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OPPOSITIONAL
BIOGEOGRAPHY-BASED OPTIMIZATION

MEHMET ERGEZER

ABSTRACT

T HIS dissertation outlines a novel variation of biogeography-based opti-

mization (BBO), which is an evolutionary algorithm (EA) developed for

global optimization. The new algorithm employs opposition-based learning

(OBL) alongside BBO migration to create oppositional BBO (OB BO). Addition-

ally, a new opposition method named quasi-reflection is introduced. Quasi-

reflection is based on opposite numbers theory and we mathematically prove

that it has the highest expected probability of being closer to the problem solu-

tion among all OBL methods that we explore. Performance of quasi-opposition

is validated by mathematical analysis for a single-dimensional problem and by

simulations for higher dimensions. Experiments are performed on benchmark

problems taken from the literature as well as real-world optimization problems

provided by the European Space Agency. Empirical results demonstrate that

with the assistance of quasi-reflection, OB BO significantly outperforms BBO in

terms of success rate and the number of fitness function evaluations required to

find an optimal solution for a set of standard continuous domain benchmarks.

The oppositional algorithm is further revised by the addition of fitness-

dependent quasi-reflection which gives a candidate solution that we call x̂Kr. In

this algorithm, the amount of reflection is based on the fitness of the individual

and can be non-uniform. We find that for small reflection weights, x̂Kr has

a higher probability of being closer to the solution, but only by a negligible

amount. As the reflection weight increases, x̂Kr gets closer (on average) to the

solution of an optimization problem as the probability of being closer decreases.

vi



In addition, we extend the idea of opposition to combinatorial problems.

We introduce two different methods of opposition to solve two types of com-

binatorial optimization problems. The first technique, open-path opposition,

is suited for combinatorial problems where the final node in the graph does

not have be connected to the first node such as the graph-coloring problem.

The latter technique, circular opposition, can be employed for problems where

the endpoints of a graph are linked such as the well-known traveling sales-

man problem (TSP). Both discrete opposition methods have been hybridized

with biogeography-based optimization (BBO). Simulations on standard graph-

coloring and TSP benchmarks illustrate that incorporating opposition into BBO

improves performance.
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CHAPTER I

INTRODUCTION

M ANY engineering problems involve nonlinearities or other complexities

which render mathematical methods and even local optimization al-

gorithms futile. However, nature has become an expert in “optimizing" dif-

ficult, convoluted problems through evolution. Evolutionary computing (EC)

attempts to replicate nature’s success by representing solutions as encoded in-

dividuals and allows them to evolve through a selection mechanism. Where

mathematics can guide toward a unique solution, solutions provided by nature

are diverse. For instance, deer are known to have 34 species and many more

subspecies. This variety, represented by their coats, size or antlers, enables

them to adopt to various diets, predators and landscapes. While a white-tail

deer hides and sprints away from predators, mule deer pronks away by jump-

ing using all four feet. Similarly, EC allows global minimization by creating

a population of solutions that are robust and adaptive. These solutions may

not be perfectly optimal but they are evolved to be suitably fit solutions to the

optimization problem. As stated by an anonymous quote “Perfection would be

a fatal flaw for evolution. Life’s hold on life depends on God losing his grip on

life every once in a while."

This chapter outlines the purpose of this dissertation. Section 1.1 in-
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troduces evolutionary computation, presents its history and common applica-

tions. Section 1.2 gives an overview of biogeography-based optimization as an

evolutionary algorithm and Section 1.3 discusses opposition as a tool for opti-

mization. Section 1.4 lists the pseudo code for oppositional biogeography-based

optimization. The motivation for this research is discussed in Section 1.5 and

the problem statement is broached in Section 1.6.

1.1 Evolutionary Computation

Evolutionary computation is an umbrella term, that is, a hypernym, con-

ceived in 1991 [1] to unite the various evolutionary techniques that were being

simultaneously developed around the world. This section will discuss the de-

velopment of EC, present an overview of its methodology, explore some contro-

versies in academia (namely the No Free Lunch Theorem) and its applications

as reported in today’s literature.

1.1.1 History of Evolutionary Computation

The evolution of evolutionary computation can be summarized as follows.

• Evolutionary simulations:

– 1954: The first implementation of EC is commonly credited to Bari-

celli [2], who modeled cells migrating in a grid and competing for

survival.

– 1958: On the opposite corner of the world, in Australia, another re-

searcher [3] modeled sexual reproduction by recombining solutions.

• Evolutionary algorithms:

– 1962: David Fogel developed evolutionary programming (EP) [4] in

order to replicate intelligent behavior by predicting the environment.
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In Artificial Intelligence through Simulated Evolution, he explains

[5]:

Intelligent behavior is a composite ability to predict one’s en-

vironment coupled with a translation of each prediction into

a suitable response in light of some objective.

EP relies solely on mutation for reproduction, not on recombination,

and applies tournament style selection based on fitness. Also, unlike

most other EAs, EP enables population size to evolve.

– In 1962, Holland published an article outlining a theory of adaptive

systems [6]. Later, he published Adaptation in Natural and Artifi-

cial Systems [7] which was instrumental in the development of ge-

netic algorithms (GA). In GA, solution candidates were represented

as chromosomes in a DNA in binary code and evolved by single point

crossover and mutation. Holland’s GA gained popularity in part due

to his Schema Theorem [8], also referred as the Fundamental The-

orem of Genetic Algorithms: “Short, low-order schemata with above

average fitness increase exponentially in successive generations."

– 1964: Evolution strategies (ES) [9, 10] was designed by three stu-

dents as an automatic parameter selection algorithm for a laboratory

experiment to minimize the drag in wind tunnel [11]. During the la-

borious experiment, researchers discovered that heuristic search out-

performed a discrete gradient-oriented method. They applied their

algorithm to 2D and 3D air flow [12] and 3D hot water nozzle prob-

lems [13]. Their proposed “cybernetic solution path" algorithm had

two rules [14, 15]:

∗ Mutation: “Change all variables at a time, mostly slightly and at

random."

∗ Survival of the fittest: “If the new set of variables does not di-

minish the goodness of the device, keep it, otherwise return to
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the old status."

• Swarm intelligence:

– Ant colony optimization was first published as Dorigo’s PhD disser-

tation in 1992 [16]. He was inspired by the probabilistic behavior of

ants [17] and specially the double bridge experiment [18]. In this ex-

periment, a colony of ants must cross back and forth one of the two

bridges to collect food from the other side. In time, ants converge

to the shorter path by following the concentration of pheromone left

behind by the previous colonists. Goss et al. [18] also proposed a

mathematical model for the probability of an ant choosing a bridge

based on the previously made decisions by the ants.

– 1995: Particle swarm optimization [19, 20] is a swarm intelligence

method [21] that is based on the models of bird flocking [22]. It was

originally designed to model social behavior where subjects altered

their perspectives to better fit in with their peers. It has later been

simplified to a heuristic optimization algorithm where each particle’s

velocity determines its position based on information received from

its neighborhood.

• Miscellaneous EC methods:

– Differential evolution (DE) is developed by Storn in 1995 [23, 24] and

is considered to be a robust EA for avoiding premature convergence

found in GA [25, 26]. In DE, an individual is created based on the

weighted difference of two other solution candidates added to a third

random solution candidate [27]. If this new individual is more fit

than an individual randomly selected from the current generation,

it replaces that individual. Performance of DE depends on the se-

lected weight parameters. Reference [28] proposes a set of weights

for DE based on the problem dimension and the number of fitness
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evaluations.

– Genetic programming (GP) is born in 1985 when Cramer created an

algorithm that develops simple sequential programs [29]. He uti-

lized GA to manipulate tree-like structures that represented ran-

domly generated functions. His work was later expanded by Koza

to evolve more complicated programs [30, 31, 32]. GP has evolved

from being solely a program creator. It is also a popular method for

automatic circuit design where given a set of requirements, GP gen-

erates the desired circuit routing, placement and size [33, 34].

– Simulated annealing (SA) is independently developed by two scien-

tists in the mid-1980s [35, 36] and is a generalization of the Metropolis-

Hastings algorithm (MH) [37]. MH is a Monte Carlo method that

allows sampling from a probability distribution and only requires

density function evaluation. Annealing is the process of heating a

thermodynamic system and then slowly cooling it. The goal of SA is

to minimize the system’s energy by moving from current state s to a

neighboring state based on an acceptance probability function which

depends on states’ energies and a global decay parameter that repre-

sents the temperature. SA began as an optimizer for combinatorial

problems [35, 38, 39] and its variations include quantum annealing

[40] and stochastic tunneling [41].

