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Assessing the contributions of surface waves and complex
rays to far-field Mie scattering by use of the Debye series
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The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielec-
tric sphere are calculated in the context of the Debye-series expansion of the Mie scattering amplitudes. Also,
the contributions of geometrical rays are reviewed and compared with those of the Debye series. Interference
effects among surface waves, complex rays, and geometrical rays are calculated, and the possibility of observing
these interference effects is discussed. Experimental data supporting the observation of a surface-wave-
geometrical-ray-interference pattern are presented.

1. INTRODUCTION

The infinite series of transverse-electric (TE) and trans-
verse-magnetic (TM) spherical multipole partial waves,
known as the Mie scattering formalism, is an exact solu-
tion to the scattering of a linearly polarized plane electro-
magnetic wave by a dielectric sphere.' 3 Being an exact
solution, the Mie infinite series contains all the effects
that contribute to the scattering. These effects for the
most part are not readily identifiable in the complicated
terms of the Mie infinite series. It turns out that writing
each term of the Mie infinite series as another infinite
series, known as the Debye series, clarifies the physical
origins of many effects that occur in electromagnetic scat-
tering.4 -9 In ray theory, when a geometrical light ray is
incident upon a dielectric sphere it is partially reflected
by the sphere surface, partially transmitted through the
sphere, and partially transmitted after making an arbi-
trary number of internal reflections. Analogously, each
term of the Debye-series decomposition of an individual
TE or TM partial-wave scattering amplitude may be inter-
preted as diffraction of the corresponding spherical multi-
pole wave or its reflection by the sphere surface (p = 0) or
as transmission through the sphere (p = 1) or transmis-
sion after making p - 1 internal reflections (p Ž 2).

Expressed in this way, the total scattered electric field
takes the form of a double sum. One sum is over partial
waves, and the other sum is over the number of interac-
tions p that each partial wave makes with the sphere sur-
face before propagating into the far field. For scattering
in the short-wavelength limit, the sum over partial waves
has long been known to be slowly convergent. But the
sum over surface interactions is expected on physical
grounds to be rapidly convergent for nearly all partial
waves since summing over multiple internal reflections
resembles the summing of a geometrical series. The ma-
jor exception to this rapid convergence is for partial waves

0740-3232/92/050781-15$05.00

in the edge region, corresponding to geometrical light rays
incident upon the sphere at grazing incidence, where the
internal reflection coefficient is nearly unity.5

For most scattering angles the far-field scattered elec-
tric field is dominated by the contributions corresponding
to geometrical light rays.'0 Occasionally, however, other
mechanisms dominate the scattering. For example, the
p - 1-order rainbow caustic occurs at the scattering angle
where two light rays coalesce after having made p - 1 in-
ternal reflections within the dielectric sphere." A rain-
bow separates two regions of scattering in which the
numbers of contributing geometrical light rays differ by
two. To one side of the rainbow the two p - 1 internal
reflection rays form an interference pattern known as su-
pernumerary rainbows.'2 Although these two rays are
absent on the other side of the rainbow, their contribution
to the scattered light does not discontinuously fall to zero
at the two-ray-zero-ray transition. Rather, their contri-
bution smoothly but rapidly decreases owing to their
metamorphosis into a complex ray in the zero-geometrical-
ray region.'3- 5

Another example in which the scattering is dominated
by effects other than geometrical light rays occurs when
light is incident upon the sphere at grazing incidence.
Beyond the scattering angle of the grazing-incidence ray,
the contribution of this ray to the scattered intensity
again does not discontinuously fall to zero at the one-ray-
zero-ray transition. This is due to the creation of electro-
magnetic surface waves at the point of grazing incidence
upon the sphere.5 7 16"7 These waves travel along the
sphere circumference, and, while doing so, they shed sec-
ondary radiation that propagates into the far field. This
secondary radiation produces radiation damping of the
surface waves. As a result, the surface-wave amplitude
dies off exponentially along the sphere's circumference,
and the amplitude of the secondary radiation propagating
into the far field dies off exponentially as a function of the

© 1992 Optical Society of America
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scattering angle. The far-field intensity produced by the
surface waves joins smoothly with the far-field intensity
produced by the geometrical light rays in the vicinity of
the one-ray-zero-ray transition. This smooth intensity
transition is known as the Fock transition.5 7"8

A question of interest is whether, under favorable cir-
cumstances, some of these nongeometrical mechanisms
that weakly contribute to the scattering, namely, surface
waves and complex rays, may be observed. It has been
known for some time that the optical glory is dominated
by the contribution of p = 2 surface waves. 715,20 In ad-
dition, a subtle effect of the complex ray in the neighbor-
hood of a transverse cusp caustic has been predicted2 1

-
2 4

and tentatively observed.2 5 One of our purposes is to as-
sess the practicality of additional observations of surface
waves and complex rays in light scattering by a dielectric
sphere. The observations that we examine employ the
interference of surface waves or complex rays with geo-
metrical light rays. The technique of observing relatively
weak contributions to scattering by their interference
with more dominant contributions has long been employed
in quantum-mechanical scattering.2 6 We believe that this
method was not previously considered for surface waves or
complex rays in the context of light scattering by a dielec-
tric sphere.

This paper has a second and more theoretical purpose
as well. Although light-scattering experiments measure
the full scattered intensity rather than only one Debye-
series component at a time, the Debye-series decomposi-
tion of the scattering amplitudes is a powerful tool for un-
derstanding the physical mechanisms that produce the
scattering. The individual Debye-component intensities
allow one to examine a single scattering mechanism in
isolation from all the other mechanisms that either domi-
nate it or otherwise obscure its effects. The Debye-series-
component intensities are found to exhibit a number of
novel features and interference structures that are not
evident in the total Mie intensity. Even though many of
these novel structures may not be observable in practice,
we believe that determining their physical origins in-
creases our fundamental understanding of the scattering
process.

The remainder of this paper is organized as follows. In
Section 2 we review the contribution of geometrical light
rays to the scattered intensity. In Section 3 we review
the Airy theory of the p - 1-order rainbow and compare
its accuracy with that of the p term of the Debye-series
expansion of the scattered intensity. We parameterize
the complex ray in the zero-ray region adjacent to the
rainbow in terms of the Airy integral. In Section 4 we
review the complex-angular-momentum parameterization
of surface waves and compare its accuracy with that of the
p = 1 (i.e., transmission) term of the Debye series. Next,
in Sections 5-7, using these models for complex rays, sur-
face waves, and geometrical light rays, we examine the in-
terference between (1) surface waves and geometrical
rays, (2) complex rays and geometrical rays, and (3) sur-
face waves and complex rays that occur in the various
Debye-series-component intensities. In Section 8 we de-
scribe an experiment in which we observed the surface-
wave-geometrical-ray interference. Pinally, we present
our conclusions in Section 9.

