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PHYSICAL REVIE%' 8 VOLUME 37, NUMBER 13

Cayley-tree Ising model with antiferromagnetic nearest-neighbor
and ferromagnetic equivalent-neighbor interactions

Miron Kaufman and Michael Kahana
Department ofPhysics, Cleveland State University, Cleveland, Ohio 44l l5

(Received 19 November 1987)

The phase diagram of the Ising model with antiferromagnetic nearest-neighbor interactions and

ferromagnetic equivalent-neighbor interactions on the Cayley tree is determined exactly. A
nonuniversal critical line separates the disordered and the ordered phases. A line of Srst-order tran-

sitions separating ferromagnetic order from antiferromagnetic order ends in the midst of the or-

dered phase at a classical ordered critical point, For a small range of values of the ratio of the two

couplings, two transitions occur as the temperature is varied. In this case the uniform magnetiza-

tion is not a monotonic function of the temperature.

I. INTRODUCTION

Dynamical and equilibrium properties of disordered
systems have been the object of studies using hierarchical
models. Hierarchical structures used to model the dy-
namics of glassy materials' displayed the experimentally
observed Kohlrausch relaxation law and the Vogel-
Fulcher law. Mode condensation was also analyzed on a
hierarchical tree structure. Berker and collaborators
used frustrated hierarchical lattices to study spin glasses
in equilibrium. Kardar and Kaufman showed for Ising,
percolation, and Potts systems that turning on ferromag-
netic interactions of Cayley-tree connectivity in the
equivalent-neighbor model has an efFect similar to lower-
ing the spatial dimension. This is reminiscent of the di-
mensional reduction effect in another disordered system:
the random-Seld Ising model.

Cayley trees are hierarchical lattices" which generally
lack translational invariance. Since statistical models are
amenable to exact solutions on hierarchical lattices, it has
been suggested that such studies could contribute to our
understanding of disordered and other low-symmetry sys-
tems. In this paper we solve the Cayley-tree Ising model
with antiferromagnetic nearest-neighbor and ferromag-
netic equivalent-neighbor interactions. It is important to
point from the outset that, in contrast to the Bethe-
Peierls approximation, the boundary of the tree is includ-
ed in the calculation. The large boundary (finite fraction
of the total number of degrees of freedom) infiuences the
thermodynamics of the system. Boundary inclusion gen-
erates a system that lacks translational invariance. Thus,
while the equivalent-neighbor couplings preserve the
equivalence of all degrees of freedom, the turning on of
Cayley-tree couplings breaks this symmetry.

The phase diagram and the critical behavior of this
system is determined by three competitions: (i) infinite
range versus short range; (ii) preservation of translational
invariance versus hierarchical breaking of it; (iii) fer-
rornagnetic versus antiferromagnetic. As a consequence
of competitions (i) and (ii) a nonuniversal critical line
separates the disordered and the ordered phases. This
feature was also observed ' when the Cayley-tree cou-

pling was ferromagnetic. For small values of the
nearest-neighbor coupling the critical exponents are clas-
sical, while for large values of this coupling the exponents
are nonclassical and change continuously with the cou-
pling. The two regimes are separated at a special value of
the nearest-neighbor coupling by classical criticality
modified by logarithms. Thus increasing the strength of
the Cayley-tree coupling has an effect similar to lowering
the spatial dimension.

A novel feature presented in this paper is the oc-
currence of a line of first-order transitions separating fer-
romagnetic and antiferromagnetic phases. This line ends
at a critical point in the midst of the ordered phase. This
critical entity, which we call ordered critical point, also
occurs in other spin models such as the spin- —', model and
the trimodal random-field Ising model. There are ther-
modynamic paths connecting the two phases without
crossing any phase boundary. This unusual feature is
rooted in the inhomogeneous character of the tree which
makes the order parameter to be spatially varying.

A special case of the model studied here, the antiferro-
magnetic one-dimensional (Cayley tree of coordination
number z =2) Ising model with ferromagnetic
equivalent-neighbor interactions, was studied before by
Nagle'o and Kardar. " Nagle's motivation for studying
the model was the hypothesis that two transitions can
occur as the temperature is varied. Though this expecta-
tion is not realized for z =2, it is interesting to point out
that for trees of coordination number z) 3, two transi-
tions can occur as the temperature is lowered: first a con-
tinuous transition from the disordered to the ordered
phase, and then a discontinuous transition between anti-
ferromagnetic and ferromagnetic phases. In this case the
uniform magnetization is not a monotonic function of
temperature.

