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Diophantine type fractional derivative representation  
of structural hysteresis  
Part I: Formulation 

J. Padovan, J. T. Sawicki 

Abstract Based on a diophantine representation of the 
operational powers, a fractional derivative modelling 
scheme is developed to simulate frequency dependent 
structural damping. The diophantine set of powers is es­
tablished by employing the curvature properties of the 
defning empirical data set. These together with a remezed 
least square scheme are employed to construct a Che­
byschev like optimal differintegro simulation. Based on the 
use of the rational form resulting from the diophantine 
representation, a composition rule is introduced to reduce 
the differintegro simulation to frst order form. The as­
sociated eigenvalue/vector properties are then explored. 
To verify the robustness­stability accuracy of the overall 
modelling procedure, correlation studies are also pres­
ented. Part I of this series focuses on the diophantine 
representation, its use in formulating a numerically more 
workable frst order form as well as formal representations 
of its transient and steady state solutions. This will include 
investigations of the asymptotic properties of the various 
formulations. Part II will introduce the model ftting 
scheme along with a look at eigen properties and ftting 
effectiveness. 

1 
Introduction 
Under normal circumstances, the actual structural 
hysteretic response behavior tends to be more complex 
than traditional viscous, Meirovitch (1967), and propor­
tionally damped, Meirovitch (1967), Fertis (1995), simu­
lations can handle. This is a direct outgrowth of such 
complicating features as: i) frequency dependent behavior; 
ii) general multirate/history effects; and iii) multiphasic 
time shifts, among many. To enable the simulation of such 
characteristics, typically either the Kelvin­Voigt (KV) or  
more comprehensive Maxwell­Kelvin­Voigt (MKV) mod­
els are employed, i.e., Mase and Mase (1992), Fung (1965) 
among many. These generally involve the use of integer 
differential operators, Mase and Mase (1992). 

J. Padovan 
Departments of Mechanical and Polymer Engineering, 
The University of Akron, Akron, Ohio 44325­3903, USA 

J. T. Sawicki 
Department of Mechanical Engineering, 
Cleveland State University, Cleveland, Ohio 44115, USA 

Generally KV and MKV models tend to become in­
creasingly stiffer as the associated operator orders grow. 
Such behavior is intrinsic to the basis space of integer 
differential operators. As will be seen, to bypass such 
diffculties, fractionally based operators can be employed. 
To date, numerous investigators as Oldham and Spanier 
(1974), Bagley and Torvik (1983), Padovan et al. (1987), 
Padovan (1987), Padovan and Guo (1988), Bagley (1989), 
Bagley and Calico (1991), and Enelund and Josefson 
(1996), have dealt with various of the properties of frac­
tional operators. Several have explored the use of frac­
tional representation for various analytical or 
experimentally generated data. These have shown the po­
tential effectiveness of such operators. 

This paper will develop a model ftting scheme which 
enables the development of either KV or MKV fractional 
models for arbitrary experimental data. Due to the ro­
bustness of the scheme, essentially any level of represen­
tational accuracy is possible. This is achieved through the 
use of diophantinized, Schmidt (1980), fractional operator 
families. The diophantine approximated, Schmidt (1980), 
set of fractional power can be established within the ap­
propriate delimiting bounds. These can be obtained by 
employing the curvature properties of the empirical data 
set. The ftting coeffcients of the KV and MKV models are 
then established by a remezed, Remez (1934), Carpenter 
and Varga (1991), least square formulation, Hamming 
(1962). This enables an optimal ft for a given diophantine 
set of powers. 

Overall the paper is structured in two parts. The frst 
considers the more or less formal aspects of the develop­
ment while the second introduces the ftting scheme along 
with a description of eigen properties and benchmarking. 
The formal aspects consist of such issues as: 
i) introducing diophantine representations of fractional 

models, 
ii) to ease the algorithmic burden of differintegro oper­

ators, the diophantine representation is reduced to 
vector form, and 

iii) formal transient and steady solutions are explored. 
Since the vector form is based on the formal use of the 
differintegro operator composition rule, the ramifcations 
of its small time and asymptotic long time properties will 
be investigated. 