– Tabu search (TS), published by Grover in 1985 [42, 43, 44], explores

the neighborhood of an individual in search of a more fit solution

while remembering a list of recently visited neighbors, marked as

taboo, to avoid revisiting them. Therefore, if the algorithm is stuck

in a local minima, instead of retreating, it is forced to explore in a

new direction. TS can solve combinatorial problems including graph

coloring [45, 46, 47].
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1.1.2 Evolutionary Computation Methodology

Biomimicry, drawing inspiration from nature for developing new tech-

nology, is now employed in many scientific fields. Recently, NBD Nano has

designed a water bottle that refills itself by extracting moisture from the air

[48]. This technology imitates the Namib Desert beetle’s wings’ coating which

catches the water from the morning fog. However, this is not the first exam-

ple of biomimicry. In the fifteen century, Leonardo Da Vinci studied birds’

anatomy to design his flying machine [49]. Many of today’s inventions, from

Velcro to nose of Shinkansen (Japan’s bullet train), mimic solutions from na-

ture [50]. Universities and corporations have started research centers for na-

ture inspired future development ideas [51, 52]. As seen by EC’s history, many

evolutionary algorithms and other machine intelligence learning methods are

also inspired by nature. For example, genetic algorithms (GA) [8] mimic evo-

lution, ant colony optimization (ACO) [16] approximates animal behavior in

colonies, and artificial neural networks [53] are modeled after the biological

nervous system. Other examples include particle swarm optimization [19], ar-

tificial immune systems [54] and hill climbing [55]. The majority of these EAs

follow a similar methodology which could be outlined as:

• Initialize population

• Selection

• Recombination

• Random variation

Generally, the process starts by creating an initial random population of

possible solutions. The population is then processed in a way which is moti-

vated by the natural model. Based on this natural model’s properties, such as

genetic inheritance and survival of the fittest, the population will evolve and

adapt to its environment while attempting to get closer to the solution after
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each generation. The algorithms generally quit once an acceptable solution is

found or when the available computing resources are exhausted.

1.1.3 Controversies and No Free Lunch Theorem

One of the benefits that made EC popular is that it can be applied to var-

ious types of problems. However, generally, EAs are not modified to match the

cost functions of the problem at hand and the same search algorithm is used

regardless of a problem’s particulars. Reference [56] shows that the differences

in cost functions are crucial. The authors prove that when we ignore the par-

ticular biases or properties of a cost function, the expected performance of all

algorithms over all cost functions is precisely identical. This is called the No

Free Lunch Theorem (NFL).

Their main theorem is that the probability of obtaining a particular his-

togram of cost values given a specific number of cost evaluations is independent

of the algorithm used given that we have no prior information about the opti-

mization problem. This implies that if we have no prior knowledge about the

cost function, the expected performance will be independent of the chosen algo-

rithm. The theorem relies on the assumption that since nothing is known about

the cost functions, then, on average, all cost functions have the same probabil-

ity distribution. They further conclude that the expected distribution of the

histogram will be the same regardless of the selected algorithm. Therefore, the

EA should be chosen based on the distribution of the cost function.

The theorem is named No Free Lunch Theorem (NFL) and is applied

to search [56], supervised learning [57, 58] and optimization [59]. Further

development lists the necessary conditions for NFL [60, 61]. NFL theorem

created controversy about the credibility of EC [62, 63]. However, not everyone

agrees with NFL’s applicability to real-world problems. Reference [64] disputes

the validity of the NFL in black box scenarios and proposes the Almost No Free

Lunch Theorem.
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1.1.4 Evolutionary Computation Applications

EC has been used to assist in solving countless problems in a variety of

fields from geophysics to financial markets. This section will discuss some of

this research. In aerospace engineering, EC has been applied to wing shape

design of an aircraft [65, 66] and maneuvers of a spacecraft while minimizing

time [67, 68]. In chemistry, it has been used in the design of new molecules

to meet given set of specifications [69] and creating new antimicrobial com-

pounds for cleaners [70]. Another area where EC is applied is control systems.

It has been employed in online controller design [71] and many offline ones

including linear quadratic-Gaussian and H∞ control [72, 73, 74], as well as

control of chemical reactors [75, 76]. EC has been utilized for motion planning

in robotics [77, 78, 79, 80] and network design in communications [81, 82, 83].

In finance, EC has been employed for bankruptcy [84, 85, 86] and stock predic-

tions [87, 88, 89]. In geophysics, EC has been applied to seismic wave inversion

[90, 91, 92] and groundwater monitoring [93, 94]. Holland and Miller draw a

parallel between economic systems and complex adaptive systems and employ

artificial adaptive agents to predict economic phenomena [95]. Another popular

application is protein building and folding simulations in biology [96, 97, 98].

Reference [99] develops fuzzy rules tuned by EA for linguistic modeling. This

list can be expanded to add materials science, law enforcement, data mining

and countless other fields. As one can see, EC has been improving our lives

in various fields, no less than any other established science. One can expect it

to have even more applications in the future as the theory behind it is further

developed and as computing power continues to become cheaper.

1.2 Biogeography-based Optimization

Biogeography-based optimization (BBO) is a generalization of biogeogra-

phy to EC. Island biogeography helped the development of evolutionary theory

and is a compelling area of study because islands are discrete environments.
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That is, they sustain their own distinctive organisms and they are numerous.

There are more islands than there are continents or oceans [100]. Due to the

variations they provide (size, ecology, length and degree of isolation), islands

can offer the necessary tools for studying evolution. Charles Darwin, credited

as the formulator of the theory of evolution, conceived his hypotheses on nat-

ural selection after studying/eating giant tortoises on the Galapagos Islands

[101].

Seeing that biogeography helped the development of theory of evolution,

it stands to reason that biogeography would be a solid candidate for evolu-

tionary computation. Population biology studies the impact of immigration,

emigration and extinction on the number of species. BBO is modeled after the

immigration and emigration of species between islands. The fitness of each is-

land is measured by its habitat suitability index, HSI [102]. A habitat with a

high HSI indicates a desirable living environment in biogeography and a good

solution in BBO. This type of habitat will host many species and spread its

species frequently to other habitats. Because a high HSI island hosts a large

number species, it will be harder to immigrate there and this type of solution

will be less susceptible to alterations and therefore its HSI will remain more

static throughout many generations.

On the other hand, a habitat with a low HSI will be hosting a limited

number of species and these species will have a lesser chance of being accepted

to other islands. It will be very easy for the species from other islands to mi-

grate to low HSI habitats. Therefore, the species distribution on low HSI is-

lands will change more frequently.

The independent variables of the HSI are called the suitability index

variables (SIVs). SIVs are the climatic and topographic features offered by the

island and can include such factors as precipitation, temperature, elevation

and slope.

Fig. 1 illustrates linear BBO immigration and emigration curves. In this

figure, the estimated solutions are sorted by fitness from worst to best. The
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worst solution candidate, with a low HSI, has the highest immigration rate;

hence, it has a very high chance of borrowing features from other solutions,

helping it to improve for the next generation. The best solution candidate,

with a high HSI, has a very low immigration rate, indicating that it is less

likely to be altered by the other individuals. The emigration rate works in the

opposite direction.

Worst Solution     Best Solution
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Solutions sorted by fitness

←λ, immigration
rate

µ, emigration→
rate

Figure 1. Linear migration rates plotted against the sorted population. Better solu-

tion candidates possess a low immigration rate and a high emigration rate.

BBO migration functions are programmed as described above. The other

area of biogeography, extinction, is implemented indirectly. When fitter species

immigrate to an island, lesser fit species must go extinct to accommodate the

new ones. However, note that emigration in BBO does not symbolize a move,

but rather a copy. For example, if a feature in island 1 migrates to island 2,

then both islands 1 and 2 have this feature. The worst solution candidate is

assumed to have the worst features; thus, it has a very low emigration rate

and a low chance of sharing its features. On the other hand, the fittest solution

candidate has the best features and the highest probability of sharing them.

One of the distinguishing features of BBO is that the original popula-

tion is not discarded after each generation; rather, it is modified by migrations
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and continues to survive. Also, when updating the population, BBO considers

the fitness of the immigrating and emigrating islands via the emigration and

immigration curves.

Mathematical modeling and convergence properties of EC are still being

investigated as modeling the dynamics of an adaptive system is difficult. One

approach to confirm convergence is to formulate the EA as a finite state Markov

chain. While [103] derived the necessary conditions for asymptotic convergence

to optimum for GA and ES, [104] proved their convergence. This proof is accom-

plished by finding the limit of the probability of nearing the global optimum as

the number of iterations goes to infinity. The proof illustrates that EA will be

in a certain vicinity of the optimal point with a probability of 1. However, prac-

ticality of this proof is rather limited in the real world as it assumes infinite

time for convergence. Reference [105] extends this work to BBO and derives

the limiting probabilities for all possible population distributions.

Despite being a new algorithm, BBO has already been implemented in

many fields of engineering. It has been applied to the power flow problem

[106, 107, 108, 109], economic dispatch [110, 111, 112], image classification

[113, 114, 115], communications [116, 117, 118] and robotics [119, 120, 121].

While statistical foundations for BBO are being developed [122, 123], BBO has

been combined with other EAs such as ES [124], DE [125], PSO [120], and

flower pollination by artificial bees [126] to form hybrids. In addition, it has

been utilized to optimize other EC methods, such as fuzzy [127] and neuro-

fuzzy [128] systems.

1.3 Opposition-based Learning

In this section we discuss the numerous definitions of opposition in vari-

ous areas of culture and science, and explain how it can be applied to optimiza-

tion problems. Study of opposition has been going on for millennia. The oppo-

site forces have been studied by humanity for a long time on a philosophical
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level. Dualities found in many religions are an example of this. Dualities have

different interpretations in different cultures. In Taoism, yin-yang (shown in

Fig. 2) reflects the harmony of opposite forces and seeks balance in complemen-

tary forces. Two ancient Persian religions, Zoroastrianism and Manichaeism,

are also considered dualistic. Manichaeism was one the most predominant re-

ligions of its time, spreading from Roman Empire to China. In Manichaeism,

dualism existed as a struggle between good and evil. As Manichaeism gained

popularity, it was declared a heresy in Christianity, oppressed by Islam and

forbidden in China by Ming dynasty.