The remainder of this paper is organized as follows. In
Sec. II the analytical formulae necessary to compute the
free energy are derived. In Sec. III the critical behavior
along the critical line separating the ordered and disor-
dered phases is determined. Section IV contains our nu-
merical analysis of the ordered phase. A summary of our
results can be found in Sec. V.
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II. MQDRI. AND SGI.UrxON

Z=g exp kT
(2)

To compute the partition function we follow Kardar's
Hamiltonian minimization method. " By using a Gauss-
ian integral, Z can be written as

Ising spina $ =El are located at the vertices of the
Cayley tree of coordination number z. All pairs of neigh-
boring spins are connected by antiferromagneiic bonds
E &0, and all pairs of spins irrespective of their location
are connected by ferromagnetic bonds J & 0. The Hamil-
tonian 18

g $($j+K g $($j
J

(j (ij &

where N is the total number of spins. The partition func-
tion is

The free energy fo is a nonanalytical function of h for
h 0 provided

~

K
~

&Kap where Kap is the Bethe-
Peierls value of the coupling: tanhKiip ——1/(z —1). The
free-energy expansion in powers of h is'

For
~
K

~ &Ksp fo is an analytical function of h, and
& =0 in Eq. (8). The exponent j$, is determined by stan-
dard renormalization-group arguments from the recur-
sion Eq. (7):

ln(z —1)
(9)

ln[(z —l)tanh
i
K

i ]
When 6=2m (even positive integer) the power singulari-
ty in Eq. (8) is replaced by a logarithmic singularity
fo-h ln

~
h

~

. The source' of the logarithmic singu-
larity is the breaking down of the Taylor expansion of the
regular part of fo.

+K g $1$j
&;J&

After summing over the spin configurations in the right-
hand side of Eq. (3}we Snd

Z= J dm exp[ —N[-,'Jm +f0(E,Jm)]], (4)

where terms of order lnN/N in the exponent were
neglected, and fo(E,Jm) is the free energy of the
Cayley-tree model with a coupling K and a uniform Seld
equal to Jm. In the thermodynamic limit N~ 00 the free
energy per spin f= —InZ/N is determined by the largest
integrand on the right-hand side of Eq. (4):

f =ming(m) and g(m)= —,'Jm +fo(K,Jm) . (5)

The value of m which minimizes g(m) is the uniform
magnetization:" m =g; $;/¹

The free energy of the Cayley-tree Ising model in a
field h is obtained by successively decimating the Ising
spina starting from the boundary of the tree

fo= — g (z ——1) "ln[ 2cosh(2E)1 z —2
2z —1

+2 cosh(2h„}],

where h„ is the effective Seld acting on spins on the nth
tree generation and which is given by the following recur-
81on equat1Ml:

cosh(K+h„, )

2 cosh(K —h„,}
'

IB. CRICAL BEHAVIOR

At suSciently high temperatures, i.e., small J and

~
K ~, the system is disordered and the uniform magneti-

zation is m =0. At sufficiently low temperatures, i.e.,
large J and

~
K ~, g(m) as defined in Eq. (5) is minimized

at m&0 and this is the ordered phase. To determine the
line of critical points separating the ordered and disor-
dered phases and the critical exponents, we expand f, Eq.
(5), in powers of m by using Eq. (8):

g(m) = —Xc+—(1—JX2)m z
0 2) 2

— 'J'm4. . .—~J')m ~'.
4.i

(10)

Criticahty is achieved when the quadratic coefficient van-
ishes:

1J=-
X2

=[1—(z —l)tanh K]/[1+tanhK] for
~
K

~
&K2,

/ =0 for iK i &K~,

where tanhKz ——(z —1) ' and X2 was first derived by
Heimburg and Thomas. '

The critical exponents are deterrmned by the same
analysis as that performed for positive K. For

~
K

~
&K4, where tanhK4 ——(z —1), the exponent

4&4, see Eq. (9), and the asymptotic behavior is deter-
mined by the m and m contributions to g(m} The.
quartic coeScient is positive because 7~~0. ' The criti-
cal exponents are classical: a =0 and P= —,'. For
K4&

~
K

~
&K2 the asymptotic behavior is determined

by the m ~ and
~

m
~

terms because 2 & 5 &4 and A &0.
The critical exponents are now nonclassical and



nonuniversal: a= —(4—b )/(b —2) and P= 1/(4 —2).
The two regimes of classical and nonclassical criticality
are separated at

~
K

~
=K4 or b, =4 by classical behavior

modified by logarithms. At
~
K

~
=Kz or b, =2 the ther-

modynamic functions exhibit exponential singularities.
Thus 6 plays a role similar to the spatial dimension and

the special values 2 and 4 correspond to the lower- and

upper-critical dimensions, respectively. For
I
K

I ~ Kz
the exponent 6 & 2 and f(m) given in Eq. (10) can be ap-

proximated by

f(m)= —Xo—AJ~
~

m
(
~+Jmz/2,

where A &0. As J~O the magnetization vanishes as
m -J~, where P=(h —1)/(2 —5), and d fIBJ -J
where a =(4—3b, )/(2 —4 ).

gions of the phase diagram can be joined by certain paths

which do not cross the Srst-order transitions line, in con-

tradiction with the expectations one has for a Bravais lat-

tice system. The solution of this apparent paradox lies in

the nonuniform character of the Cayley tree. In the fer-

romagnetic region the average magnetization changes

from tree generation. to tree generation. Also, unlike for

a square or cubic lattice, there is a nonvanishing uniform

magnetization in the antiferromagnetic region. Thus,
each of these phases exhibits nonvanishing values of the

IV. ORDERED PHASE

At large values of the couplings J and
~

K
~

long-range
order is established. At zero temperature, J~00 and
—K~00, two types of order occur. The ferromagnetic
order, with all spins equal to each other (m =21), occurs
when the ferromagnetic coupling J is large compared to
the antiferromagnetic interaction. The antiferromagnetic
order is characterized by spins on adjacent tree genera-
tions taking opposite values, but with all spins of a given
generation having the same value. The uniform magneti-
zation is m =k(z —2) lz and this phase occurs when the
antiferromagnetic strength

~
K

~

is large compared to the
ferromagnetic coupling. The two phases are separated by
a first-order transition which is determined by balancing
the ferromagnetic and antiferromagnetic energies. The
ground-state energies for the Cayley tree in a field Ii are

f0=K'—Ii for ferromagnetic order and f0= —K-
+A (z —2)lz for antiferromagnetic order. The minimiza-
tion of t(j(m), after substituting the fo formula into Eq.
(5), yields m =+1, and m =k(z —2)/z. The corre-
sponding energies are equal if

J = —Kzz/(z —1) . (12)

The phase diagram in the plane (K,J) was determined
numerically by searching for the minimum of P(m) given
in Eq. (5), after computing the free energy fo of the
nearest-neighbor model in a uniform Seld h =Jm from
Eqs. (6) and (7). Figure 1 contains the phase diagram for
a tree of coordination number z =3. The positive E re-
gion is also shown. The line of 6rst-order transitions
which in the zero-temperature limit is given by Eq. (12)
J = —4.50 K, ends at an ordered critical point:
—K =0.7514, J=3.417 in the midst of the ordered
phase. This is a classical (mean-field) multicritical point.
Figure 2 show's the temperature dependence along the
5rst-order transitions line of the di8'erence of the uniform
magnetization values from each side of the line, and the
temperature is defined as T= 1/(kJ). At T=0, this
difference equals 1 —(z —2)/z =2/z and it vanishes at
the ordered critical point with an exponent p equal to the
mean-field value of —,'. The magnetization value at the or-
dered critical point is n =0.61.

Note that the ferromagnetic and antiferromagnetic re-

FIG. 1. Phase diagram in the plane (I(,J) for the tree of
coordination number z =3. The dashed line is a line of Arst-

order transitions which ends at an ordered critical point. The
solid line is a line of nonuniversal second-order transitions. It
has a maximum at K = —Kgp J=(z —1)/{z —2)=2, and it in-

tersects the I%; axis at K =+E2.
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0.0

FIG. 2. The temperature (kT =1/J) dependence along the
first-order transitions line of the difference h, m of magnetiza-
tions values from each side of the line, for the tree of coordina-
tion number z=3, At T=o, hm =2/z= 23, and close to the
ordered critical point b, m —

~

r
~

'~, where r is the reduced tem-
perature.

=(z —1) '~ ~0. The Srst-order transitions line disap-
pears as the distinction between antiferromagnetic and
ferromagnetic order vanishes: m =(z —2)/z~ 1. For
z =2 the Cayley tree reduces to the one-dimensional lat-
tice, and the phase diagram' *"divers topologically from
Fig. 1. The critical line of Eq. (11) is now
J =(1—tanhE)/(1+tanhK) =exp( —2 K). It intersects
the first-order transitions line, vrhich in the zero-
temperature limit is I= —4 K at a tricritical point
located at E=—(ln3)/4, J =3'

The Srst-order transitions segment, though very close
to a straight line in the plane (K,J), is actually curved.
Consequently, there exists a small interval
4.50&J/

~

E
~
~4.55 for which two transitions occur as

the temperature T =1/(kJ), is lowered: first a classical
continuous transition from the djsordered to the ordered
phase; then a discontinuous transition between antiferro-
magnetic and ferromagnetic phases. Figure 3 which con-

order parameter of the other phase. A better terminolo-

gy could be "predominantly ferromagnetic" and
"predominantly antiferromagnetic" phases, rather than
ferromagnetic and antiferromagnetic phases. One can
imagine changing the properties of the system smoothly
and moving from one regime to the other without cross-
ing a phase boundary.