2. GEOMETRICAL LIGHT RAYS

Consider a linearly polarized geometrical light ray with
field strength E0 and wavelength A incident with the angle
Oi upon a dielectric sphere of radius a and refractive index
n as in Fig. 1. The size parameter of the sphere is de-
fined as

27ra
X = A. (1)

A

The angle of deflection of the geometrical ray as it leaves
the sphere after having made p - 1 internal reflections is

0 = (p - 1)qr + 2 0i - 2 pO,, (2)

where

sin Oi = n sin 0 ,. (3)

The scattering angle corresponding to this deflection is

0=
0 - 2sN
21r(N + 1) - )

if 27rN ' e ' 2ir(N + 1/2)
if 2wr(N + 1/2) < 0 ' 2ir(N + 1)

(4)

where N is an integer. This relation confines the scatter-
ing angle to the interval 0 0 c 180°. The fraction of
the geometrical ray's incident TE or TM polarized electric
field that is transmitted from the exterior to the interior
of the sphere is T2'(0i), the fraction that is internally re-
flected is R "(0i), and the fraction that is transmitted from
the interior to the exterior is T'2 (0i). The superscript 1
denotes the region inside the sphere, and the superscript 2
denotes the region outside the sphere. When x >> 1,
these fractions are approximated by the Fresnel coeffi-
cients for oblique incidence upon a flat interface with ei-
ther the TE or the TM polarization.2 7

The optical path length of the ray from the entrance
plane of the sphere to the exit plane is

L = 2a(pn cos 0, - cos O + 2a. (5)

The electric field of the ray scattered in the 0 direction

Fig. 1. Deflection of a geometrical light ray through the angle 0
by a dielectric sphere of radius a and refractive index n.

E. A. Hovenac and J. A. Lock
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Fig. 2. Comparison of the p-term Debye-series-component intensity I, with the prediction of geometrical optics, Eq. (6), for all the con-
tributing TE polarized ray trajectories for x 100 and n = 1.333. (a) Debye p = 0 plus diffraction compared with the reflected geomet-
rical rays; (b) Debyep = 1 compared with the transmitted geometrical rays; (c) Debyep = 2 compared with the single-internal-reflection
geometrical rays; (d) Debyep = 3 compared with the two internal reflection geometrical rays.

after p - 1 internal reflections is then"

1/2

EPeometricalray(0) = -Ea sin cos O T21(0O)
R 2 sin 1 P cos i

n cos 0,

x [ 11(0,.)lP-'T12 (i)exp(ikR)exp(2i~ 7r/W)exp(i;) (6)

for either polarization state, where R is the distance from
the center of the sphere to the observer and is a phase
factor that contains the effect of the ray trajectory cross-
ing focal lines.28 For almost all values of p, there are a
number of values of Oi that give rise to the same scattering
angle 0. As a result, when Eq. (6) is used in obtaining the
total ray optics scattered electric field, all the contributing
ray trajectories for the scattering angle 0 must be summed.

As mentioned above, the far-field Mie scattered electric
field at most angles is dominated by the contributions
of geometrical light rays. A comparison between the
geometrical-ray model and the various Debye-series-

component intensities can be used to map the angular
regions corresponding to the various p terms that are
dominated by the geometrical light rays and the angular
regions that are dominated by other effects. The appro-
priate formulas for the various terms of the Debye-series
expansion of the scattered electric field and their relation
to the TE and the TM polarization states of the geometri-
cal rays are given in Appendix A.

Figures 2(a), 2(b), 2(c), and 2(d) show the comparison
between the Debye scattered intensities (Il IS1112) and
the corresponding TE polarization state of the geometri-
cal ray for p = 0, 1, 2, and 3, respectively, for a sphere
with x = 100 and n = 1.333. Note that in Fig. 2(a) the
Debye-series plot for p = 0 also includes the diffraction
term. Details describing the necessity of combining the
p = 0 (reflection) term with the diffraction term are
given in Appendix A. Also note from Fig. 2(a) that agree-
ment between the geometrical-ray model of reflection and
the Debye p = 0 plus diffraction intensity is excellent for
the larger scattering angles at which the reflection term
of the Debye series dominates. Thus ray optics is a good
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model for reflection from a sphere with size parameters
as low as 100 or less.2 9

Figure 2(b) compares the geometrical-ray model of the
transmitted light with the p = 1 term of the Debye series.
The ray optics model predicts that no light is scattered
past 0 = 82.79°, whereas the intensity contributed by the
p = 1 term of the Debye series continues out to 1800.
This continuation is produced by the secondary radiation
shed by surface waves and is addressed in more detail in
Section 4. One other point of interest is the oscillations
near 0 = 1800 in the Debye-series-component intensity.
This is the interference pattern that surrounds the back-
scatter glory axial caustic.3 0 32

Figures 2(c) and 2(d) compare the geometrical-ray mod-
els of the light making one and two internal reflections
with the p = 2 and the p = 3 terms of the Debye series.
In both cases ray optics predicts large angular intervals in
which no rays are scattered and an infinite intensity at
the positions of the rainbows. In contrast, the Debye-
series-component intensities extend over all the scattering
angles and show a broad increase near the rainbow, with
the characteristic supernumeraries located to one side.
Also note from Fig. 2(c) the oscillations in the intensity
near 0 = 0 for the p = 2 Debye contribution. This is the
interference pattern that surrounds the forward glory
axial caustic.26 33

3. AIRY THEORY OF THE RAINBOW

As is seen in Figs. 2(c) and 2(d), the electric field of Eq. (6)
for the geometrical rays that have made p - 1 internal re-
flections incorrectly predicts an infinite intensity in the
direction of the rainbow scattering angle R. This angle
is given by Eq. (4) with

ER- (p - 1)7 + 2 0,R - 2OR, (7)

Cos2 p2 (8)

In Airy theory, the shape of the wave front leaving the
dielectric sphere in the vicinity of OR is cubic to a first
approximation.34 If this exiting wave front is then
Fraunhofer diffracted into the far field, the TE or the TM
polarized electric field in the vicinity of R becomes35

Eoa exp(ikR) 2 sin Ri )12 x/ T21(R)

R sin R ,/h
1

/
3

X [Rll(0iR)]plTl 2 (oiR) X Ai h23

X exp(2riLR/A)ex(ixA)y 2 (9)

where

A= 0 _ R, (10)

h P -(
2 1)2 (p 2 n~2)1/2 (1

p2 (n 2 1)3/2 (11)

LR is Eq. (5) evaluated at the rainbow angle, and Ai is the
Airy integral.3 6 For negative values of its argument, the
Airy integral is oscillatory and describes the supernumer-
ary interference pattern in the two-geometrical-ray region.
For positive values of its argument, the Airy integral rap-

idly dies off in the zero-geometrical-ray region as

Ai0u - -1 2 -.3/2 -( 3/2Ai') 2i' 1
/
2

KU I exp (12)

for u >> 1.
In the complex-angular-momentum analysis of the

Debye-series terms, for a given value of p, we convert the
sum over partial waves into an integral over an effective
impact parameter (i.e., how far off center an incident ray
strikes the sphere) by using the modified Watson transfor-
mation.5 7 The numerical value of this integral is domi-
nated in the small-wavelength limit by the regions of
stationary phase and residue poles of the integrand. The
stationary-phase regions produce contributions to the in-
tegral that resemble the effects of geometrical light rays.
This result is the motivation for the localization principle
mentioned below in Section 4. The residue pole contribu-
tions correspond to the shedding of secondary radiation by
surface waves.