What might have started as a theological debate (yin vs. yang and good

vs. evil), still exists today in the scientific world. In electrical engineering,

duality refers to the relationship between capacitance and impedance or open

and short circuits. In mechanical engineering, duality indicates the relation-

ships between stress and strain, stiffness and flexibility. In magnetism, the

dual of magnetic field is the electric field and the dual of permittivity is perme-

ability. Furthermore, in mathematics, duality is studied in logic, set and order

theories.

Another example of opposition in today’s scientific world is the study of

antimatter. Physicists believe that all particles have a mirror image in the

universe, called antimatter. International groups of researchers at CERN are

conducting the world’s most expensive science experiment to create such an-

tiparticles. They believe that studying and experimenting with antimatter will

allow them to test the doctrine of modern physics and standard model of par-

ticle physics [129]. This research is so crucial to the field that based on its

outcomes “the textbooks ... [may] have to be rewritten," according to Jeffrey

Hangst from CERN [130]. Even though we do not fully understand antimat-

ter, certain applications of it are seen in today’s technology (for example, in

medicine, anti-electrons are used for tomography scanning).
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Figure 2. Yin-yang representing the harmony of opposing forces in Eastern philoso-

phy

Opposition is encountered in different fields under different names. In

Euclidean geometry it is referred as inverse geometry, in physics it is the par-

ity transformation and in mathematics, it denotes reflection. All of these def-

initions involve isometric self-mapping of a function. Other examples include

astronomy where planets that are 180◦ apart are considered to be opposing

each other. Opposites also have a significant meaning in semantics as general-

ization of antonyms. Where antonyms are limited to gradable terms, such as

thin and thick, the term opposite can be applied to gradable, non-gradable and

pesudo-opposite terms.

The idea of OB BO is derived from opposition-based learning (OBL). The

creators of the OBL believe that a shortcoming of natural learning is that it is

time consuming since it is modeled after a very slow process. For instance, it

requires countless life cycles for species to evolve. On the other hand, human

society progresses at a much faster rate via “social revolutions." Hence, the

learning process could be improved based on such a model. Describing revolu-

tions as fast and fundamental changes, whether in politics, economics or any

other context, Tizhoosh maps this theory to machine learning and proposes to

use opposite numbers instead of random ones to quickly evolve the population

[131].

The main principal of OBL is to utilize opposite numbers to approach
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the solution. The inventors of OBL advocate that given a random number,

generally, its opposite has a higher chance of being closer to the solution than a

random point in the search space. Thus, by comparing a number to its opposite,

a smaller search space is needed to converge to the right solution(s). In this

research, we develop the proofs measuring the effectiveness of opposite points

against random numbers.

OBL has its roots in reinforcement learning [132, 133] and has been ap-

plied to various soft computing methods such as neural networks [134, 135,

136, 137] and fuzzy systems [138, 139]. To date, OBL has been employed

to accelerate the convergence properties of numerous evolutionary algorithms

such as differential evolution [140, 141, 142, 143], particle swarm optimization

[144, 145, 146, 147], ant colony optimization [148, 149] and simulated anneal-

ing [150] in a wide range of fields from image processing [151, 152, 139] to

system identification [153, 154].

The algorithm is implemented as two functions. The first one is called

only once per simulation during initialization to create the initial population.

This function compares the initial random population and its opposite to select

the most fit among them. The second function is called every Jr generations,

where Jr, jumping rate, is a control parameter set by the user to jump, or

skip, opposite population creation at certain generations. Since the opposition

function is called twice, OB BO is classified as an “initializing and somatic ex-

plicit opposition-based computing algorithm" [155]. Because the opposite pop-

ulation’s fitness has to be evaluated, OB BO will have to converge faster than

original BBO (in terms of generation count) in order to maintain the same CPU

load. A benchmark method based on number of cost function calls is introduced

in Section 3.1 to take this into consideration.
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1.4 Algorithms

In this section, we provide an outline of the main function which eval-

uates the EA and opposition algorithms, as well a brief overview of each EA.

Whether we employ GA, DE or BBO as the optimization algorithm, Algorithm 1

is used to seek for the global minimum.

Algorithm 1 Pseudocode for EA with opposition where rand ∈ [0, 1] is a uni-

form random number
1: Main EA Function

2: Create an initial random population

3: Replace duplicate individuals with random ones

4: Calculate the cost of each individual

5: Sort the population

6: Execute the opposition algorithm (Algorithm 2)

7: while Optimal solution is not found or cost evaluation limit is not reached

do

8: Perform EA selection/recombination (Algorithms 4− 6)

9: Replace duplicate individuals with random ones

10: Ensure that each individual is valid

11: Calculate the cost of the updated individuals

12: Sort the population

13: if rand ≤ opposition jumping rate then

14: Execute the opposition algorithm (Algorithm 2)

15: end if

16: Apply elitism by replacing the worst of current generation with the best

of the previous generation

17: Ensure that each individual is valid

18: Sort the population

19: end while

In Algorithm 1, line 8 creates a function call for the desired EA: GA, DE
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or BBO which are described in following subsections and Algorithms 4, 5 and

6. Line 14 calls the opposition opposition function as outlined in Algorithm 2.

Algorithm 2 Pseudocode for opposition logic
1: Opposition Function

2: Create an opposite population, x̂o , x̂qo , x̂qr or x̂Kr , as defined in Chapter II

3: Calculate the cost of each opposite individual

4: Select the fittest individuals amongst the EA and opposite populations

5: return Fittest Individuals

1.4.1 Genetic Algorithms

GA is one of the most popular EA and many variations of it exist in the

literature [156]. We employ GA with uniform crossover and roulette-wheel

selection as described in Algorithms 3, 4. The probability of selection with

roulette wheel is directly proportional to each individual’s fitness. The crossover

rate is set to 50%; thus, on average, each child will have half of each parent’s

genes.

Algorithm 3 Pseudocode for roulette-wheel selection of parents
1: Roulette-Wheel Function

2: Cumulative sum of all costs, Σc

3: Running sum, Σs = 0

4: for Each Solution Candidate, S do

5: Σs = Σs + Cost(S)/Σc

6: if rand(0,1) < Σs then

7: Parenti = S

8: end if

9: end for
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Algorithm 4 Pseudocode for one generation of genetic algorithm function
1: GA Function

2: Select parents using roulette-wheel (Algorithm 3)

3: Produce children:

4: for Each Pair of Parents, P1 and P2 do

5: for Each Problem Dimension, d do

6: if rand(0,1) < Crossover rate then

7: C1d = P1d

8: C2d = P2d

9: else

10: C1d = P2d

11: C2d = P1d

12: end if

13: end for

14: Form two new solution candidates from children

15: end for

16: Mutation:

17: for Each Solution Candidate, S do

18: for Each Problem Dimension, d do

19: if rand(0,1) < Mutation rate then

20: Sd = rand(mind,maxd)

21: end if

22: end for

23: end for

24: return Best Individual
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1.4.2 Differential evolution

While most EA’s start with recombination, DE begins each generation

with mutation operation by creating the donor vector:

v = r1 + F (r2 − r3) (1.1)

where r1, r2 and r3 are randomly selected, distinct solution candidates and F

is the weighting factor. Then, based on the crossover probability, CR, a trial

vector, ud, is formed from the donor vector and the current solution candidate,

Sd:

ud =

vd if rand(0, 1) ≤ CR OR d = rand(1, D)

Sd otherwise
(1.2)

where d is the independent variable and D is the problem dimension. The

rand function returns a uniformly distributed random integer within the given

closed interval. The logical OR statement ensures that at least one variable is

taken from the donor vector while forming the trial vector. Finally, if the trial

vector is fitter than the the current solution candidate, the trial vector replaces

it in the next generation. This flavor of the DE algorithm is commonly referred

as DE/rand/1/bin [157] and is outlined in Algorithm 5.
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Algorithm 5 Pseudocode for one iteration of differential evolution function
1: DE Function

2: for Each Solution Candidate, S do

3: Select 3 unique individuals from the population: r1, r2, r3

4: Form the donor vector, v:

5: v = r1 + F (r2 − r3)

6: for Each Problem Dimension, d do

7: Form the trial vector, u:

8: if rand(0, 1) ≤ CR OR d = rand(1, D) then

9: ud = vd

10: else

11: ud = Sd

12: end if

13: end for

14: The fitter of the two survives:

15: if Cost(u) ≤ Cost(S) then

16: S ′ = u

17: else

18: S ′ = S

19: end if

20: end for

21: S ′ = S

22: return Best Individual

1.4.3 Biogeography-based Optimization

For this research, we implement partial immigration-based BBO as de-

scribed in [122]. Partial immigration indicates that the initial selection of is-

lands is based on immigration rates, λ, and emigration decisions are made at

the level of each independent variable via roulette wheel selection. BBO’s re-

production scheme is named blended migration as proposed in [158]. Blended
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migration is based on blended crossover which was developed for genetic algo-

rithms [159]. Blending refers to the act of combining the reproducing individu-

als using a blending parameter, α. The BBO migration scheme is presented in

Algorithm 6.

Algorithm 6 Pseudocode for one iteration of biogeography-based optimization

function.
1: BBO Function

2: Assign immigration rates: λi ∝ ranki

3: Assign emigration rates: µi = 1− λi

4: for Each Solution Candidate, Si do

5: for Each Problem Dimension, d do

6: Select immigrating feature Si,d ∝ λi

7: Select emigrating feature Sj,d ∝ µj

8: Si,d = αSi,d + (1− α)Sj,d

9: end for

10: end for

11: Perform Mutation:

12: for Each Solution Candidate, S do

13: for Each Problem Dimension, d do

14: if rand(0,1) < Mutation rate then

15: Sd = rand(min,max)

16: end if

17: end for

18: end for

19: return Best Individual

1.5 Motivation for this Research

EAs are applied when traditional methods are inadequate- for instance

when the fitness landscape has many local minima. Applying OB BO to such
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difficult problems yields promising results; however, there is still a need for

development in EAs, especially in mathematical understanding. Based on the

presented literature review, we see the following lack.

• Opposition theory has already been proposed for solving continuous time

optimization problems. However, there is a need for analyzing the ef-

fectiveness of choosing opposition over random numbers. Therefore, in

Chapter II and Section 2, we study the statistical properties of opposition

for heuristic optimization algorithms.

• The statistical analysis yield to the proposal of new oppositional algo-

rithms. Mathematical analysis of the proposed algorithms are presented

in Chapter II and Sections 3-4. The validity of these novel methods is fur-

thered analyzed in Chapter III with the help of real-world and benchmark

problems.

• Many manufacturing and combinatorial problems are defined in discrete

domain. However, the current definition of opposition is not valid for

these type of problems. Therefore, in Chapter IV , we extend opposition

to discrete domain problems.

1.6 Contributions of This Research

BBO is a newer evolutionary algorithm, but it already has proven it-

self a worthy competitor to the better known EAs, such as genetic algorithms,

differential evolution, and ant colony optimization. BBO is a great way to ap-

proach complex nonlinear problems because it can outperform or match other

EAs with less computational effort. However, there is still some room left for

improving BBO since many other techniques exist in the literature that are

utilized to enhance other EAs. Our goal is to experiment with these algorithms

and adapt them to BBO to demonstrate BBO’s highest potential. In order to

achieve this goal, we introduce quasi-reflection as a new opposition method
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and mathematically prove that it yields the highest expected probability of be-

ing closer to the solution among all OBL methods.

In this research, probabilistic analysis of OBL is introduced in Chapter

II where we mathematically compare all existing opposition techniques and in-

troduce a novel opposition method that is mathematically proven to be better

than previous methods. Chapter III presents the results of our empirical analy-

sis comparing the existing and new oppositional algorithms. The performance

of the algorithms are tested on low and variational dimensional benchmark

problems taken from the literature and real-world space trajectory optimiza-

tion problems provided by European Space Agency. The significance of our

findings are also discussed by employing statistical tests. Chapter IV extends

opposition to discrete domain optimization problems. Chapter V discusses fu-

ture work and presents concluding remarks. The detailed mathematical proofs

for the results presented in Chapter II are given in Appendix A. Appendix B

defines the low and variable dimensional benchmark functions and Appendix

C lists the publications resulted from this research.
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CHAPTER II

PROBABILISTIC ANALYSIS OF

OPPOSITION-BASED LEARNING

T HIS chapter presents up-to-date definitions of the opposition methods as

reported in the literature and introduces new ones. We statistically com-

pare existing and new oppositional techniques in one-dimensional space. Sec-

tion 2.1 presents the definitions of various oppositional points. Section 2.2

derives the proofs of how often the quasi-opposite and reflected points are

closer to the solution of an optimization problem than an EA individual or

its opposite. Section 2.3 introduces a new, fitness-dependent quasi-reflection

method and proves how often this new variable is closer to the solution than an

EA individual. Section 2.4 derives the expected distance between the fitness-

dependent quasi-reflection method and the optimal solution. Finally, Section 2.5

summarizes the proofs derived in the chapter.

2.1 Definitions of Oppositional Points

In [142], Rahnamayan introduced quasi-opposition-based learning and

proved that a quasi-opposite point is more likely to be closer to the solution of
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the optimization problem than the opposite point. In this section, we extend on

this proof to show how much a quasi-opposite point is better than an opposite

point. First, let us define opposite and quasi-opposite numbers in one dimen-

sional space. These definitions can easily be extended to higher dimensions.

Definition Let x̂ be any real number ∈ [a, b]. Its opposite, x̂o, is defined as

x̂o = a+ b− x̂ (2.1)

Notice that similar definitions already exist in mathematics. In Euclidean ge-

ometry, the opposite is referred as the inversion of point x. In addition, if the

center of the domain is 0, then the opposite can be simplified as the additive

inverse where −x is the additive inverse of x. In Euclidean space, inversive

geometry studies other such transformations such as circle and curve inver-

sion. Since after these transformations, the distance is preserved, opposition

as defined in Eq. (2.1) can be described as an isometric mapping.

Definition Let x̂ be any real number ∈ [a, b]. Its quasi-opposite point, x̂qo, is

defined as follows [131]:

x̂qo = rand(c, x̂o) (2.2)

where c is the center of the interval [a, b] and can be calculated as (a+ b)/2, and

rand(c, x̂o) is a random number uniformly distributed between c and x̂o.

Note that unlike opposition, the quasi transformation is not a linear transfor-

mation because it involves the random function. It is also not an isometric

transformation since the quasi-opposite point is not always placed equally far

from the reflection point.

Since we reflect x̂ to obtain x̂o to accelerate the EA exploration process,

we propose to apply the same logic and reflect the quasi-opposite point, x̂qo, to

obtain the quasi-reflected point, x̂qr.

Definition Let x̂ be any real number ∈ [a, b]. Then the quasi-reflected point,

x̂qr, is defined as [160]

x̂qr = rand(c, x̂) (2.3)
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where rand(c, x̂) is a random number uniformly distributed between c and x̂.

If x is the unknown solution to an optimization problem and x̂ is an in-

dividual in an EA, then x̂o is the opposite of the EA individual and x̂qo and

x̂qr are the quasi-opposite and quasi-reflected individuals, respectively. Fig. 3

illustrates a point x̂, its opposition, x̂o, its quasi-opposition, x̂qo and its quasi-

reflection, x̂qr as defined in Eqs. 2.1-2.3. Earlier we discussed that opposition

has different meanings in different fields. We can interpret the opposite points

defined in Fig. 3 with an example from semantics. Let x̂ be the statement that

“Jane is short"; then the opposite statement, x̂o would be “Jane is not short"

or “Jane is tall". The quasi definitions are more fuzzy. x̂qo would indicate that

“Jane is taller than most" and x̂qr would mean the opposite of x̂qo: “Jane is

shorter than most". This explanation is comparable to a fuzzy membership

degree from fuzzy set theory. Also, it is analogous to the categorization of oppo-

sition in the Aristotelian logic where the square of opposition (Fig. 4) illustrates

the relationship among the contradictory propositions.

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷ x̂qo︷ ︸︸ ︷

Figure 3. Opposite points defined in domain [a, b]. c is the center of the domain and

x̂ is an EA individual. x̂o is the opposite of x̂, and x̂qo and x̂qr are the quasi-

opposite and quasi-reflected points, respectively.
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Figure 4. Square of opposition, conceived by Aristotle, classifies the relationships be-

tween opposing propositions [155].

Notice that in Fig. 3, the degree of opposition increases as we move fur-

ther away from x̂. The term degree of oppostion is defined in [155] and a crude

proposal for quantifying the level of opposition is presented in Table I. We can

say that in OBL, points with a higher degree of opposition dominate over the

lesser degrees. Super opposition, x̂s, is defined in [155] as all points between

[a, b] except x̂, therefore it is a superset of all defined opposite points and more.

For the semantic example given above, x̂s would include the statement “Jane is

the shortest" as well as “Jane is the tallest". Super opposition is not discussed

any further in this research.

26



Table I. Assignment of opposition degrees to the defined opposite points based on the

opposition distance from the reflected point.

Degree of opposition Opposition method

0 Solution estimate, x̂

1 Quasi-reflection, x̂qr

2 Quasi-opposition, x̂qo

3 Opposition, x̂o

4 Super opposition, x̂s

2.2 Probabilistic Overview of Opposition

This section will derive the following expected probabilities, where x is

the unknown solution to an optimization problem, x̂ is an EA candidate solu-

tion, and the expected value is taken over the probability density functions of

x and x̂.

• Pr [|x̂qo − x| < |x̂o − x|]: In Theorem 2.2.1, we prove how likely it is that a

quasi-opposite point is closer than the opposite of an EA individual to the

solution of an optimization problem.

• Pr [|x̂qr − x| < |x̂o − x|]: In Theorem 2.2.2, we prove how likely it is that a

quasi-reflected point is closer than the opposite of an EA individual to the

solution of an optimization problem.

• Pr [|x̂qo − x| < |x̂− x|]: In Theorem 2.2.3, we prove how likely it is that a

quasi-opposite point is closer than an EA individual to the solution of an

optimization problem.

• Pr [|x̂qr − x| < |x̂− x|]: In Theorem 2.2.4, we prove how likely it is that a

quasi-reflected point is closer than an EA individual to the solution of an

optimization problem.
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We should note that all our proofs are in one dimensional space and we assume

that the solution x of the optimization problem has a uniform distribution.

Our assumption of uniformity is validated by the Principle of Insufficient

Reason proposed by Bernoulli [161] and Laplace [162], although neither math-

ematician named the principle. The name is given by the critics of the theorem

as a wordplay of Leibnitz’s Principle of Sufficient Reason [163] which states

that “nothing happens without a reason". According to the Principle of Insuffi-

cient Reason, “in the absence of prior knowledge, we must assume that events

Ai have equal probabilities" [164]. As an example, one can consider tossing a

coin. Probabilities of obtaining a head or a tail are assumed to be equal because

we presume that the probability of occurrence of one over the other is unlikely.

Another example would be picking a card from a deck. Since we don’t have any

knowledge of the distribution of the cards in the deck, we assume that all cards

have equal probability of being picked.

Finally, we assume that the problem domain is symmetric about 0, thus

b = −a. This assumption is made for ease of notation, and can be relaxed

without losing the generality of the results.

Theorem 2.2.1. Assume that the solution x of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-opposite point x̂qo is closer to the solution

than the opposite of an EA individual x̂o is 11/16.

Proof. See Appendix A.1.

Theorem 2.2.2. Assume that the solution x of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-reflected point x̂qr is closer to the solution

than the opposite x̂o of an EA individual is 9/16.

Proof. See Appendix A.2.

Now that we obtained the performance of quasi-opposition versus oppo-

sition, we investigate the probability of quasi-opposition against the evolution-
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ary algorithm individual in more detail. First, we compute the probability of

x̂qo being closer than x̂ to the solution of an optimization problem, x, and the

expected value of this probability under certain conditions.

Theorem 2.2.3. Assume that the solution x of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-opposite point x̂qo is closer to the solution

than an EA individual is 9/16.

Proof. See Appendix A.3.

The final lemma in this section is the probability of x̂qr being closer than

x̂ to the solution of an optimization problem, x, and the expected value of this

probability.

Theorem 2.2.4. Assume that the solution x of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-reflected point x̂qr is closer to the solution

than an EA individual is 11/16.

Proof. See Appendix A.4.

2.3 Fitness-Weighted Quasi-Reflection

In this section, we introduce a new opposite point named fitness-dependent

quasi-reflection or x̂Kr. Unlike x̂qr, x̂Kr is a not an independent random vari-

able. Instead, it is defined as the function of the fitness of x̂ . This way we can

control the amount of reflection based on the fitness of the individual. Thus,

fit solutions can be reflected by a smaller amount than less fit solutions. x̂Kr is

defined as

x̂Kr =

x̂+ (c− x̂)K if x̂ ≤ c

c+ (x̂− c)(1−K) if x̂ > c

(2.4)
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where K ∈ (0, 1] is the reflection weight and can further be described as:

K =
Solution rank

Population size
(2.5)

and solution rank = 1 for the best individual in the population.

Even though, fitness-dependent reflection is applied to x̂qr here, it can

easily be applied to any other opposition method. However, since x̂qr is shown

to have the highest probability of being closer to the solution, it is taken as the

base for the x̂Kr algorithm.

Eq. 2.4 can be redefined by using the unit step function, U(x). The unit

step function of x is a discontinuous function that is defined as 0 for negative

values of x and 1 for the remaining values of x.

x̂Kr = [x̂+ (c− x̂)K]U(c− x̂) + [c+ (x̂− c)(1−K)]U(x̂− c) (2.6)

x̂Kr eliminates the need for the previously defined random function by

considering the relative fitness of the individual. Let the center of the domain,

c, be zero. Then Eq. 2.4 can be simplified as

x̂Kr = x̂(1−K) (2.7)

This section derives results that are analogous to Theorem 2.2.4 for the

fitness-weighted quasi-reflected point and computes the probability of x̂Krbeing

closer than x̂ to the solution of an optimization problem, x, and the expected

value of this probability as a function of the reflection weight, K.

Theorem 2.3.1. Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a fitness-weighted quasi-reflected point is closer

than an EA individual x̂ to the solution x is (6−K)/8.

Proof. See Appendix A.5.

In the previous section, we solved for the probabilities for x̂qr and x̂ .

In this section we used x̂Kr , which depends on x̂qr and x̂ and the individuals
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ranking among the population of solution candidates. Here, we would like to

validate our findings for x̂Kr by comparing it to those of x̂qr . Recall that in

Theorem 2.2.1, we obtained

Pr [|x̂qr − x| < |x̂− x|] = 11

16
(2.8)

In this section, when we defined x̂Kr = x̂−Kx̂, we proved that

Pr [|x̂Kr − x| < |x̂− x|] = 6−K

8
(2.9)

for K ∈ (0, 1]. If we assume that K, the reflection weight, is uniformly dis-

tributed, then E[K] = 1
2

and the expected value of Eq. 2.9 becomes equal to

Eq. 2.8:

EK {Pr [|x̂Kr − x| < |x̂− x|]} = EK

{
6−K

8

}
=

11

16
(2.10)

where EK indicates calculating the expected value with respect toK. Further-

more, K can be designed to have a non-uniform distribution so different re-

flection patterns can be developed to better fit a given problem. Equation 2.5

defines the reflection weight as a linear function of individual fitness. How-

ever, based on our expertise on a given problem, we can choose different K

values. Table II lists four complementary functions, quadratic and sinusoidal,

that could be used to create the reflection weights. Plots of these nonlinear

functions are presented in Fig. 5. These functions are inspired from the BBO

migration models presented in [165].

Table II. Example of quadratic and sinusoidal functions that can be used to create

reflection weights where r is the rank of an individual, where 1 is best, and p is

the population size.

Label Reflection weight

f1
(

r
p

)2
f2

(
r
p
− 1
)2

f3 1
2

(
cos
(

rπ
p

)
+ 1
)

f4 1
2

(
− cos

(
rπ
p

)
+ 1
)
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Figure 5. Four possible nonlinear reflection weights based on individual rankings.

Fig. 6 plots the expected probability of x̂Kr being closer than x̂ to the

solution as a function of reflection weight. The results are derived theoretically

and verified via simulation. Note that there is a discontinuity in Fig. 6 when

K = 0, where the probability is 0. After this point, at K = 0+, the probability

jumps to about 75%.
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Figure 6. Expected probability that x̂Kr is closer to the solution of an optimization

problem than an EA individual

2.4 Distance Between a Fitness-Dependent Quasi-

Reflected Point and the Solution

In Section 2.2, we compared the probability of x̂qr being closer than x̂ to

the optimal solution x. Later, in Section 2.3 we defined x̂Kr to be a fitness-

weighted quasi-reflection point that is a function of the reflection weight K

and x̂ . We then calculated the expected probability of x̂Kr being closer than

x̂ to the optimal solution x as a function of the reflection weight K. In this

section, we calculate x̂Kr ’s distance to the optimal solution as a function of the

reflection weight K and x̂ .

Recall that

x̂Kr = x̂(1−K) (2.11)
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Appendix A.6.1 presents the probability distribution functions (pdf) nec-

essary for our calculations in the subsequent sections. We employ these pdf ’s

in Appendix A.6.2-A.6.4 to calculate the expected distance between the fitness-

weighted quasi-reflected point and the optimal solution, where the distance is

defined as

|x̂Kr − x| = |x̂(1−K)− x| (2.12)

Lemma 2.4.1. Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space between −b and b. Then

the expected distance between x̂Kr and x is [3bK2 − 2b(K − 1)(2 +K)] /6.

Proof. See Appendix A.6.2-A.6.4.

In Appendix A.6.5-A.6.7, we derive the expected distance between the

EA individual and the solution, obtaining the following lemma.

Lemma 2.4.2. Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the expected dis-

tance between x̂ and x is

E [|x̂− x|] = 2b

3
(2.13)

Proof. See Appendix A.6.5-A.6.7.

In Appendix A.6.4, we calculate the expected distance between the fitness-

weighted quasi-reflected individual and the minimum of an optimization prob-

lem as a function of the reflection weight, K. Then, in Appendix A.6.7, we

calculate the expected distance between the EA individual and the minimum.

We can now combine these two findings and calculate the expected difference

in distance. The difference between these two distances can be written as

E [|x̂Kr − x|]− E [|x̂− x|] =
bK2

2
− b(K − 1)(2 +K)

3
− 2b

3

=
bK(K − 2)

6
(2.14)
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Theorem 2.4.3. Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the expected dis-

tance between x̂Kr and x and x̂ and x is bK(K−2)
6

Fig. 7 shows the theoretical and simulation results of the calculated dis-

tances. The simulation results are obtained by generating 100,000 random

points for the solution x, solution candidate x̂ and fitness-based quasi-reflected

point x̂Kr . The average difference of these simulated points are indicated with

markers +, ∗ and o. The straight and dashed lines represent the results of our

mathematical findings. The results of the Monte Carlo simulations and the-

oretical equations are well-aligned. Recall that when the reflection weight is

0, a fitness-weighted quasi-reflected point is identical to the opposite of an EA

individual. However, as K increases, the fitness-weighted quasi-reflected point

gets closer (on average) to the solution of an optimization problem.
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Figure 7. The expected distance between the fitness-weighted quasi-reflected individ-

ual and the solution of an optimization problem, and the EA individual and

that solution.

2.5 Summary

The presented results assume that the problem space is one-dimensional;

however, they can be be extended for higher dimensions. We assumed that the

solution and estimate have uniform distributions as in [166] and that the prob-

lem domain is symmetric such that b = −a to simplify the resulting mathemat-

ical expressions. Finally, we limit the reflection weight to K ∈ (0, 1]. Varying

the range of K will create different opposition algorithms and can be a topic of

further research.
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2.5.1 Probabilities

Table III lists the probabilities of being closer to the solution of an opti-

mization problem for all of the discussed opposition points. Rows 1-3 compare

the probability of the opposition points relative to an EA individual, and Rows

4 and 5 compare the probability of the quasi-opposite points relative to the op-

position of the EA individual. Row 6 lists the probability of fitness-dependent

quasi-reflection being closer than an EA individual to the solution.

Table III. Probability that opposite point is closer than an EA individual to the solu-

tion of an optimization problem.

Row Probability

1 Pr [|x̂o − x| < |x̂− x|] 1
2

2 Pr [|x̂qo − x| < |x̂− x|] 9
16

3 Pr [|x̂qr − x| < |x̂− x|] 11
16

4 Pr [|x̂qo − x| < |x̂o − x|] 11
16

5 Pr [|x̂qr − x| < |x̂o − x|] 9
16

6 Pr [|x̂Kr − x| < |x̂− x|] 6−K
8

From Table III, we observe that in an optimization problem, the highest

probability of being closer to the solution than an EA individual is the quasi-

reflected point, presented in Row 3. Row 4, the quasi-opposite point, also has

the same probability; however, it is compared to opposite of an EA individual,

not the EA individual itself. Therefore, quasi-reflection should be the preferred

opposition algorithm when working with the available EA individuals to yield

the highest probability of being closer to the solution. The probability of fitness-

dependent quasi-reflection being closer to the solution presented in Row 6, is

dependent on the reflection weight K, which in turn depends on the individual’s

relative fitness in the population. Note that an average individual (K = 1/2) will

have the same probability of being closer to the solution as the quasi-reflected

point.
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2.5.2 Expected Distance of Fitness-Weighted Quasi-Reflection

Compared to an EA Individual

We have shown in Section 2.3 that the probability that a fitness-weighted

quasi-reflected point is closer than a random EA individual to the solution of

an optimization problem is

Pr [|x̂Kr − x| < |x̂− x|] = Pr [|x̂(1−K)− x| < |x̂− x|]

=
6−K

8

Table IV summarizes the findings of Section 2.4 where we derived the

expected distance of a fitness-weighted quasi-reflected point to the solution of

an optimization problem compared to a random EA individual’s distance to

that solution.

Table IV. Distance to solution as a function of reflection weight, where the problem

domain is [−b, b]

Probability

E (|x̂− x|) 2b
3

E (|x̂Kr − x|) bK2

2
− b(K−1)(2+K)

3

E (|x̂Kr − x| − |x̂− x|) bK
6
(K − 2)

Fig. 7 combines the results from Sections 2.3 and 2.4 and plots the ex-

pected distance and probability for a fitness-weighted quasi-reflected point as

a function of reflection weight, K. From this figure, we notice that the expected

probability of being closer to the solution of an optimization problem, and the

distance to the solution, both decrease with K. While a shorter distance to the

solution is desirable, having a smaller chance of being closer to the solution is

not desirable.

The linear reflection weight equation as defined in Eq. 2.5 yields a large

K for less fit solutions to enable higher reflection. Fig. 8 plots the distance
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and probability of being closer to solution for x̂Kr and x̂ with respect to K. The

straight and dashed lines represent the theoretical results and the markers o

and ∗ are obtained via randomly generating x, x̂and x̂Kr points and calculating

their expected distance and probabilities. The simulation and theoretical re-

sults are well-aligned. Based on Fig. 8, when using a larger K, the individual

has a less change of being closer to the solution but the expected distance to

the solution is less than a random EA point.
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Figure 8. Relative distance to the solution of an optimization problem, and probability

of being closer to the solution, between x̂Krand x̂. Notice that when K is small,

x̂Kr has the highest probability of being closer to solution. However, for small

K, x̂Kr is closer by a negligible amount.
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CHAPTER III

EMPIRICAL RESULTS OF

OPPOSITION-BASED LEARNING

T HE probabilities calculated in the previous chapter are studied in this

chapter using standard benchmark functions from the literature as well

as the real-world. The first half of this chapter will focus on the problems

from the literature. Section 3.1 explains the metrics utilized to compare the

performance of various EAs and Section 3.2 introduces the benchmark func-

tions in more detail. The results of the benchmark problems are presented

in Section 3.3. The second half of the chapter analyzes the performance of

the oppositional algorithms on real world problems. Section 3.4 introduces the

global optimization problems provided by the European Space Agency (ESA).

The simulation metrics for these problems are presented in Section 3.5 and the

performance of the EA is discussed in Section 3.6. Section 3.7 analyzes the

significance of the presented results.
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3.1 Simulation Settings

This section outlines the methodology utilized to measure the perfor-

mance of OB BO . Performance analysis of the presented algorithms is based

on the number of cost function evaluations, Fc, performed before reaching the

desired solution range, because generally, the cost function evaluation is the

most CPU intensive task of an EA [167]. The following method, which we em-

ploy to test our algorithms, is published in [168, 169]. This method compares

the number of cost function evaluations required for an EA to converge to a

value near the solution. The desired convergence value is calculated by:

|f − f̂ | < ϵ1|f |+ ϵ2 (3.1)

where f is the known solution, f̂ is the best solution candidate at the current

generation, and ϵ1 and ϵ2 are small positive numbers.

We now explain the various parameters for the presented simulations in

more detail. As we increase the population size, we are increasing the number

of cost function evaluations. This generally helps converge to the solution at

the cost of simulation time. Therefore, we increase the population size with

the dimension of the benchmark problem. Table V lists the settings for the

presented results. Note that this table is just a rule of thumb. For example, a

more demanding problem, such as Perm, can be evaluated with a population of

100 for 10 dimensions.
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Table V. Problem dimension vs. population size

Problem Population

Dimension Size

2 4

4 8

20 50

30 98

100 350

In order to avoid unbounded run times, we introduce an upper limit on

function calls, MaxFc. If the best solution has not reached the desired solution

range by the set number of cost function evaluations, we quit the simulation.

Vesterstrom and Thomsen [170] used an evaluation limit of 500,000 for 30-

dimensional problems and an evaluation limit of 5,000,000 for 100-dimensional

problems. Keeping these settings as our reference, we set MaxFc as shown in

Table VI.

Table VI. Problem dimension vs. maximum function calls

Problem Maximum

Dimension Function Calls

≤4 1× 105

> 4 5× 106

The tolerance level for acceptable solutions is also based on the problem

dimension [169]. In Eq. 3.1, we define ϵ1 as 10−4 for all dimensions and let ϵ2 be

determined by the problem dimension as shown in Table VII.
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Table VII. Problem dimension vs solution tolerance

Problem

Dimension ϵ1 ϵ2

≤4 10−4 10−4

> 4 10−4 10−6

OB BO ’s jumping rate constant, Jr, is set to 0.3 [141]. This means that

at each generation, we have a 30% chance of calculating opposite populations.

Jr can also decrease with each generation so that the number of cost function

calls due to the oppositional algorithm decreases with time.

Finally, the best two solution candidates in each generation are pre-

served using elitism for BBO and OB BO . For future work, one can keep track

of the standard deviation over each Monte Carlo run and apply a statistical hy-

pothesis test, such as a chi-square test, to analyze the effects of varying these

parameters.

3.2 Benchmark Functions

This section introduces the 22 continuous-domain benchmark functions

employed to compare the performance of OB BO and BBO. These problems are

selected to provide a variety of challenges to OB BO as each function includes

different characteristics: multimodality, nonseparability, or irregularity. Mul-

timodal functions are functions which have many local minima, nonseparable

functions have inter-dependencies among the variables for an added challenge

and irregular functions are nondifferentiable. In this dissertation, we further

categorize these functions as low-dimensional and variable-dimensional. More

information on these functions can be found in [170, 141, 171, 172] or on Ap-

pendix C where a definition and a two-dimensional plot of each benchmark

function is provided.
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Section 3.2.1 presents the low-dimensional functions. These functions

are two- or four-dimensional. The variable-dimensional functions are presented

in Section 3.2.2. In these problems, the problem dimension is adjustable. The

majority of the functions employed are in this category since variable-dimensional

functions can also be utilized for low-dimensional simulations. Some of these

functions, such as quartic, include random noise to simulate real world appli-

cations. Finally, constrained functions are left for future work. Considered

examples include:

1. Keane’s bump function [173]

2. Appendix C of [174]

3.2.1 Low-dimensional Benchmark Problems

Table VIII presents an overview of the low-dimensional benchmark prob-

lems used.

Table VIII. Low-dimensional benchmark functions. The superscript is the problem

dimension

Function Domain argmin min f(x)

Beale (−4.5, 4.5)2 (3, 0.5) 0

Colville (−10, 10)4 14 0

DeJong F5 (−65.536, 65.536)2 (−32, 32) 0.998

Easom (−100, 100)2 (π, π) −1

Tripod (−100, 100)2 (0,−50) 0

3.2.2 Variable-dimension Benchmark Problems

An overview of these functions is listed in Table IX. Note that the Penalty

1 and Penalty 2 functions, also called Generalized Penalized Functions [172],

have typographical errors in many publications [175, 176, 177, 178], including

44



some heavily-referenced articles [172, 170]. Readers should refer to Equations

25 and 26 in the original publication [179] for the correct equations.

Also, two of the variable dimension problems, Fletcher and Perm, are set

as four-dimensional problems, instead of twenty, owing to the fact that their

minimum could not be located within the listed boundaries for higher dimen-

sions.

Table IX. Variable-dimensional benchmark functions, where n is the problem dimen-

sion

Function Domain argmin min f(x)

Ackley (−30, 30)n 0n 0

Alpine (−10, 10)n 0n 0

Fletcher/Powell (−π, π)n rand(−π, π)n 0

Griewank (−600, 600)n 0n 0

Penalty1 (−50, 50)n 1n 0

Penalty2 (−50, 50)n 1n 0

Perm (−n, n)n (1, 2, ..., n) 0

Quartic (−1.28, 1.28)n 0n 0

Rastrigin (−5.12, 5.12)n 0n 0

Rosenbrock (−30, 30)n 1n 0

Schwefel 1.2 (−65.536, 65.536)n 0n 0

Schwefel 2.21 (−100, 100)n 0n 0

Schwefel 2.22 (−10, 10)n 0n 0

Schwefel 2.26 (−512, 512)n 420.9687n −418.9829n

Sphere (−5.12, 5.12)n 0n 0

Step (−100, 100)n 0n 0

Zakharov (−5, 10)n 0n 0
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3.3 Simulation Results

In this section, we provide preliminary simulation results. Section 3.3.1

compares the performance of all the oppositional algorithms presented and

Section 3.3.2 explores the effects of static and dynamic reflection on quasi-

reflection and quasi-opposition.

3.3.1 Experimental Comparison of Oppositional Algorithms

As noted in Table IX, many benchmark functions have a symmetric do-

main and their optimizing argument is located at the center of the domain.

This is not a very realistic scenario and an EA can be designed to take ad-

vantage of that. Thus, in order to test the effectiveness of BBO, we randomly

shift the solution. One way to achieve this goal, while maintaining the original

range of a benchmark problem, is to randomly shift the domain of the problem

for each Monte Carlo run. Shifting the domain of the problem yields the illu-

sion of shifting the solution, without modifying the problem equation. The ten

benchmarks with shifted domain are Ackley, Alpine, Griewank, Quartic, Rast-

rigin, Schwefel 1.2 - 2.22, Sphere and Step. The shifted domain is calculated as

follows. Let a problem have a domain of [−a, a] with solution located at the cen-

ter of the domain, 0. Then the range of the solution domain is 2a. The shifted

domain is defined as [r− 2a, r] where r is a random point uniformly distributed

in [0, 2a]

For example, Ackley is defined in [−30, 30] with min f(x) = 0 located at

(0, 0, .., 0). Then, r is a random number in (0, 60) and shifted Ackley is defined

in [r − 60, r] with min f(x) = 0 at (0, 0, .., 0). As a result, based on the value of

r, the domain of shifted Ackley can be anywhere in [−60, 0] to [0, 60] while the

solution will still be at (0, 0, .., 0).

Other simulation settings:

• Number of Monte Carlo runs: 50
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• Mutation rate: 0

• Variable dimension: 20

Table X compares the proposed oppositional algorithms, x̂o , x̂qo , x̂qr , x̂Kr ,

alongside BBO for the lower dimensional benchmark functions, and Table XI

lists the results for the variable dimension problems with twenty dimensions.

Table X. The mean of the best results from BBO, x̂o , x̂qo , x̂qr , x̂Kr for lower dimen-

sion benchmark problems. The maximum number of function calls is limited to

100,000. SR is the success rate (that is, the proportion of simulations that found

a solution to the desired accuracy). Mean Fc is the average number of function

calls before a solution was found.

BBO/x̂ BBO/x̂o BBO/x̂qo BBO/x̂qr BBO/x̂Kr

Benchmark SR Mean Fc SR Mean Fc SR Mean Fc SR Mean Fc SR Mean Fc

Beale 0 - 0 - 0 - 0.16 50343 0.06 285

Colville 0.98 3504 0.98 330 0.92 10176 0.88 18676 0.78 18445

DeJong F5 1 400 1 64 1 700 1 504 1 616

Easom 0 - 0 - 0 - 0 - 0 -

Fletcher 0 - 0 - 0 - 0 - 0 -

Perm 0.92 25497 0.46 554 0.08 26228 0.16 26993 0.2 25039

Tripod 0.28 727 1 99 1 4505 0.68 15092 0.44 981

Mean 0.45 7532 0.49 262 0.43 10402 0.41 22321 0.35 9073

According to Table X, BBO augmented with standard opposition, BBO/x̂o,

reduces the number of function calls necessary by 96.5% while increasing BBO’s

success rate. While none of the algorithms can solve Easom and Fletcher,

BBO/x̂qr and BBO/x̂Kr are the only algorithms that are able to provide some

successful solutions to the Beale problem. Also, all of the opposition techniques

outperform BBO/x̂ on the Tripod problem. On the other hand, BBO/x̂qr and

BBO/x̂Kr cannot successfully solve the Perm problem as often as BBO/x̂ and

this causes their success rate to be below BBO/x̂ ’s.

Figs. 9-10 provide some sample runs from these benchmarks. In Fig 9,
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we display the best results from all algorithms for the first 10 generations of

Colville. Recall that it takes BBO/x̂qr five times more function calls than BBO

to solve this problem. However, Fig 9 shows that the oppositional algorithms

start converging faster than BBO.
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Figure 9. Fist ten generations of best results obtained for Colville. Oppositional algo-

rithms start strong.

Fig 10 plots the best results from the Colville problem between genera-

tions 90 and 100. Notice that the oppositional algorithms still provide better

solutions than BBO.
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Figure 10. Generations 90-100 of best results obtained for Colville. Oppositional al-

gorithms still provide better solutions.
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Table XI. The mean of the best results from BBO, x̂o , x̂qo , x̂qr , x̂Kr for twenty dimen-

sional benchmark problems. The maximum number of function calls is limited

to 5,000,000. Superscript s indicates that the domain of the problem is shifted

randomly for each Monte Carlo simulation. SR is the success rate (that is, the

proportion of simulations that found a solution to the desired accuracy). Mean

Fc is the average number of function calls before a solution was found.

BBO/x̂ BBO/x̂o BBO/x̂qo BBO/x̂qr BBO/x̂Kr

Benchmark SR Mean Fc SR Mean Fc SR Mean Fc SR Mean Fc SR Mean Fc

Ackleys 1 19506 1 24718 1 23466 1 23933 1 32428

Alpines 1 31174 1 39131 1 11994 1 9774 1 4407

Griewanks 0.18 537629 0.16 371364 0.06 321172 0.12 429915 0.04 847383

Penalty1 1 29193 1 40644 1 44294 1 38129 1 44345

Penalty2 1 26838 1 47391 1 47147 1 45110 1 43215

Quartics 1 188232 1 255268 0.92 431632 0.76 833877 0 -

Rastrigins 1 5121 1 6682 1 6696 1 6853 1 7441

Rosenbrock 0 - 0 - 0 - 0 - 0 -

Schwefel 1.2s 0.94 1651347 0.92 2140428 0.96 2044892 0.92 2424489 0.82 2074367

Schwefel 2.21s 0 - 0 - 0 - 0 - 0 -

Schwefel 2.22s 1 6732 1 9145 1 9132 1 8931 1 12008

Schwefel 2.26 1 90753 1 116924 1 122869 1 115415 1 121479

Spheres 1 4920 1 6762 1 6660 1 6998 1 11006

Steps 1 55203 1 74758 1 68296 1 69203 1 71719

Zakharov 0.94 1490104 0.92 1722772 0.96 1620825 0.82 1815811 0.32 3525365

Mean 0.80 318212 0.80 373537 0.79 366083 0.77 448341 0.68 566264

Based on Table XI, we notice that the opposition methods hinder BBO’s

performance on twenty dimensional problems. Their results are not as success-

ful nor as efficient as original BBO. This is contrary to our intuition. Fig 11

displays the best results from the first ten generations of the Schwefel 1.2s

benchmark. In Table XI, we showed that BBO/x̂qr requires 50% more func-

tions calls to solve this problem. However, according to Fig 11, oppositional

algorithms perform better than BBO.
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Figure 11. Fist ten generations of best results obtained for Schwefel 1.2s. Opposi-

tional algorithms start strong.

Fig 12 displays the best results from generations 90-100 for Schwefel

1.2s. The oppositional algorithms are still in the lead, producing solution can-

didates that cost less than half of BBO. However, notice that the oppositional

algorithms seem to have reached steady-state as they do not continue converg-

ing.
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Figure 12. Generations 90-100 of best results obtained for Schwefel 1.2s. Oppositional

algorithms still provide better solution candidates.

Further inspection of the remaining benchmarks suggest that opposi-

tional BBO algorithms fail to converge to the exact solution even though they

will approach it closely. In order to test this hypothesis, we ran the simulations

for BBO/x̂qr and limited the possibility of opposition to the first 40 generations.

The results of our findings are listed in Table XII.

We observe that BBO/x̂40
qr is not just a good improvement on BBO/x̂qr , it

also improves average success rate and number of function calls. Nevertheless,

there are still problems such as the quartic function where opposition seems

to delay convergence. Thus, a more intelligent oppositional algorithm needs to

established. Note that the oppositional generation limit 40 is chosen arbitrar-

ily and further research should be performed on the convergence issues with

opposition.
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Table XII. The mean of the best results from BBO, BBO/x̂qr for twenty dimensional

benchmark problems. BBO/x̂40qr is BBO with quasi-reflection limited to first 40

generations. The maximum number of function calls is limited to 5,000,000.

Superscript s indicates that the domain of the problem is shifted randomly for

each Monte Carlo simulation. SR is the success rate (that is, the proportion

of simulations that found a solution to the desired accuracy). Mean Fc is the

average number of function calls before a solution was found.

BBO BBO/x̂qr BBO/x̂40
qr

Benchmark SR Mean Fc SR Mean Fc SR Mean Fc

Ackleys 1 19506 1 23933 1 19272

Alpines 1 31174 1 9774 1 16577

Griewanks 0.18 537629 0.12 429915 0.22 314295

Penalty1 1 29193 1 38129 1 24094

Penalty2 1 26838 1 45110 1 25299

Quartics 1 188232 0.76 833877 1 341941

Rastrigins 1 5121 1 6853 1 5728

Rosenbrock 0 - 0 - 0 -

Schwefel 1.2s 0.94 1651347 0.92 2424489 1 1483430

Schwefel 2.21 0 - 0 - 0 -

Schwefel 2.22s 1 6732 1 8931 1 7589

Schwefel 2.26s 1 90753 1 115415 1 88344

Spheres 1 4920 1 6998 1 5722

Steps 1 55203 1 69203 1 53578

Zakharov 0.94 1490104 0.82 1815811 0.92 1635391

Mean 0.80 318212 0.77 448341 0.81 309328
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3.3.2 Reflection Range

In this section, we explore the results of different ways of selecting the

opposition range for quasi-oppositional algorithms. Reference [144] presents

the first findings in domain analysis for oppositional algorithms where the au-

thors introduced dynamic opposition. In dynamic opposition, the opposite point

is calculated using the minimum and maximum of a given population, instead

of the problem’s predefined search domain. We will investigate the affects of

dynamic opposition on quasi-reflected and quasi-opposite BBO.

Recall that a quasi-reflected point is calculated by reflecting the individ-

ual between itself and the center of the domain. Therefore, we are interested

in different mid-domain calculations. The first method, named SM, is static

and calculated by finding the midpoint of the problem domains as given in Ta-

ble IX. The second method is dynamic, referred as DM, and is calculated by

finding the center of the domain based on a given population for each problem

dimension.

To compare the effects of these two definitions of mid-point, we selected

six benchmarks of interest and ran 50 Monte Carlo simulations for each one.

The chosen benchmarks have an uneven range or a minimum that is not cen-

tered. We employed OB BO with quasi-reflection, two member elitism and with-

out mutation or reflection weight (see Section 2.3). Our findings are presented

in Table XIII .
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Table XIII. The effects of static and dynamic population range on quasi-reflection.

SM: Midpoint is calculated based on the search domain of the benchmark

problem, as defined by Table IX. DM: Midpoint is calculated dynamically for

each generation.

BBO/QR/SM BBO/QR/DM

Benchmark Functions Mean Fc SR Mean Fc SR

Ackley 1,784 1 63,282 1

Penalty2 52,003 1 46,886 1

Quartic 14,635 1 184,537 1

Schwefel 2.21 2,206 1 3,700,663 1

Schwefel 2.26 145,140 1 55,416 1

Zakharov 1,870,749 0.8 1,865,230 1

Mean 347,753 0.97 986,002 1.00

Geometric Mean 30,552 0.96 243,693 1.00

From Table XIII, we note that BBO/QR/DM outperforms the static popu-

lation by a larger margin on the benchmarks that do not have their minimum

at the center of the domain, such as Schwefel 2.26. Also, the dynamic mid-

domain calculation increases our success rate on more challenging problems,

such as Zakharov, at the cost of performance on simpler problems, such as Ack-

ley.

In Eq. 2.2, we defined a quasi-opposite point as a random point between

the center of the domain and the opposite of the individual. Therefore, to calcu-

late a quasi-opposite point, the domain is necessary not only for calculating the

midpoint but for calculating the opposite point as well. The solution domain

can be defined as:

• The solution domain is same as the given domain of the problem which

is defined by the user and in our case given in Table IX. This is the SM
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method.

• The domain of the current generation for each independent variable is uti-

lized as the domain for the opposite points. For an n-dimensional problem,

at each generation, we would calculate n different domains. Assuming

that our solution converges with time, the domain of the problem should

shrink. This is the DM method.

• The domain of the current generation for the whole population is utilized

as the domain for the opposite points. For an n-dimensional problem, we

would calculate the minimum and maximum values at each generation

and that would define the domain for the whole population. If the prob-

lem is not scaled, users should be wary of this method since different in-

dependent variables might have widely varying domains and should not

be combined.

Also, for each of these domain definitions, there is a corresponding cen-

ter point definition. However, the last definition has an unfair advantage com-

pared to the first two, since for our benchmark problems the minimum argu-

ment is the same for all of the dimensions. This is not a very realistic scenario

and therefore, this option is not included in the following simulations. If we al-

low the possibility of mixing the first two definitions for domain and midpoint

calculations, there will be a potential of four combinations.

To compare the effects of the first two definitions of opposite-point do-

main and mid-point, we selected the same six benchmarks as for quasi-reflection

and ran 50 Monte Carlo simulations for each one. We employed OB BO with

quasi-opposition, two member elitism and without mutation or reflection weight

(see Section 2.3). Table XIV presents our findings.
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Table XIV. The effects of static and dynamic population range on quasi-opposition.

SR/SM: Domain/Midpoint is calculated based on the domain of the bench-

mark problem, as defined by Table IX. DR/DM: Domain/Midpoint of each

independent variable is calculated dynamically for each generation.

Benchmark BBO/QO/SR/SM BBO/QO/DR/DM BBO/QO/SR/DM BBO/QO/DR/SM

Functions Mean Fc SR Mean Fc SR Mean Fc SR Mean Fc SR

Ackley 1,806 1 36,170 1 2,784 1 4,527 1

Penalty2 59,022 1 46,102 1 50,816 1 52,744 1

Quartic 13,243 1 75,445 1 15,127 1 17,620 1

Schwefel 2.21 2,298 1 4,459,940 0.54 3,374 1 5,256 1

Schwefel 2.26 149,426 1 76,255 1 143,826 1 147,226 1

Zakharov 1,817,245 0.76 1,138,275 1 2,049,700 0.84 2,400,623 0.62

Mean 340,507 0.96 972,031 0.92 377,605 0.97 437,999 0.94

Geometric Mean 30,961 0.96 191,098 0.90 35,865 0.97 44,549 0.92

For Schwefel 2.26, a problem with a larger domain and a skewed mini-

mum argument, all algorithms had a 100% success rate, but on average

BBO/QO/DR/DM can solve it in approximately half the function calls as the

others. For Zakharov, a problem with a smaller non-symmetrical domain,

DR/DM is the only method with a perfect success rate. On the other hand,

for Schwefel 2.21 DR/DM is the only method that failed to achieve a perfect

success rate. We can see that the DR/DM combination is hit or miss since it

had the fewest function calls for half of the benchmarks and the most function

calls for the rest of them. This shows that there is no single perfect method for

all problems [59].

Note that for the non-homogenous matching, such as SR/DM and DR/SM,

the midpoint is based on a different domain than the opposite point. For exam-

ple, if SR/DM method is applied to a problem with SR of (−100, 100)n, but the

current generation has a domain average of −10 for a given dimension, then

the opposite-reflected point calculated from this data may be skewed.
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3.4 Real-world problems

The oppositional algorithms are tested on real-world problems provided

by the European Space Agency (ESA). An overview of these problems is sum-

marized in Table XV. More details about the models employed in these prob-

lems can be found at [180] and [181]. These problems provide a good bench-

mark for global optimization as the provided parameters are claimed to be

compatible with the current missions of ESA and NASA [182]. These problems

model the interplanetary space trajectories from the ESA missions. For in-

stance, the goal of the esa4 problem is to calculate the best possible trajectory

that the spacecraft Messenger should follow to orbit Mercury. This problem

has nonlinear constraints that are known to cause difficulties for optimization

algorithms. For esa5, the maneuvers that will yield the optimal path to Saturn

for a fly by mission past Earth, Jupiter and Venus must be determined.

The selected problems were created and made available by ESA and are

called as blackbox functions by the EA. EA generated solution candidates with

a structure of variables is passed to an ESA function, which then evaluates

these variables, handles the constraints when applicable and returns the corre-

sponding objective function value. Some of these trajectory optimization prob-

lems are more complete as they include deep-space maneuvers.
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Table XV. Overview of ESA global trajectory optimization problems. Min(J) is the

best cost value known at the time of this writing.

Problem Dimension min(J) Key

cassini1 6 4.9307 esa1

cassini2 22 8.383 esa2

gtoc1 8 −1, 581, 950 esa3

messenger 18 8.630 esa4

messenger full 26 2.113 esa5

rosetta 22 1.343 esa6

sagas 12 18.19 esa7

3.5 Simulation Settings

The simulation parameters are presented in Table XVI where popula-

tion size is the number of EA individuals that are maintained each generation.

Ideal generation limit is an approximation, assuming a single objective func-

tion evaluation per individual per generation. This may not be equal to the

actual generation limit for oppositional algorithms since each time an opposite

population is generated, its objective function values have to be evaluated. This

means that oppositional algorithms require more computational resources for

the same number of generations. To make a fair comparison, we set the ter-

mination condition to be a specific number of cost function evaluations. Simu-

lations are run until the number of function calls reaches the product of ideal

generation limit and population size. Elite population is the number of fittest

individuals preserved after each generation. They replace the least fit individ-

uals for the next generation. The blending amount is only employed for GA

and BBO [158]. It indicates the recombination weight factor of the parent and

the child. The opposition jumping rate is the probability of creating an opposite

population per generation.
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Table XVI. Simulation settings for real-world problems

Parameter Value

Population size 100

Ideal generation limit 1000

Elite population 2

Blending amount 0.25

Opposition jumping rate 0.5

3.6 Simulation Results

Results are analyzed by two different approaches. First, in Tables XVII-

XIX, we list the minimum for each EA and OBL algorithm, averaged over a

set of 25 Monte Carlo simulations. We also include the standard deviations.

The best mean is indicated with a boldface typeset. These tables provide us

with insight regarding the expected performance of each algorithm. