fe_p^{II}-Fe_d^{I}, which obviously impede O_2 binding. However, for the H-cluster subsite, in oxidation states Fe_p^{II}-Fe_d^{II} and Fe_p^{I}-Fe_d^{I}, only a slight (O_2 inhibition) improvement for Gibbs’ energy has been observed, viz., +2.2 kcal/mol and +4.4 kcal/mol respectively.

For the simultaneous mutations to alanine, i.e., Thr^{152} Ala, and Ser^{202} Ala, of the di-iron H-cluster subsite, improved Gibbs’ energy results ($\Delta G_{QM/MM} = -9.2$ kcal/mol for Fe_p^{II}-Fe_d^{II}, $\Delta G_{QM/MM} = +4.2$ kcal/mol for Fe_p^{II}-Fe_d^{I} and $\Delta G_{QM/MM} = -18.1$ kcal/mol for Fe_p^{I}-Fe_d^{I}), were also obtained for O_2 inhibition.

The rationale for choosing the two residues (Thr^{152} and Ser^{202}) is that their deletions gave good results for all oxidation states of the di-iron H-cluster subsite.
Table IV. Wild-type and Residue Mutated DdH Gibbs’ Energies for O\textsubscript{2} Binding

<table>
<thead>
<tr>
<th>Reaction:</th>
<th>Fell-Fell +O\textsubscript{2}</th>
<th>Fell-Fel +O\textsubscript{2}</th>
<th>Fel-Fel +O\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type DdH</td>
<td>-10.6*</td>
<td>+2.6</td>
<td>-20.5</td>
</tr>
<tr>
<td>\Delta Thr152,\Delta Ser202</td>
<td>-8.4</td>
<td>+5.4</td>
<td>-16.1</td>
</tr>
<tr>
<td>\Delta Thr152,\Delta Ser202 (at 100°C)</td>
<td>-5.6</td>
<td>+7.9</td>
<td>-12.9</td>
</tr>
<tr>
<td>Thr152Ala, Ser202Ala</td>
<td>-9.2</td>
<td>+4.2</td>
<td>-18.1</td>
</tr>
</tbody>
</table>

*The Gibbs’ energies are given in kcal/mol
Additionally, it is known that certain organisms containing [Fe-Fe]-hydrogenases thrive around suboceanic thermal vents\(^4\). Hence, at a temperature of 100 °C intercalated with hydrogenase mutations (Table IV), QM/MM results indicate that the extrinsic O\(_2\) metalloenzyme inactivation is reduced (\(\Delta G_{\text{QM/MM}} = -5.6\) kcal/mol for Fe\(_p^{\text{II}}\)-Fe\(_d^{\text{II}}\), \(\Delta G_{\text{QM/MM}} = +7.9\) kcal/mol for Fe\(_p^{\text{II}}\)-Fe\(_d^{\text{I}}\) and \(\Delta G_{\text{QM/MM}} = -12.9\) kcal/mol for Fe\(_p^{\text{I}}\)-Fe\(_d^{\text{I}}\)

4.4. DdH Geometrical readjustment upon Oxidation

Here, the wild-type DdH Gibbs’ energies are correlated with geometrical parameters, such as interatomic distances and bond angles.

The iron-carbon distances, Fe\(_p\)-CO\(_b\), are now assessed for the three oxidation states of the di-iron subsites (Table V).

For the Fe\(_p^{\text{II}}\)-Fe\(_d^{\text{II}}\) subsite, the iron-carbon distance, Fe\(_p\)-CO\(_b\), becomes smaller (1.925 Å (1) \(\rightarrow\) 1.807 Å (2)) upon enzyme oxidation, occurring with a concomitant bond elongation (1.942 Å (1) \(\rightarrow\) 2.287 Å (2)) between Fe\(_d\)-CO\(_b\), which generally indicates an increased bonding strength for an exogenous ligand\(^67\).

For the oxidation state of the di-iron subsite, Fe\(_p^{\text{II}}\)-Fe\(_d^{\text{I}}\), the interatomic bond distance, Fe\(_p\)-CO\(_b\), becomes smaller (1.939 Å (3) \(\rightarrow\) 1.924 Å (4)), once again, upon enzyme oxidation, while a bond elongation is observed (1.908 Å (3) \(\rightarrow\) 1.924 Å (4)) for Fe\(_d\)-CO\(_b\).