After the two geometrical rays coalesce at the rainbow
scattering angle, if the scattering angle is further de-
creased the impact parameters of the two rays in the
complex-angular-momentum analysis leave the real axis
and migrate into the complex plane. The contribution to
the Debye-term integral from these complex impact-
parameter stationary-phase points is known as the com-
plex ray contribution to the scattering.

The complex ray is loosely analogous to an exponentially
damped wave or an evanescent wave. When a plane wave
is incident upon a flat dielectric interface, a portion of the
wave is refracted through the interface at an angle 0

r as
determined by Snell's law [0, = arcsin(ni/nr sin Os)]. If
the wave is incident from a denser medium (i.e., ni/nr > 1)
and the angle of incidence i of the wave increases past
the critical angle for total internal reflection (i.e.,
ni/nr sin Oi > 1), then 0

r must become complex to satisfy
Snell's law. Thus the angle of refraction leaves the real
axis and migrates into the complex plane, and an evanes-
cent wave is formed. The imaginary part of the angle of
refraction is responsible for the damping of the evanes-
cent wave.

Since the zeroth-order approximation to the complex-
angular-momentum analysis gives results identical to
those of Airy theory, we take the rapid falloff of the Airy
integral for u >> 1 as our parameterization of the scatter-
ing produced by the complex ray.

The intensity of the p - 1-order rainbow in Airy theory,

'I.ir(O) = E~ijy(0)I2 , (13)

was previously compared with the full Mie intensity
for x 15,000 for only the first- and the second-order
rainbows (p = 2,3).35 The reason that comparisons for
higher-order rainbows were not previously made is that
the Mie intensity is dominated by the much larger dif-
fracted, reflected, and transmitted contributions in the
regions where these rainbows occur. Only in Alexander's
dark band between the first- and the second-order rain-
bows is the background intensity low enough that the
features of the fifth- and the sixth-order rainbows may
be qualitatively examined by using Airy theory.3' 37 38

However, if ILry(O) were compared with the intensity

E. A. Hovenac and J. A. Lock



Vol. 9, No. 5/May 1992/J. Opt. Soc. Am. A 785

06

10

104

12 

18 135 140 145

Scattering Angle, Degrees

Fig. 3. Comparison of the p = 2 Debye-component intensity I,
with the Airy theory approximation of Eq. (13) for the TE polar-
ization state, x = 1000, and n = 1.333.

obscure the relatively weak high-order rainbows would be
removed from consideration. In the remainder of this
section we use the Debye-term comparison to provide a
sensitive test of the validity of Airy theory for high-order
rainbows.

Using Eqs. (9) and (13) and the results of Appendix A,
we give the comparisons between Airy theory and the
Debye-series terms for the first- through the fifth-order
rainbows in Figs. 3-7 for x = 1000 and n = 1.333 for the
dominant polarization [i.e., for the Debye scattering inten-
sity I,(0) and the TE polarization for Airy theory].

The Airy theory formula of Eq. (9) neglects the varia-
tions in the Fresnel reflection and transmission coeffi-
cients as a function of O in the vicinity of OiR. This
variation is relatively unimportant for the primary rain-
bow in the dominant polarization, as is seen in Fig. 3.
But, as is evidenced by Figs. 4-7, the variation in the
Fresnel coefficients is important for all higher-order rain-
bows since 0 R is closer to wr/2, where the transmission and
the reflection Fresnel coefficients are rapidly increasing
or decreasing functions of . This variation is also im-
portant in the nondominant polarization [i.e., for the De-

5

'.4

148

Scattering Angle, Degrees

Fig. 4. Comparison of the p = 3 Debye-component intensity I,
with the Airy theory approximation of Eq. (13) for the TE polar-
ization state, x = 1000, and n = 1.333.
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Fig. 5. Comparison of the p = 4 Debye-component intensity I,
with the Airy theory approximation of Eq. (13) for the TE polar-
ization state, x = 1000, and n = 1.333.

corresponding to only the p term of the Debye-series ex-
pansion of the Mie scattering amplitudes, the other contri-
butions to the Mie amplitudes that would normally

02

leI

180
70

Scattering Angle, Degrees
Fig. 6. Comparison of the p = 5 Debye-component intensity I,
with the Airy theory approximation of Eq. (13) for the TE polar-
ization state, x = 1000, and n = 1.333.
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180
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Fig. 7. Comparison of the p = 6 Debye-component intensity I,
with the Airy theory approximation of Eq. (13) for the TE polar-
ization state, x = 1000, and n = 1.333.
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bye scattering intensity I2(0) and the TM polarization for
Airy theory] since 0 jR is near the Brewster angle for this
polarization and the internal reflection of the contribut-
ing rays is weak.3 9 For large droplets with x 20,000 for
the p - 1-order rainbow in the dominant polarization, the
Airy theory approximation of Eq. (13) was found to be vir-
tually identical near the primary maximum to the exact
Debye-series calculation for all the values of p that were
examined.

4. SURFACE WAVES

For x >> 1, the localization principle associates a small
number of spherical multipole partial waves centered
about the partial-wave number lave with a geometrical
light ray whose angle of incidence on the sphere is

surface wave on the circumference of the sphere. The
distance

T = 2a (n2 i)1/2
n

(15)

is the length of a shortcut through the sphere made at the
critical refraction angle OrC, given by

sin 0rC = 1 .
n

(16)

The wave vector of the surface wave during the shortcut is

kshortcut = nk, (17)

and the wave vector as it propagates along the circumfer-
ence is7

sin O - lave

X
(14)

For example, small values of I correspond to rays incident
near the center line of the sphere, and values of I - x cor-
respond to light rays incident upon the sphere at grazing
incidence. In ray theory such a grazing ray is entirely
reflected by the sphere. In wave theory the grazing inci-
dence also creates surface waves that propagate along the
circumference of the sphere. At every point along the cir-
cumference they shed secondary radiation tangentially,
which then propagates into the far zone. Some of the sur-
face waves also refract into the sphere. The angle of the
refracted wave inside the sphere is given by Snell's law.
This angle turns out to be the critical angle because the
incident wave (i.e., the surface wave) is propagating paral-
lel to the surface. After the refracted wave propagates
across the interior of the sphere and reaches the opposite
side, it is again refracted at the surface. Since the angle
that the refracted wave makes with the surface is again
the critical angle, the wave exits the sphere parallel to the
surface and forms another surface wave. Thus a portion
of the original surface wave takes a shortcut through the
sphere before returning to the surface to shed more sec-
ondary radiation tangentially into the far zone.56"8

The phenomenon of surface waves has long been known
and has many applications in electromagnetism, 3 4' acous-
tics,4 2 and quantum-mechanical scattering. 4 3 It is only
comparatively recently,7 however, that the scattering am-
plitude for electromagnetic surface waves on a dielectric
sphere has been calculated. In this section we review
these results and compare them with the results of Debye-
series calculations.

The surface waves, otherwise known as creeping waves
or surface guided modes, resemble electromagnetic fields
propagating in a leaky waveguide duct on the exterior of
the sphere.44 The energy that leaks out of the effective
waveguide duct into the sphere is the above-mentioned
shortcut through the sphere. The energy that leaks out-
ward from the sphere surface and propagates into the far
field is the shed secondary radiation described in this sec-
tion. We consider the surface wave in the j waveguide
mode, where j Ž 1 is an integer, that takes p shortcuts
through the sphere and thereby makes p - 1 internal
reflections. Such a surface wave is pictorially repre-
sented in Fig. 8. Let be the total angle traveled by the

x. i' 1"3
ksurface = k + ) -

[/X 1x)/3 K 2

L2a \2/ a

where Xj is defined by

Ai(-Xj) = 0

and

K = {2
n

for the S1 scattering amplitude
for the S2 scattering amplitude

(18)

(19)

(20)

The real part of kjsurface indicates that the propagation
speed of the surface wave along the circumference is less
than C. The imaginary part describes the radiation
damping. The scattered electric field that is due to the
secondary radiation produced by the j mode of the p - 1
internal reflection surface wave is7

Es~urfacewave(0) =
Eoa exp(ikR) exp(i7r/12) ( 2 1/6

R(sin 0)1/2 27r 1/2aj,2k x /
X exp(ipkshortcut T)exp(ikjsurfacea6)exp(2ika)

x 2 (p - 1)! r 2K M gm

m= (m - 1)! (p - m)! L (n2
- 1)M m!

(21)

Fig. 8. Secondary radiation shed into the far field by a p = 2
surface wave that travels the angular distance { = Al + 2 along
the circumference of the sphere. The path segments marked T
denote the shortcuts made by the surface wave through the
sphere, and the thick arc segments denote propagation along the
sphere surface.

E. A. Hovenac and J. A. Lock
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188

Scattering Angle, Degrees

(a)

owing to the TE and the TM polarized p = 1 geometrical
rays plus their corresponding p = 1, j = 1 surface waves
with the intensity of the p = 1 term of the Debye series
for the S, and the S2 scattering amplitudes, respectively.
Figure 9 shows the results for both polarization states for
x = 1000 and n = 1.333. In the vicinity of the critical
scattering angle, a complete comparison would require
that Eqs. (6) and (21) be replaced by the Fock transition
formulas of Refs. 5-7 that smoothly connect the ray the-
ory intensity below the critical scattering angle with the
surface-wave intensity above the critical scattering angle.
As x increases, the surface-wave encroachment of the scat-
tered intensity into the scattering angle region 0 > S'
decreases.

5. SURFACE-WAVE-GEOMETRICAL-RAY
INTERFERENCE

Consider the vicinity of the p - 1-order rainbow. In ray
theory the geometrical light ray that is incident upon the
sphere with the angle OiR exits at the rainbow scattering
angle OR. The two rays that exit in the direction 0 > R

and interfere to produce the supernumerary pattern are
incident upon the sphere with the angles Oi < OiR and
O > ORj. As one progresses farther into the supernumer-
ary region, the angles of incidence of the contributing rays
continue to decrease and to increase, respectively, until
the one with the larger incident angle approaches =
7T/2. In ray theory the supernumerary interference pat-
tern ends at O = 7r/2. This corresponds to the scattering
angle O given by Eq. (4) with

E)C = pT - 2pOc (

Scattering Angle, Degrees

(b)

Fig. 9. Comparison of thep = 1 Debye-component intensity with
the transmitted geometrical-ray and surface-wave contributions
of Eqs. (6) and (21) for x = 1000 and n = 1.333. (a) The I, Debye
scattered intensity, the TE polarized ray, and the TE polarized
surface wave; (b) the 2 Debye scattered intensity, the TM polar-
ized ray, and the TM polarized surface wave.

where aj' is defined in terms of the derivative of the Airy
integral by

Ai'(-Xj) = aj' (22)

For scattering angles beyond OC only a single remaining
geometrical ray, the one with Oi < OiR, contributes to the
scattered intensity. In wave theory, however, the grazing-
incidence geometrical ray launches surface waves. For
0 > Oc the remaining geometrical ray and the secondary
radiation shed by the surface waves continue to interfere,
thereby extending the supernumerary region beyond the
ray theory limit. This surface-wave-geometrical-ray in-
terference is indicated pictorially in Fig. 10.

For the first-order rainbow with n = 1.333, the super-
numerary region begins at OR = 137.920 and ends at

Surface A
wave I

I

__ o__ ~~~~~~~~~~~~I

and the relationship between the scattering angle and the
angle along the circumference is given by Eq. (4) with

Geometrical
ray

0 = pTr - 2pOrC + . (23)

The associated scattered intensity for either the S or the
82 scattering amplitude is

Ifurfacewave(0) = > EfP'iacewave(0) (24)

In practice, only thej = 1 term of this sum is usually con-
sidered. This corresponds to the largest-amplitude sur-
face wave and the strongest secondary radiation in the
far field.

The accuracy of the surface wave parameterization of
Eq. (21) was tested by comparing the scattered intensities

Fig. 10. Ap = 3 geometrical ray (solid line) and ap = 3 surface
wave (dashed line) that interfere in the far field.
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observable.

To see how the interference is imprinted on the scat-
tered intensity, we compare in Fig. 11 the p = 3 term of
the Debye series for each polarization with

Iappoximate() = Egeoetricaray() + EsPr'=r3cewave(0)I, (26)

using only one of the geometrical rays that contribute to
the second-order rainbow, the one incident closer to the
center line of the sphere. In this figure Eq. (26) has been
offset by a factor of 100 for clarity. As mentioned above,

oC 0R \ the contribution of the geometrical ray becomes infinite
at the rainbow angle. This is apparent in Fig. 11. The

1 ray 2 rays 0 rays Debye-series-component intensity in Fig. 11 shows an os-
188 110 120 130 140 cillatory structure for both polarizations that extends well

below O. This is the surface-wave-geometrical-ray in-
Ltering Angle, Degrees terference. The approximation of Eq. (26) agrees well

(a) with the Debye-series result for 0 << OC both in the ampli-
tude and in the period of the oscillation. Near OC the
comparison is poor because Eq. (26) should be replaced

1000. by the above-mentioned Fock transition formulas at the
3 geometrical-ray-surface-wave transition.' The falloff in

the amplitude of the oscillatory structure of the Debye
p = 3 intensity near O' for the dominant polarization (i.e.,
the S, amplitude) could even be used to measure the Fock
transition effect experimentally. In Fig. 11(b) the van-
ishing of the Fresnel reflection coefficient of the geomet-
rical ray at the Brewster angle (0 iB = 53.12, 0 B = 115.02)
is also evident.

A feature of Fig. 11(b) that was unanticipated is the vir-
tual nonexistence of supernumeraries for the second-order

0C / OR rainbow in the nondominant polarization (i.e., the S2 am-
1 ray 2 rays f o rays plitude) for x - 1000. For very large spheres (i.e., x 
I I i | 20,000) they do appear but are quite weak compared with
188 110 120 130 140 the supernumeraries for the dominant polarization. This

ttering Angle, Degrees near absence of nondominant polarization supernumer-
(b) aries was found for all the rainbows that we examined (the

e p = 3 Debye-component intensity second order through the fifth order) and seems not to
Eq. (26) for x = 1000 and n = 1.333. have been commented on before. The absence of the su-
26) has been offset by a factor of 100 pernumeraries is due to the fact that the Brewster angle
)ye scattered intensity, the TE polar- for the TM polarization is within or near the range of
raized surface wave; (b) the 12 Debye angles Oi of the supernumerary ray incident closer to the
VI polarized ray, and the TM polarized center line of the sphere. The Fresnel reflection coeffi-

cient term [R"]P-' of this ray is near zero in much or all
to ray theory. The interference of of the supernumerary region. Thus the ray has a small
s with the remaining p = 2 geo- amplitude, and its interference with the other super-
< 14.6° encroaches into the glory numerary ray is quite weak.
observed because of its interfer- For a plane wave incident upon a spherical water droplet

pattering mechanisms. For the in the TE polarization state, the intensity of the surface-
supernumerary region begins at wave-geometrical-ray interference is approximately
Lc = 28.860 according to ray the- 1 order of magnitude weaker than the intensity that is due

between the p = 4 surface waves to reflection by the droplet surface. For the TM polariza-
4 geometrical ray having O < tion state, it is approximately 2 orders of magnitude
forward diffraction region and is weaker than the reflection component. As a result, it
'ed because of the dominance of seems that the surface-wave-geometrical-ray interference
g mechanisms. For the second- of Fig. 11 should not be observable. However, a possibil-

the effect may be amenable to ity of observation exists in two different experimental
the supernumerary region begins situations. First, it has been found that the intensity of
s at Oc = 111.64° according to ray the second-order rainbow for a prolate spheroidal water
wave-geometrical-ray interfer- droplet is enhanced with respect to its intensity for a
0 = 900, where the total Mie inten- spherical droplet.38 This relative enhancement may ren-
igth of the competing scattering der the surface-wave-geometrical-ray intensity compa-

-
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Geometrical
ray

Complex
ray

R3

Fig. 12. Ap = 4 geometrical ray (solid line) and the p = 4 com-
plex ray (short-dashed line) that interfere in the far field. The
long-dashed line marked R' is the third-order rainbow ray. The
complex ray occurs for scattering angles larger than that of
the rainbow ray.

rable with the reflection intensity. Second, if a water
droplet is illuminated by a laser beam whose diameter is
smaller than the droplet diameter, shifting the beam off
center increases the intensity of the second-order rainbow
with respect to the competing reflected light.'2 For ex-
ample, consider the scattered light at the angle at which
geometrical optics predicts the end of the supernumerary
region (i.e., at O 111.64). The contributing supernu-
merary rays are incident upon the droplet at distances of
0.76a and 1.00a from the center line of the droplet, while
the rays that are reflected from the droplet are incident
somewhat closer to the center line of the droplet at a dis-
tance of 0.56a. If the center of an incident laser beam is
positioned near the edge of a water droplet, the rays that
produce the second-order rainbow will have greater inten-
sity than the rays that are reflected at that angle. We
investigate this technique experimentally in Section 8.

6. COMPLEX-RAY-GEOMETRICAL-RAY
INTERFERENCE
Consider light rays that make three internal reflections
(i.e., p = 4 rays) within the sphere, as in Fig. 12. The
scattering angle of the third-order rainbow is OR = 41.74,
and in ray optics the supernumeraries occur for scattering
angles between OR and O = 28.86. The complex ray con-
tributes to the p = 4 intensity for 0 > R. In addition, a
third geometrical light ray that enters on the opposite side
of the center line with Oi 350 and makes three internal
reflections also exits at 0 > R and interferes with the
complex ray, as in Fig. 12.

The intensity corresponding to the S scattering ampli-
tude p = 4 term of the Debye series, shown in Fig. 13,
exhibits the third-order rainbow, a few broad supernumer-
aries for 0 < R, and a much finer oscillatory structure for
0 > R. The amplitude of the finer oscillatory structure
grows with increasing 0 until the scattering angle is ap-
proximately 520. Thereafter the amplitude decreases.
Such behavior is consistent with the interference between
the p = 4 complex ray and the above-mentioned third
p = 4 geometrical ray, with the complex ray dominating

for 0 ' 520 and the geometrical ray dominating for 0 -
520. To verify this, we compared the p = 4 Debye-series
intensity with

Iapproximate(0) = |Eghi4dgeometricalray(O) + ERiry (27)

in Fig. 13. Again, the comparison of the amplitude and
the period of the oscillatory structure is quite good.

As to the potential observability of this effect, for scat-
tering by a sphere in this angular region the scattering is
dominated by transmission and reflection. Although the
third-order rainbow from a prolate spheroidal water
droplet has been tentatively observed, 8 the complex ray-
geometrical ray interference pattern of Fig. 13 is more
than 3 orders of magnitude weaker than the rainbow maxi-
mum. Further, the two rays that contribute to this inter-
ference pattern enter on opposite sides of the droplet, and
the dominant p = 0 reflected ray is incident upon the
sphere at virtually the same location where the third-order
rainbow ray enters. This renders the off-center laser
beam technique ineffective in this situation. Possibly
the only hope for the observation of the complex-ray-
geometrical-ray interference would be to use the TM
polarization state, in which the intensity of the reflected
ray falls by more than 1 order of magnitude while the in-
tensity of the third-order rainbow falls by a factor of ap-
proximately 4.

7. SURFACE-WAVE-COMPLEX-RAY
INTERFERENCE

Since no geometrical light rays make one internal ref lec-
tion within the sphere and exit with a scattering angle
less than OR = 137.92, thep = 2 term of the Debye series
should be a near-ideal situation in which to examine nu-
merically weak-scattering mechanisms in the region 0 <
OR. Near the first-order rainbow the p = 2 intensity is
dominated by the complex ray that falls off faster than
exponentially as a function of 0. Since the intensity of
the secondary radiation shed by surface waves falls off ex-
ponentially as a function of 0, it was previously noted that
the scattered intensity that is due to surface waves pro-

to, At = 600.

H 102

18

Scattering Angle, Degrees

Fig. 13. Comparison of the p = 4 Debye-component intensity I,
with the approximation of Eq. (27) for the TE polarization state
and for x = 600 and n = 1.333. The approximation of Eq. (27)
has been offset by a factor of 100 for clarity.
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Since the surface-wave-complex-ray interference struc-
ture of Fig. 15 occurs at an intensity level approximately
7 orders of magnitude below the intensity level of the rain-
bow peak, the effect is not expected to be observable.

8. MEASUREMENT OF SURFACE-
WAVE-GEOMETRICAL-RAY INTERFERENCE
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An experiment was performed to observe the interference
between geometrical rays and the secondary radiation
shed by surface waves. The region showing most promise
for making this measurement is at scattering angles be-
tween 900 and 1100 in the vicinity of the second-order
rainbow. A focused laser beam was employed, as shown

1 \ - ,7 / in Fig. 16 and described in Section 5, to increase the visi-
bility of thep = 3 rainbow and its supernumeraries and to
decrease the background intensity of the light reflected

= 2 surface wave (solid line) and the p = 2 complex by the droplet.
shed line) that interfere in the far field. The long- A focused, linearly polarized beam from a 5-W argon-ion
aarked R' is the first-order rainbow ray. The com- laser (A = 514.5 nm) was used to illuminate water

irs for scattering angles smaller than that of the droplets that were generated at a rate of 53,240/s by a vi-

brating orifice droplet generator, as shown in the experi-
mental setup in Fig. 17. The size of the droplets was
determined by weighing a sample of the droplets collected

= 100. over a period of several minutes. Details of this method
p = 2 are given in Ref. 47. Uniform-sized droplets (86.6 ±

1.5 /im) passed through the waist of the laser beam that
was measured to be 40 ± 5 ,-m. A lens with a 25-cm focal
length (FL) was found to be ideal for this application for
two reasons: (1) it produced a waist that was approxi-

) x Eq. (28) Wr mately half the diameter of the droplet, and (2) the length
of the waist was long enough to ensure that the rays inci-
dent upon the droplet were parallel. If the rays had been
converging or diverging, then the positions of the rainbow

OR and its supernumeraries would have been shifted. When
a viewing screen was placed beside the droplet stream and

l l l l l l I l l parallel to the laser beam, the scattering interval 30° s
88 98 188 118 120 138 148 158 168 0 ' 1500 could be observed, and the first- and the second-

Scattering Angle, Degrees order rainbows were readily evident. By adjusting the

aparison of the p = 2 Debye-component intensity I, droplet stream with a micropositioner so that the laser
roximation of Eq. (28) for the TE polarized surface beam was incident upon either the left- or the right-hand
nplex ray for x = 100 and n = 1.333. The approxi- side of the droplet center line, we could make either the
. (28) has been offset by a factor of 100 for clarity. first- or the second-order rainbow more intense while the

other rainbow was extinguished. When the laser beam
e other side of the droplet, as shown in Fig. 14, was incident near the side of the droplet closest to the
ally overtake the complex ray scattered inten screen, thus illuminating the second-order rainbow, the
hs a result, an interference pattern will be reflected intensity was largely confined to the forward
he angular interval in which these two effects hemisphere and no longer obscured the second-order rain-

iparable strength. This interference in the bow supernumeraries. A photograph of the second-order
ye intensity corresponding to the Sl scattering rainbow obtained by using this arrangement is shown in
is shown in Fig. 15. For 0 c 1150, log Id is n- Fig. 18. The photograph was taken by replacing the
ttering angle, indicating surface wave domi- screen with a film holder.
for 0 2 1150, log I, falls off faster than linearly A frame of Polaroid film was exposed by the scattered
ag angle, indicating complex ray dominance. light for 0.005 s by using a camera shutter located at the
rerify this, we compared the intensity of the exit port of the laser. To avoid blurring produced by
of the Debye series with small fluctuations in the droplet stream from air currents

2imate(O = IE rp=~.~ave(0) + E (0)I2 (28 in the room, longer exposures using lower-power laser
beams were not taken. Moving the droplet generator

The agreement between Eq. (28) and the De- head close to the laser beam to reduce the effects of the air
result is quite good, considering that the Airy currents was not practical because the droplets were un-
imeterization of Eq. (9) and the surface-wave stable and not spherical in this region. For the conditions
zation of Eq. (21) are expected to be only quali- of Fig. 18 the droplet generator head was approximately
curate for size parameters as low as x = 100. 5 cm from the laser beam. Note that the figure is ori-

E. A. Hovenac and J. A. Lock



Vol. 9, No. 5/May 1992/J. Opt. Soc. Am. A 791

eR

Zero-Ray",
Region

I
O-

-
Laser -
Beam - -

0-

E)C

Reflected Rays

Two-Ray 
Region '

I l

Fig. 16. Laser beam with a small diameter illuminating a water droplet close to one edge. This focused laser beam causes the p = 3
rainbow and its supernumeraries to be more intense than other rainbows and confines the reflected rays to the forward-scattering
hemisphere.

2-Axis Micropositioner

V I Stream
25-cm I °
FL lens 0 _ _ _

Fig. 17.
screen.

Experimental apparatus. Light scattered by the droplets

ented so that the scattering pattern is consistent with the
orientation of the rays in Figs. 16 and 17; thus the scatter-
ing angle in Fig. 18 decreases from left to right. On the
left-hand side of Fig. 18 the broad intense region is the
p = 3 rainbow, with the supernumerary region located to
the right of it in the direction of decreasing scattering
angle. Farther into the forward-scattering direction the

Collection Cup
in the angular range 30° 0 S 150° is observed on the viewing

supernumeraries become washed out by the increasing
background of the p = 0 reflected light.

After photographing the scattering pattern, we digi-
tized the photograph and compared it with the Debye-
series calculation for p = 3, as shown in Fig. 19. No
compensation for the nonlinearity of the film was made.
The abscissa in this figure has two labels: one in mil-

Viewing Screen - -

- I~~~~~~~~~~~~~~~~~~
Shutter

Beam Filter
& Expander

: Droplet
Generator
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Fig. 18. Scattered light intensity for a 40-,um-diameter laser
beam incident near the edge of an 86.6-Am-diameter water
droplet. The scattering angle decreases from left to right. The
broad illumination on the right-hand side of the photograph is re-
flection from the droplet. The interference pattern on the left-
hand side is the second-order rainbow and its supernumeraries.
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Fig. 19. Comparison b
and experiment. (a) Di
tion of position on the f.
of Fig. 18. The four osc
film ( < OC) are the gee
The rise in the detector
-6 mm (0 100°) is d
(b) p = 3 Debye intens
function of the scatterir

limeters and one in degrees. A scattering angle of 900
corresponds to a position on the film of 0 mm. The de-
gree tick marks are not linear because the film was held
with a flat rather than a circular film holder. The ex-
perimental data show interference oscillations that begin
at the rainbow angle, continue through the two-ray super-
numerary region, and extend well into the one-ray region,
which begins on the film at the position -12 mm. The
positions of these oscillations correspond to the expected
positions of the supernumeraries of the second-order rain-
bow for an x = 528.8 sphere as obtained from the p = 3
Debye-component intensity. Additional calculations were
performed to ascertain that these oscillations were not a
result of interference between the one remaining p = 3
geometrical ray and the p = 0 reflected rays. These cal-
culations showed that such an interference pattern would
have had a periodicity greatly different from the one ob-
served. Thus we are confident that the oscillations that
were observed in the one-ray region are a result of the
interference between the geometrical ray and the second-
ary radiation shed by the surface waves described in
Section 5.

9. CONCLUSIONS

When one thinks about electromagnetic scattering by a
dielectric sphere, one's physical picture of the scattering is
different from one's mathematical calculation of it.
Physically, one thinks of scattering as the resultant sum
of a number of mechanisms such as geometrical rays,
rainbows, glories, surface waves, and diffraction and the
wave interference between them. Mathematically, one
calculates the scattering in terms of the effect of the in-
terface between two dielectrics on spherical multipole
partial waves and the interference between the partial
waves. The difficulty in reconciling these two modes of

_______________________thought lies in the facts that (1) many partial waves con-
-20 -15 -1tribute to a single physical mechanism and (2) only a por-

tion of the scattering amplitude for each partial wave
Position on Filn, mm contributes to a given mechanism. The connection be-

tween the mathematical and the physical modes of
thought is expressed in a simple way by the Debye series.
We hope to have demonstrated the simplicity and the
power of this connection.

x = 528.8 The Debye series also makes evident one other feature
p 3 of electromagnetic scattering that is not evident in the

geometrical model of scattering, namely, that the scattered
intensity as a function of scattering angle is smoothly
varying. Ray theory permits (in fact demands) disconti-
nuities both in the scattered intensity as a function of

Oc scattering angle and in the derivative of the intensity.
The discontinuity in the intensity occurs at the two-ray-

t V \J \/ P -HI ~zero-ray transition at the rainbow scattering angle. The
120' 110' 100° 90° discontinuity in the derivative of the intensity occurs at

the one-ray-zero-ray transition at the critical scattering
ten Anle Dye, Degrs . angle of the grazing-incident ray. Wave theory smooths

etector response (normalized) as a fun these discontinuities by the action of the complex ray at
ilm for the digitization of the photograph the two-ray-zero-ray transition and the secondary radia-
illations between -12 and -6 mm on the tion shed by surface waves at the one-ray-zero-ray transi-
ometrical-ray-surface-wave interference. tion. These physical mechanisms that implement the
r response at film positions greater than smoothing of the scattered intensity at the more-rays-
tue to reflection by the droplet surface.
ity I for x = 528.8 and n = 1.333 as a fewer-rays transitions produce new features in the scat-
ng angle. tering as well. They interfere with each other and with
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geometrical rays, giving additional structure to the scat-
tered intensity. Under favorable circumstances, at least
one of these new structures, the geometrical-ray-surface-
wave interference, is observable in laser light scattering.

APPENDIX A: DERIVATION OF THE DEBYE
SERIES

Consider monochromatic TE and TM spherical multipole
waves in a medium whose refractive index is n. The time
dependence of the waves is taken to be exp(-iwot). The
electric and the magnetic fields of the spherical waves are
derived from a scalar potential 4/(r, 0, 4) that satisfies the
wave equation

V2q, + n2k 2q/ = 0, (Al)

where

k=-. (A2)

Consider a dielectric sphere whose radius is a and whose
refractive index is ni (region 1) embedded in another di-
electric material whose refractive index is n2 (region 2).
The center of the sphere is taken to be at the origin of the
coordinates. If a spherical multipole wave propagates
from one region to another, the tangential components of
its electric and magnetic fields must be continuous at the
interface. For TE waves this continuity of the field com-
ponents requires that

'I'(x) (y)
n2 nl

P'(x) = IKy),

(A9)

(A10)

where

x = n2ka,

y = n1ka,

I(nkr) nkri(nkr).
(All)

(A12)

The fields are

E = -r X Vip,

B = -LV x E

for the TE spherical multipole waves, and they are

E =- 2V x B,
Con 

nB = -r X Vifr

For TM waves the continuity of the field components re-
quires that

(A3)

I(x) = IKy),

?'(x) _ '(y)7W2 = n
n2 ni

(A13)

(A14)

Consider the single incoming TE or TM spherical multi-
pole wave in region 2,

' = HI(n2kr)P) m (cos 0){Cos mO+)(n~k)Pz'cs si me
(A4)

(A15)

where

for TM spherical multipole waves. The solutions to scalar
wave equation (Al) are

= EAimll(nkr) CPlm(cos 0) cos m+)
im Ln(nkr) sin meJ

(A5)

where jz and n, are spherical Bessel functions and spheri-
cal Neumann functions, respectively (also known as
spherical Bessel functions of the first and the second
kinds), and Pi' are the associated Legendre polynomials.
We adopt the sign convention for the spherical Bessel and
Neumann functions,

jonk) = sin(nkr)
nkr

no(nkr) = -cos(nkr) (A6)
nkr

With this sign convention, the Wronskian relation for the
spherical Bessel and Neumann functions is

j1(nkr)nj'(nkr) - j1'(nkr)nz(nkr) = (nkr)2 , (A7)

where the prime indicates the derivative of a function
with respect to its argument. The solutions of Eq. (A5)
represent standing waves. When considering outgoing
and incoming traveling waves, we employ spherical Han-
kel functions of the first and the second kinds:

h,(1)(nkr) = j(nkr) + ini(nkr),

hl(2)(nkr) = j(nkr) - inl(nkr),

respectively.

HI(2)(n2kr) n2 krh (2)(nkr). (A16)

When this spherically incoming wave encounters the in-
terface at r = a, a portion of it, T 1, is transmitted into
the sphere, and another portion, R 22 , is reflected back
into region 2. The complete TE or TM multipole wave in
the two regions is then

pl = T1
21H(2)(nkr)P 1`(cos 0){Cos mO}

sin 

p2 = [HI (2) (n2kr) + R 22 Hi'l)(n2kr)]

X Pr(cos 19)Cos MO
sin me

for r a,

for r a. (A17)

Applying the boundary conditions [Eqs. (A9) and (A10) or
(A13) and (A14)] yields two linear equations in the two un-
knowns, T1

21 and RI22. The solutions of these equations are

T1
2
1 = - l) 2i 

nj2 D

22 [aHI(2)'(X)HI(2)(y) - iGHI(2)(X)H1(2Y y)]
Rl = D

where

01 for TE spherical multipole waves
a = {fnl/n2 for TM spherical multipole waves

(AS) /3= {fln/n2
for TE spherical multipole waves
for TM spherical multipole waves

(A18)

(A19)

(A20)

(A21)

D = -aHI(1)(X)H(2)(y) + 3Hz(1)(X)H(2Y(y),

E. A. Hovenac and J. A. Lock
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and Eq. (A7) has been used to simplify the expression
for T1

21
.

Consider now the single outgoing TE or TM spherical
multipole wave in region 1,

P = Hi(l)(nikr)P1'm(cos 0){CS m+}
sin y

(A23)

When this spherically outgoing wave encounters the inter-
face at r = a, a portion of it, T12, is transmitted out of the
sphere, and another portion, Rll, is reflected back into it.
The complete TE or TM multipole wave in the two regions
is then

'P = [H111)(n1kr) + R1llH 1(
2)(nkr)]Pzm(cos O){cOs m+}

sin m a

for r a ,

T2 = Til2 H(l)(n 2kr)pm(cos 0) COs m+}
sin my

for r - a.

E 0a
E(R 0 ) = E-~ exp(ikR)

X [-iS2 (0) cos Duo + iS(0) sin flu,*] (A30)

for an incident electric field in the tx direction, where

Imax 21 + 1
S,(0) = a1ir1(0) + bI(0)]' (A31)

I., 1(I + 1)

S2(0) = + [amT1(0) + biTI(0)], (A32)
1-1 1(1 + 1)

'I (0) = 1 P1 (0) (A33)
sin 0

T0) = d P1 (0) (A34)
dO

Imax = X + 4.05x'/ 3 + 2. (A35)

(A24) Also,

Applying the boundary conditions [Eqs. (A9) and (A10)
or (A13) and (A14)] again yields two linear equations in
the two unknowns T 1

2 and RI". The solutions of these
equations are

= -2i/D, (A25)

B 'l - [aH(1`(x)Hj(1)(y) - 8H 1`(x)H' 1`(y)] (A26)
D

Equations (A18)-(A22), (A25), and (A26) are identical to
Eqs. (2.11), (2.13), and (2.15)-(2.18) of Ref. 8 except that
the right-hand sides of Eqs. (2.17) and (2.18) of that refer-
ence should be multiplied by nx 2 .

Consider the quantity (1 - R1
1 )( - R1

22) - T 2
1 T 12 for

either the TE or the TM spherical multipole waves. Sub-
stituting Eqs. (A19) and (A26) and using the expressions
for T1

2
1 and T 1

2 before the simplifications provided by the
Wronskian relation, we find the quantity to factor, after
much algebra, into

(1 - Rll) (1 '- R22) I

4[-a J1'(x)J1(y) + 3Jj(x)J 1
1 (y)] (A27)

D

where

J1(nkr) nkrjl(nkr). (A28)

Dividing Eq. (A27) by (1 - Rll), we obtain

-aJJ'(x)J(y) + 8J(x)Jz'(y)
-aH(')'(x)J1(y) + 3H(1)(x)Jz'(Y)

= - R - R"
2 [ -lRi'll

1 22 ~T 1( l)-lT 121-= [1 -R22- (RI)Pi . (A29)
The left-hand side of Eq. (A29) is recognized as the Mie

far-field partial-wave scattering amplitudes a, (TM ampli-
tude) and b (TE amplitude). The Mie-scattered electric
field is written in terms of the a and the b partial-wave
amplitudes as

I1(0) = S(0)1 2,

I2(0) = S2 (0)12 .

(A36)

(A37)

For a large sphere x >> 1, large partial waves I >> 1, and
0 away from 0 and 180, the angular function rl(0) is
small in comparison with 'r(0).4" In this limit, the scat-
tering amplitude S, becomes associated with the TE
spherical multipole waves and the TE polarized geometri-
cal rays, while the scattering amplitude S2 becomes associ-
ated with the TM spherical multipole waves and the TM
polarized geometrical rays.

The right-hand side of Eq. (A29) is the Debye-series ex-
pansion of the partial-wave scattering amplitudes. The
various terms of the right-hand side of Eq. (A29) have
simple physical interpretations. The first term, /2[l],
when inserted for a, and b1 in the expressions for the Mie
electric field and summed over 1, describes the diffraction
of the incident plane wave around the sphere.4 9

The second term, /2[-R1
22 ], when inserted for a, and b

and summed over 1, represents the outgoing spherical mul-
tipole waves that have reflected from the surface of the
sphere. The diffraction and the reflection terms, when
taken separately, do not approach zero as goes to infinity
(and thus the sums over 1 go to infinity). However, if the
two terms are added together and then summed over 1
they do approach zero, which leads to a finite sum over
.3 Thus in its present form the Debye series is not

amenable to separation of the diffraction term from the
reflection term. Previous calculations in which the dif-
fraction term was summed separately from the reflection
term49

5
0 were made by truncating the sum over 1 at 1 = x.

Truncation in this manner is an approximation and is ac-
curate only for large values of x. Truncation of the dif-
fraction term of the Debye series at I = x has been shown
to be equivalent to Fraunhofer diffraction by a circular
aperture of radius a. We conjecture that the separate di-
vergences of the diffraction and the p = 0 terms of the
Debye series are artificial in that they result from the in-
finite extent of the incident plane wave.

The third term of Eq. (A29) is an infinite sum that de-
scribes a geometrical series. The individual terms of the
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series represent light that has penetrated the sphere, un-
dergonep - 1 internal reflections, and then emerged from
the sphere. For example, when the p = 2 contribution to
the Debye series is calculated, the appropriate term in the
sum that describes a, and bi is -2[T 1

21 BRiT 1
2]. This rep-

resents the spherical waves that were transmitted into the
sphere [T,2 ], propagated radially inward toward the center
of the sphere, passed through it, propagated radially out-
ward, reflected off the inner surface of the sphere [R,"1 ],
propagated inward toward the center and back out a sec-
ond time, and finally transmitted out of the sphere [T,12]
and propagated into the far field.

If all the Debye-series terms are first added together
and then summed over 1, the results are identical to those
from Mie scattering. In this sense, Eq. (A29) interprets
the Mie partial-wave scattering amplitudes as the compos-
ite result of a multiple-scattering process.
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