In the sections which follow, detailed discussions will be 
given on: i) fractional and integer based KV and MKV 
models and their various forms, ii) the diophantine ap­
proximation, iii) the vector form, and iv) formal solutions 
along with their asymptotic characteristics. 



2 
Fractional and Integer KV and MKV models 
Prototypically KV and MKV type simulations are em­
ployed to represent system damping. These involve either 
integer or fractional formulations. This section will de­
velop various of the structural/operational properties of 
such simulation types. 

2.1  
Integer KV and MKV models  
Generally KV and MKV type simulations are cast in terms 
of integer differential operators, namely: 

i)	 KV model, Fung (1965);  
FD = fx£D£(x) (2.1.1) 

£ 
ii)	 MKV model, Fung (1965);  

fj £D£(FD) = fx£D£(x) (2.1.2) 
£ £ 

where 

d£ 
D£( ) = ( ) (2.1.3)

dt£ 

and FD, x, and (fx£, fj ) represent the damping force, £

kinematic variable, and the coeffcients of the KV/MKV 
simulations, respectively. Equations (2.1.1 and 2.1.2) can 
be ft in a variety of ways, i.e., Pade­Laplace, Simhambhatla 
and Leonov (1993), and so on. 

The chief diffculty associated with such simulations 
stems from the problem of basis completeness and operator 
admissibility. In particular, to enable fts to more complex 
response characteristics, higher order operators are re­
quired regardless of their physical justifcation. This natu­
rally causes two forms of model stiffness, namely wherein; 
i)	 the lower and higher order coeffcients vary many 

orders of magnitude thus yielding potential roundoff 
problems, and; 

ii)	 the higher order operators tend to naturally induce a 
wide spread in the eigenvalue structure of hysteretic 
model. 

When the small magnitude of the leading coeffcient is 
combined with the order of the operator, the problem 
stiffness is further exacerbated. 

2.2  
Fractional models  
As noted in the proceeding section, the major diffculty 
with integer type integro­differential models is the physical 
admissibility of the higher order operators. This problem 
can be partially resolved by introducing a fractional dif­
ferintegro simulation, wherein the physics can be employed 
to defne bounding values for the operator orders. Note, 
while the underlying problem physics generally produces 
strong constraint on operator order, the fractional scheme 
enables us to introduce/develop an essentially complete 
basis within any interval. This can be achieved by frac­
tionally dissecting the said range of powers. 

The fractional differintegro operator adopted here is 
that by Riemann­Liouville, Oldham and Spanier (1974). It 
has the form 

 t1 s(r)
Dq(s) = 	  dr (2.2.1)

r(-q) (t - r)q+1 
0 

where r(-q) is the gamma function, Abramovitz and Ste­
gun (1965). Employing (2.2.1), the KV and MKV formula­
tions of the damping/hysteresis simulation take the form: 

i)	 KV model; 
 x 

FD = fx£Dpx£ (x) (2.2.2) 
£ 

ii)	 MKV model

 j  x  
j (FD) = (x) (2.2.3)fj £Dp fx£Dp£ x 
£ 

£	 £ 

Here the fractional power sets p j and px are bound by the 
curvatures of the hysteretic force­kinematic space. Such a 
relationship can be established either in the Laplace or 
Fourier transform domains, as established either by tran­
sient or steady state behavior. 

A detailed discussion is given in the section on ftting in 
Part II. As will be seen, the fractional formulation has three 
very important advantages over the integer approach, i.e., 
i) it is not stiff; ii) the basis space of operators is selected 
contingent on physical admissibility properties, and iii) a 
complete basis space can be derived for any interval of 
powers. 

3 
Composition rule 
A central feature/diffculty of fractional operators is es­
tablishing their differintegrable properties. To enable the 
introduction of any modifcation in the operator form of 
the MKV formulation, we will require the use of a com­
position type property, namely   
D 	 D ( ) = D + ( ) (3.1) 
For the current purposes, we will assume that all func­
tional representations growing out of the physics will 
prototypically be differintegrable. 