Upon DdH oxidation, for the reduced di-iron subcluster (Fe\(_p^{\text{I}}\)-Fe\(_d^{\text{I}}\)), the Fe\(_p\)-CO\(_b\) interatomic bond distance becomes smaller (1.942 Å (5) \(\rightarrow\) 1.935 Å (6)), as the bond Fe\(_d\)-CO\(_b\) increases (1.826 Å (5) \(\rightarrow\) 1.945 Å (6)).
Table V. Interatomic Distances for Wild-Type Ddh, Between Feₚ and Coₜ, Feₐ and Co₧, Feₐ and O₁, And O₁-O₁ Before and After O₂ Binding - the Angle (Feₐ-O₁-O₁) Is also Given

<table>
<thead>
<tr>
<th>Before binding</th>
<th>O₂</th>
<th>Fe²⁺Fe°⁺</th>
<th>Fe⁺Fe⁺</th>
<th>Fe⁺Fe⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>COₜ-Feₚ</td>
<td>1.925*</td>
<td>1.939</td>
<td>1.942</td>
<td></td>
</tr>
<tr>
<td>COₜ-Feₐ</td>
<td>1.942</td>
<td>1.908</td>
<td>1.826</td>
<td></td>
</tr>
<tr>
<td>After O₂ binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COₜ-Feₚ</td>
<td>1.807</td>
<td>1.924</td>
<td>1.935</td>
<td></td>
</tr>
<tr>
<td>COₜ-Feₐ</td>
<td>2.287</td>
<td>1.924</td>
<td>1.945</td>
<td></td>
</tr>
<tr>
<td>O₁-Feₐ</td>
<td>1.729</td>
<td>1.840</td>
<td>1.808</td>
<td></td>
</tr>
<tr>
<td>O₁-O₁</td>
<td>1.276</td>
<td>1.281</td>
<td>1.373</td>
<td></td>
</tr>
<tr>
<td>Feₐ-O₁-O₁</td>
<td>137.0</td>
<td>160.6</td>
<td>126.0</td>
<td></td>
</tr>
</tbody>
</table>

The distances are given in Å
From the above considerations, it is observed that a similar trend occurs for fully and partially oxidized, and reduced di-iron subcluster. That is, the bond between the carbon of the bridging carbonyl and the distal iron becomes longer upon O_2 binding to the catalytic site.

Following, an analysis is presented for interatomic distances between distal iron and oxygen, and between oxygen atoms, $Fe_d-O_l-O_{lI}$, relative to Gibbs’ energy for all three di-iron oxidation states.

For the $Fe_p^{II}-Fe_d^{II}$ subcluster, the iron-oxygen distance, Fe_d-O_l, is rather small (1.729 Å; Table V), which suggests a strong bonding ($\Delta G_{QM/MM} = -10.6 \text{ kcal/mol; } 1 \rightarrow 2$) between the distal iron and the oxygen atom bound to it. The inter-oxygen (O_l-O_{lI}) bond distance is 1.276 Å, which corresponds to a bond order between a single and double bond.

In the case of the active di-iron subcluster, $Fe_p^{II}-Fe_d^{I}$, the Fe_d-O_l bond distance is ca. 6% longer (1.840 Å) than Fe_d-O_l interatomic distance of the fully oxidized di-iron subcluster, giving rise to a weaker bond ($\Delta G_{QM/MM} = +2.6 \text{ kcal/mol; } 3 \rightarrow 4$) between the distal iron and the oxygen. The O_l-O_{lI} bond distance is 1.281 Å, which is relatively close to the O_l-O_{lI} bond for $Fe_p^{II}-Fe_d^{II}$ subcluster.

The O_l-O_{lI} bond distance is relatively larger, 1.373 Å, which suggests that π-backdonation occurs between a filled d-orbital of Fe_d and the empty π^* orbital on O_2.

Out of the three di-iron oxidation states, the reduced di-iron subcluster ($Fe_p^{I}-Fe_d^{I}$) has most attributes of π-backdonation, i.e., the O_2 bond order has been reduced, and lengthening of the O_l-O_{lI} bond to 1.373 Å.
The more e--rich Fe\textsubscript{p} and Fe\textsubscript{d}, can explain why the reduced di-iron subcluster has more \(\pi \)-backdonation than any of the other*.

Finally, the Fe\textsubscript{d}-O\textsubscript{I}-O\textsubscript{II} angle varies as the oxidation states decrease, viz., for FeII-FeII-O\textsubscript{I}-O\textsubscript{II} the \(\angle = 137.0^\circ \), for FeII-FeI-O\textsubscript{I}-O\textsubscript{II} the \(\angle = 160.6^\circ \), and for FeI-FeI-O\textsubscript{I}-O\textsubscript{II} the \(\angle = 126.0^\circ \) in conjunction with effects of the nearby electric field of the apoprotein.

4.5. Frontier Molecular Orbital Analysis

Here, the electronic contributions of the frontier molecular orbitals, for the aqueous enzyme phase, are presented relative to the formerly presented Gibbs’ energies.

Upon O\textsubscript{2} binding to Fe\textsubscript{d} of the closed-shell H-cluster (1), Figure 4-3, the lone pair of electrons residing on the incoming O\textsubscript{2} are transferred into the vacant Fe\textsubscript{d}d-orbital.

For FeII-FeII subcluster (Figure 4-2, 1 \(\rightarrow \) 2), the empty lowest unoccupied molecular orbital (LUMO) is essentially composed of an empty d-orbital of Fe\textsubscript{d} (where O\textsubscript{2} bonding occurs); it also extends over the \(\pi \)-orbital of CO\textsubscript{b} (Figure 4-3). Therefore, LUMO for FeII-FeII subcluster is favorable for O\textsubscript{2} bonding (which is confirmed by Gibbs’ energy, viz., -10.6 kcal/mole, 1 \(\rightarrow \) 2).

* This \(\pi \)-backdonation agrees with Gibbs’ energy results form Table II. For example, the FeII-FeII subcluster has an exergonic Gibbs’ energy (\(\Delta G_{\text{QM/MM}} = -16.6 \text{ kcal/mol} \)), which can be improved however by DdH mutations such as residue deletions and substitutions, since there is only slight \(\pi \)-backdonation present. The bond Fe\textsubscript{d}-O\textsubscript{I} is still relatively weak (\(\Delta G = -7.9 \text{ kcal/mol} \)) for FeII-FeI subsite. However, for the reduced FeI-FeI subsite, the \(\pi \)-backdonation makes the oxygen bond very strong, thus making its elimination rather difficult (even by means of DdH mutations, Table IV).
Figure 4-3. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO (1), HOMO (2), \(\text{LUMO}_\alpha\) (3), \(\text{LUMO}_\beta\) (3), \(\text{HOMO}_\alpha\) (4), \(\text{HOMO}_\beta\) (4), LUMO (5), and HOMO (6) (where the atom colors, of the H-clusters, are O = red, C = grey, N = blue, S = yellow, Fe = burgundy, and H = white).
Once the O\textsubscript{2} binding has occurred, the e’s do not necessarily remain localized on Fe\textsubscript{d}100, Figure 4-3, as the e’ density is predominantly delocalized on the DTMA bidentate ligand.

For the open shell Fe\textsubscript{p}II-Fe\textsubscript{d}I subcluster, both LUMO\textsubscript{α} and LUMO\textsubscript{β} show large virtual orbitals surrounding their Fe\textsubscript{α}, some e’ delocalization over the terminal ligands of Fe\textsubscript{α}, CO\textsubscript{β}, and over Fe\textsubscript{p}. As for LUMO\textsubscript{α}, some e’ delocalization is observed on cysteinyl sulfur of Cys382.

It seems, in retrospect, that LUMO of Fe\textsubscript{p}II-Fe\textsubscript{d}II subcluster, having a more localized orbital on Fe\textsubscript{d}, than LUMO\textsubscript{α} and LUMO\textsubscript{β} (of Fe\textsubscript{p}II-Fe\textsubscript{d}I subcluster), favors the above mentioned spontaneous reaction (\(\Delta G_{QMM/MM} = -10.6 \text{ kcal/mole}, \, 1 \rightarrow 2\)) with O\textsubscript{2}.

Again, (Figure 4-2, 3 \(\rightarrow\) 4) once O\textsubscript{2} bonding occurs, for the open shell Fe\textsubscript{p}II-Fe\textsubscript{d}I subcluster, HOMO\textsubscript{α}, and HOMO\textsubscript{β} are delocalized over the DTMA bridge, over the bonded O\textsubscript{2} (slightly more by HOMO\textsubscript{β}), and over Fe\textsubscript{p}II-Fe\textsubscript{d}I (especially by HOMO\textsubscript{α}). Thus, again, once O\textsubscript{2} bonding occurs, the e’s migrate away from Fe\textsubscript{d} (Figure 4-3) in the Fe\textsubscript{p}II-Fe\textsubscript{d}I subcluster.

For Fe\textsubscript{p}I-Fe\textsubscript{d}I subcluster (Figure 4-2, 5), LUMO is found to be delocalized near the cubane/cysteines moiety. Nevertheless, in spite of the empty orbital shape (LUMO, Figure 4-3), the binding occurs between the distal iron and exogenous ligand, Fe\textsubscript{d}I-O\textsubscript{2} (5). In cluster 6 (Figure 4-3), \(\pi\)-backdonation seems to occur between the filled d-orbitals of Fe\textsubscript{p}I-Fe\textsubscript{d}I and the \(\pi^*\)-orbital of the exogenous O\textsubscript{2}.

As formerly mentioned, the (electron lone pair) \(\pi\)-backdonation for the reduced Fe\textsubscript{p}I-Fe\textsubscript{d}I subsite makes the iron-oxygen bond (in Fe\textsubscript{d}I-O\textsubscript{2}) rather strong (\(\Delta G_{QMM/MM} = -20.5 \text{ kcal/mol}\)), thus making its removal difficult even by means of DdH mutations, Table IV.
4.6. Conclusion

Because it is expensive to work with the wild-type DdH in anaerobic conditions, we have in silico mutated [Fe-Fe]-hydrogenase, thus preventing or weakening the bonding of exogenous \(\text{O}_2 \) to the active site.

The [Fe-Fe]-hydrogenase mutations have been carried out in two steps on an 8 Å layer surrounding the H-cluster using residue screening. First, residue deletions have been performed, one by one. Then, from clues obtained from these residue deletions, residue substitutions have been performed on the wild-type DdH.

For DdH residue deletions, regarding \(\text{O}_2 \) binding to \(\text{Fe}^{\text{II}}_d \) (of hydrogenase H-cluster subsite, \(\text{Fe}^{\text{II}}_p-\text{Fe}^{\text{II}}_d \)), both neutral polar residue and charged residue deletions gave enhanced results \(\Delta \text{Ser}^{62}, \Delta \text{Asp}^{144}, \Delta \text{Glu}^{146}, \Delta \text{Asp}^{150}, \Delta \text{Thr}^{152}, \) and \(\Delta \text{Ser}^{202} \), with \(\Delta G_{\text{QM/MM}} = -9.0 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = -8.4 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = -8.7 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = -9.4 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = -9.2 \text{ kcal/mol}, \) and \(\Delta G_{\text{QM/MM}} = -7.9 \text{ kcal/mol}, \) respectively.

Then, by carrying out residue deletions, on the partially oxidized di-iron subcluster (\(\text{Fe}^{\text{II}}_p-\text{Fe}^{\text{I}}_d \)), it is observed that \(\text{O}_2 \) is hindered from binding to \(\text{Fe}^{\text{I}}_d \), in most cases.

Specifically, successful (or endergonic) residue deletions have been obtained for most assessed residues; several of the endergonic (successful) residue deletions are \(\Delta \text{Glu}^{374}, \Delta \text{Asp}^{144}, \Delta \text{Ser}^{177}, \) and \(\Delta \text{Thr}^{152} \), giving \(\Delta G_{\text{QM/MM}} = +4.7 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = +4.6 \text{ kcal/mol}, \Delta G_{\text{QM/MM}} = +4.4 \text{ kcal/mol}, \) and \(\Delta G_{\text{QM/MM}} = +4.1 \text{ kcal/mol}, \) respectively (Table II).

For several residue deletions, a successful trend has been observed in hindering \(\text{O}_2 \) binding to \(\text{Fe}^{\text{I}}_d \) (\(\text{Fe}^{\text{II}}_p-\text{Fe}^{\text{I}}_d \)), relative to the wild-type enzyme (Table II), which gave the
following results for ΔThr152, and ΔSer202 DdH mutants, giving ΔG\textsubscript{QM/MM} = -18.6 kcal/mol, and ΔG\textsubscript{QM/MM} = -17.3 kcal/mol, respectively.

Results for residue substitutions are now presented (for they were carried out after residue deletions with clues thereof). Therefore, by carrying out residue deletions for ΔThr152 and ΔSer202, and finding improvements in Gibbs’ energy, the subsequent mutations to alanine were carried out, viz., Thr152Ala, and Ser202Ala.

The two-residue deletions, ΔThr152 and ΔSer202, on Fe\textsubscript{p}II-Fe\textsubscript{d}I hydrogenase, gave successful Gibbs’ energy; the O\textsubscript{2} binding is hindered by +5.4 kcal/mol. Also, for Fe\textsubscript{p}I-Fe\textsubscript{d}I hydrogenase, a small (O\textsubscript{2} inhibition) improvement for Gibbs’ energy has been found, viz., +4.4 kcal/mol.

The difference between the two residue deletions (ΔThr152 and ΔSer202) and two residue substitutions (Thr152Ala, and Ser202Ala) with alanine is small (ΔG\textsubscript{QM/MM} ~ +2 kcal/mol), for O\textsubscript{2} binding, and it is attributed to the overall charge of alanine which is approximately zero. However, this closeness in Gibbs’ energy for deletions and substitutions is unlikely to be found for mutations using charged amino acids (e.g. Thr152Glu, and Ser202Glu). Hence, DdH mutations open up new research opportunities along these lines.

Finally, from FMO and geometrical analysis, evidence exists for π-backdonation, especially for Fe\textsubscript{p}I-Fe\textsubscript{d}I species. The strong observed Fe\textsubscript{d}I-O\textsubscript{2} bonding is likely to be influenced by π-backbonding between the filled d-orbitals of distal iron and π* orbital on oxygen.
References

(91) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Menonucci, B.; Cossi, M.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Dapprich, S. D., A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;