The phase diagram remains topologically unchanged
for any coordination number 3&z ~ ~. In the 1irnit
z ~ 00 the disordered region of the phase diagram shrinks
to the segment E =0, J g 1, because tanhK2

1.0

0.00
0.35 0.85

0.0
s I

0.5 0.00 0.30 0.50

FIG. 3. The temperature (kT = 1/J) dependence of the mag-
netization m for J/3'= —4.52, for the tree of coordination
number z =3. As the temperature is increased takeo phase boun-
daries are crossed: Srst a discontinuous transition and then a
classical continuous transition. The magnetization is not mono-
tonically decreasing as the temperature is increased.

FKx. 4. The temperature (kT =1/J) dependence of the mag-
netization ot for J/K = —1.4112 and —2.0322, respectively, for
the tree of coordination number z =3. Nonclassical critical be-
havior is observed close to the critical points, reduced tempera-
ture

~
r

~
&10, as shown in the insets. The corresponding

values of the exponent P are 2 aud 1, respectively.



MIRON KAUFMAN AND MICHAEL KAHANA 37

tains the temperature dependence of the uniform magne-
tization for J/~ E

~

=4.52, shows the two transitions.
%e note that the search for iwo transitions was a motiva-
tion for Nagle's study' of the one-dimensional problem,
i.e., z =2. Two transitions occur for trees of coordina-
tion number z & 3. As it is apparent from Fig. 3 the uni-
form magnetization m is not a monotonic function of the
temperature. This is not a violation of any GriSths, Kel-
ley, and Sherman (GKS) correlation inequality' as these
inequalities hold for ferromagnetic models while here an-
tiferromagnetic couplings are also present. Nonmono-
tonic temperature dependence of the magnetization was
observed earlier in ferromagnetic superconductors. '

%e a1so veri6ed numerically the exponents derived
theoretically in Sec. III. In Fig. 4 the temperature
dependence of the uniform magnetization is shown for
I/~ K

~

=1.4112 and 2.0322, respectively. The corre-
sponding values of the critical E substituted in Eq. (9)
yield 5=2.5 and 3, respectively. The respective critical
exponent P values are 2 and 1 (see Sec. III). The theoreti-
cal critical exponent values and the theoretical location
of the critical points are corroborated by the numerical
results.

The Ising model with antiferromagnetic nearest-
neighbor interactions and ferromagnetic equivalent-
neighbor interactions on the Cayley tree was solved ex-
actly. This model exhibits three types of competitions:
short-range versus infinite-range interactions, hierarchi-
cal breaking of versus preservation of translational sym-
metry, and antiferromagnetic versus ferromagnetic in-

teractions. The competition of ferromagnetic and anti-
ferromagnetic couplings in the interior of Cayley trees
was studied by Thouless and collaborators's within the
Bethe lattice spin-glass model. The latter is an inhomo-
geneous system due to quenched randomness. In our
model, on the other hand, the system is inhomogeneous
due to the inclusion of the thermodynamically sized
boundary of the tree.

The phase diagram includes a nonuniversal critical line

separating the disordered and ordered phases. Inside the
ordered phase a line of 6rst-order transitions separates
ferromagnetic and antiferromagnetic types of order. This
line ends in the midst of the ordered phase at an ordered
critical point. Thus the two types of order can be joined
by thermodynamic paths which do not cross any phase
boundary. Such a situation cannot arise on a square or
cubic lattice, and it is due to the absence of translational
invariance (spatially varying order parameter) on Cayley
trees with boundaries. For a certain range of values of
the ratio of the two couplings, two transitions occur as
the temperature is changed, and the uniform magnetiza-
tion is not a monotonic function of the temperature. Suc-
cessive transitions as the temperature is varied were re-
cently observed' in the kagome lattice Ising model with
two competing couplings.

We have benefited from discussions with Mehran Kar-
dar and correspondence with 3'ohn Nagle. This work was
supported by the Ohio Board of Regents through a
Research Challenge Grant.
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