Generally, most special functions of mathematical 
physics are differintegrable series. These can usually be 
represented by fnite sums of functions which themselves 
may be defned by series families of the type: 

0 
ge(t) = (t  - r)e ah(t  - r)h/k;  e  >  -1  (3.2)  

h=0  

where a0  = 0 and k is an arbitrary integer. Such fnite 
sums take the following form 

0 
h1G(t) = (t  - r) ah1  (t  - r)

h1=0  
0 

2+ (t  - r)(n+1)/n ah2  (t  - r)h  

h2=0   
0 

hn+ . . .+ (t  - r)(n+n-1)/n ahn  (t  - r) (3.3)  
hn=0  



    

 

    

    

 
 

 

  

 

 

 

 
 

 

 

 

  

        

        

  

  

 

 

 
 

  

 
  

   

   

 

 

 
 

 
 

In seeking a general composition rule for the differin­
tegration of G, we must determine the relationship be­
tween D (D (G)) and D + (G). Here we must assume that 
both G and D (G) are differintegerable. Noting the form of 
(3.3), it follows from the linearity­distributive property of 
fractional operators that, when   
D D (ge)  D + (ge) (3.4) 
then   
D D (G)  D + (G) (3.5) 
where here ge are the various fnite base members of (3.3). 
If each and every base member satisfes (3.4), then (3.5) 
follows. 

Based on the form of ge, 
0   

e+hD (ge) =  ahD  (t  - r)
h=0  

0 e+h-r(e + h + 1)(t - r)= ah (3.6)
r(e + h - + 1)

h=0 

Note, while the property (ge  0 and D (ge)  0) auto­
matically satisfes (3.5) for situations in which (ge  = 0 and 
D (ge)  0), then such is not necessarily the case. A nec­
essary and suffcient condition for the nonsingularity of 
(3.6) requires that r(e + h - + 1) remains fnite for each 
h for which ah  = 0. This is satisfed so long as < 0, or for 
< e + 1. 
The foregoing conditions are equivalent to requiring 

that ge be regenerated upon application of frst D and 
-then D . This leads to the condition   -ge - D D (ge)  0 (3.7) 

For completely general ge, it follows from (3.2) that      -D D (ge) = D + (ge) - D  +  ge  - D D  (ge)
(3.8) 

Due to the linearity of (3.3), (3.8) yields the identity      -D D (G) = D + (G) - D  +  G  - D D  (G)
(3.9) 

where, if   -G - D D (G)  0 (3.10) 
then (3.5) follows. Recalling the earlier discussion, (3.10) is 
guaranteed for all < 0 and for < 1, wherein G remains 
bounded at the lower limit of t, i.e., r. 

Based on the foregoing, most special functions of 
mathematical physics violate (3.1), namely, (3.10) is non­
singular. As an example, the fractional differential equa­
tion 

D1 (x) - x  = 0  (3.11)
q

has the solution 

x = cF( , q, t) (3.12) 
where c is a constant, and since q is an integer 

 q-1 
kk-1 qF( , q, t) =  ( )q- H t,- , ( ) (3.13)
q

k=0 

such, that   0 £k ( )q£(t)-1  qH t,- , ( )q = (t)  
k  (3.14)

q r(k/q + £)
£=0 

Based on (3.13 and 3.14), the decomposed operator yields   
2D1 D1 (F( , q, t)) = ( ) F(  , q, t) (3.15)

q q

For the original operator it follows that 
t-(1+1/q)2D2 (F( , q, t)) = (  ) F(  , q, t) +  (3.16)

q r(-1/q) 
As can be seen from (3.15 and 3.16), for small times the 
composition rule is violated. In contrast, for large times, 
F( , q, t) asymptotically satisfes (3.1). This is the case for 
the solutions of all ODE. 

Noting the form of (3.14), the structure is reminiscent of 
a confuent hypergeometric function, Davis (1936). Hence, 
depending on the choice of k, q, and , a wide variety of 
the functions of mathematical physics emerge, Davis 
(1936). 

4 
Diophantine representation of fractional models 
The choice of the set of fractional powers is controlled by 
the inherent geometric characteristics of the system force­
kinematic response behavior. In this context, the range of 
slopes defne upper and lower bounds on potentially ad­
missible powers. This issue will be addressed in the curve 
ftting section in Part II. Once the bounds are set, several 
possible choices of fractional powers can be made, namely: 

1) As a problem of optimality wherein the choices are 
determined by the requisite criterion function; 

2) By choosing an equally spaced or remezed set, see 
Remez (1934), Hamming (1962), or Carpenter and 
Varga (1991), or; 

3) By introducing a diophantine representation of the 
equally spaced set defned under 2. 

Given, that the bounds on the MKV model are 
jU jLp - upper, p - lower (4.1)
xU xLp - upper, p - lower 

then least upper/lower integer bounds can be selected by 
respectively rounding up or down to the nearest whole 
integer. Such a process yields     
I j U ;  IxU jU xU> p ; p    (4.2)
I j L;  IxL j L xL< p ; p

Based on the limits set by (4.2), the equally spaced diop­
hantine approximation of the p j and px sets takes the form  j = IjL £ 

IjU - IjLa£ = p + , £ E [0, j  ] (4.3)£ 
j 

h£ = px = IxL + 
£
IxU - IxL , £ E [0, ] (4.4)£ x

x 

http:q,t)(3.15
http:q-Ht,-,()(3.13
http:q,t)(3.12


  

 

 

  

    

    
    

  

  
 

 

  
 

 
 

  

    

    

 

 

 

 

  
 

  
 

 

 

 
  

 

 

  

 

 

  

 

  
 

  

 

  

 
 

  
  

where here the common fractional denominators are de­
fned by j and x. As can be seen from (4.3 and 4), for 
(IjL; IxL) 0 it follows, that 

IjU 
a£  £ (4.5)

j 

IxU 
h£  £ (4.6)

x 

such, that (£/ j ; £/ x) defne rational fractional families. 
Under either (4.3 and 4) or (4.5 and 6), the MKV for­

mulation takes the form 

j x 

fj £Da£ (FD) =  fx£Dh£  (x) (4.7)
£ £ 

From the equation of motion, the damper force is: 
FD = S -Mxx - Kx (4.8) 
Given, that S is differintegrable, then most likely so too are 
Da£ (FD) and Dh£ (x). In this context (4.7 and 8) lead to the 
differintegrable equation 

j x 

M fj £Da£ (xx) +  fx£Dh£  (x)  
£ £  

j j 

+ K fj £Da£ (x) =  fj  £Da£  (S) (4.9)
£ £ 

Since (4.7) yields a rational form in the Laplace and fre­
quency (i.e, Fourier) domains, generally, to yield stable 
asymptotics, IjU > IxU and j > x. 

Earlier we saw that the composition rule for both ar­
bitrary fractional and diophantine formulations has dif­
ferent long and small time characteristics. This can be seen 
from a rationing of (3.15 and 16). Specifcally,   (F) 1 t-(1+1/q)D2/q = 1 + (4.10)
D1/q D1/q(F) ( )2 r(k/q + 1)F
As the system eigenvalue grows in size, the small time 
asymptotics diminish in importance. In this context, de­
composition can be used in a formal sense to alter the 
fractional continuum formulation (4.9) into, what will be 
termed, the decomposed form. 

For demonstration purposes, we consider the KV ver­
sion, namely 

x 

Mxx+ fx£Dh£ (x) +  Kx = S (4.11)
£ 

where here for simplicity x and h£ are chosen so, that 
2£ 

h£ = ; £ E [1,  x] (4.12) 

Formally applying the composition rule, it follows that 
£N

Dh£ (x) =  D 2£  (x) =  D  2  ( )x (4.13)
x x 

k=1 

where 

£N
D 2 ( ) = D 2 D 2 . . .D  2  ( ) . . .  (4.14)

x x x x 
k=1 

Similarly, Nx 

xx = D 2 ( )x (4.15)
x 

k=1 

Based on (4.13 and 15), (4.11) takes the following de­
composed form   

x x £N N
M D 2 ( ) + f D 2 ( ) + K x = S (4.16)x£ 

x x 
k=1 £=1 k=1 

Both (4.11) and (4.16) possess the same characteristic 
roots, i.e., eigenvalues. Employing the Laplace transform, 
it can be shown that the characteristic polynomial asso­
ciated with these operators can be expressed as 

x 

xP(A) =  M(A)2  +  fx£(A)  
2£  +  K  (4.17)

£=1 

The roots then must satisfy 
P(A) =  0  (4.18) 
wherein A = Ai; i E [1,  2  x].  Letting 

xA = � , (4.19) 
the roots can be obtained from the integer expression 

x  
x M(�)2 + fx£(�)2£ + K = 0 (4.20)

£=1 

In terms of the roots defned by Eq. (4.20), Eq. (4.16) can 
be recast in the following operator form, namely Nx 

D 2 ( ) - A£ x = S (4.21)
x 

£=1 

The solution to Eq. (4.21) involves homogeneous and 
particular parts, i.e., 
x = xh + xp (4.22) 
For the homogeneous case xh must satisfy Nx 

D 2 ( ) - A£ xh = 0 (4.23)
x 

£=1 

The solution to Eq. (4.23) can be obtained via successive 
substitutions. In particular, if we let 

D 2 ( ) - A1 X1 = 0 
x 

D 2 ( ) - A2 X2 = X1 
x 

. . . (4.24)
D 2 ( ) - A£ X£ = X£-1 

x 

. . . 

D 2 ( ) - A X = X 
x x x -1 

x 

x 



 

    
  

  
  

     

 
  

 
  

 
 

 
  

 
  

 
  

 

 
  

 
  

  
  

 
    

  
  

 

 

 
 

 
  

  
 
 

 
 

 
  

  
 
 

 
 

 
  

  
 
 

  
 

 
  

 

  
 

 

 

 

  

 

 

x 

x 

then X1, X2, . . . ,  X x  form the basis set for xh. They can be In this context, the Bagley and Calico (1991) solution is a 
established by successively applying the Laplace transform large time adaptation of the decompositional form. 
to Eq. (4.24). Given that they are nonhomogeneous, the 
solution would involve a series of convolution integrals 5 
yielding the expression	 Decompositional vector form 

Because of the diophantine form of its powers, (4.9) can be 
converted to a more convenient form which will be called a  x 

x 
xh = Ck F A£, , t *	 (4.25)

2 
k=1 £=k 

N
decompositional vector form. After setting it up, we will  
seek its relationship with composed form, i.e., (4.9). To  

where Ck are constants, and	 introduce the vector form, (4.16) is recursively trans­

x
F A£, , t * 

2 
£=k 

F(A£, . . .) * F(A£+1,  . . .) *  * F(A  ,  . . .) (4.26)
x 

such, that ""*"" defnes the convolution integral, namely 

N

F A£, 
x 

2 
, t * F A£+1, 

x 

2 
, t 

t 

0 
F A£, 

x 

2 
, t - r F A£+1, 

x 

2 
, r dr (4.27) 

Given that the multiple convolutions appearing in (4.26) 
are somewhat awkward, an alternative form can be es­

xtablished due to functional format of F A, , t . In par­2 
ticular if A£; £ E [1,  x] are distinct, then the following 
identity can be used to substitute for operations such as 
(4.27), i.e., 

x	 x
F A£, , t * F A£+1, , t 

2 2 
1 x	 x

F A£, , t - F A£+1, , t (4.28)
A£ - A£+1 2	 2 

Based on the foregoing, the particular solution can be 
written in terms of a convolution with S(t). Such an op­
eration can be formally expressed as 

formed, that is 

D2 x 
x 
(X) = D2  x  -1  

x  
D  1  

x  
(X)  = D2 x -1 

x 
(Y1) 

D2 x -1 
x 
(Y1) = D2  x  -2  

x  
D  1  

x  
(Y1)  = D2 x -2 

x 
(Y2) 

. . . 

D2 x -£ 
x 
(Y£) = D2  x  -£-1  

x  
D  1  

x  
(Y£)  = D2 x -£-1 

x 
(Y£+1) (5.1) 

. . . 

D2 x -2 x+2 
x 

(Y2 x -2) = D  1  
x  
D  1  

x  
(Y2  x  -2)  = D 1 

x 
(Y2 x -1) 

Letting 
X = Y0, (5.2) 
use of (5.1) reduces (4.16) to the following vector form 
D 1 (Y) = [0]Y  + E  (5.3)

x 

where  
YT = (Y0,  Y1,  . . . ,  Y£,  . . . ,  Y2  -1) (5.4) 

x 

ET = (0,  0,  . . . ,  0,  . . . ,  S/M) (5.5) 
and the matrix coeffcient [0] is given by the expression 

 [0] =  
0 1 0 . . .  0  . . .  0 0

  

xp
x 

(t) = S(t) *  F  A£,  
£=1  

N               

0 0 1 0 0 0  
.	 . . .	 . . .	 . . 
0 0 0 1 0 0  
.	 . . .	 . . .	 . . 
0 0 0 0 0 1  

              

x 
, t *  (4.29) 

2  

Again simplifcation can be achieved through the use of  
(4.28).  

Recalling the work of Bagley and Calico (1991), it is  
instructive to seek a relationship with their stated solution  
involving Mittag­Leffer functions, Bagley and Calico  
(1991), Enelund and Josefson (1996), i.e., 

0 n(At)
FM(A, q, t) = 	  (4.30)

r(1 + n/q)
n=0 

After a degree of reshuffing it follows that 
q-1 £(At1/q)q-1	 -1F(A, q, t) = (A) FM(A,  q,  t) + (At)  

r(£/q)
£=1 

(4.31) 
Asymptotically, i.e., for t - large, (4.31) reduces to the 
simpler form 

q-1F(A, q, t)  (A) FM(A,  q,  t)	 (4.32) 

K f1 f2 f£ f2 x -2 f2 x -1- - - . . .  - . . .  - -M M M M M M

(5.6)
A single element version of this equation was frst gener­
ated by Bagley and Celico (1991). 

Noting the form of (5.3-6), when x is set to 1, the 
traditional state vector form of the dynamics equation can 
be extracted. Given that (4.16) is in matrix form, then each 
of the entries of (5.3-6) are either themselves subvectors or 
matrices. As can be seen, 2 x defnes the size of the 
fractional space. After more complex nomenclatural ma­
nipulations, a similar vector form can be derived for the 
full MKV version given by (4.9). 

The solution of Eq. (5.3) can be established via the use 
of spatial transforms. Specifcally, employing the eigen­



     
     

 

  

 

 

values of [0], (5.3) can be reduced to a Jordan canonical 
format. Given distinct eigenvalues it follows that 

-1[0]  [T][A][T] (5.7) 
where 

A1 
. . . [A] =  (5.8)

A£  
.  .  .  

and [T] is the basis formed by the eigenvectors associated 
with Ai. Employing [T], and letting 
Y = [T]Z  ,  (5.9)  
(5.3) can be reduced to the form 
D 1 (Zi) = AiZi  + ([T]E)  .  (5.10)

x 

From the earlier sections, the solution to (5.10) is given by 
Zi = CiF(Ai, x, t) + F(Ai,  x,  t) * ([T]E) (5.11) 
The complete solution then follows from (5.9). 

Equation (5.3) we recall is a decomposed version of the 
fractional continuum formulation. From an asymptotic 
point of view it is equivalent to the continuum version. 
Had integral operators been involved, as can be seen from 
the discussion of the decomposition property, equivalency 
would have held for all time. Note, a similar equivalency 
would hold true for homogeneous initial conditions. In 
such a situation (5.11) would reduce to 
Zi = F(Ai, x, t) * ([T]E) (5.12) 

From a numerical point of view (5.3) possess many 
advantages. For instance, the Grunwald formalism em­
ployed by Padovan (1987) could be used to directly inte­
grate the vector form. For large time asymptotic situations, 
the Mittag­Leffer function, Enelund and Josefson (1996), 
could be employed in the convolution integral given in 
(5.12). Alternatively, it could be used to establish a 
workable algorithm to obtain a solution to (5.3), at least 
for large time problems. 

6  
Summary  
This paper has introduced a generalized version of dio­
phantine approximated fractional formulations of system 
damping. The various important properties of such a 
formulation have been developed. These include 1) the 
solution form, 2) a decomposed formulation, 3) a vector 
version of the decomposed formulation, 4) associated so­
lutions, and 5) asymptotic properties and equivalencies. In 

its vector form the fractional representation appears to 
represent various algorithm advantages. In Part II of this 
series ftting schemes will be developed to handle such 
issues as frequency dependent damping, among several. 
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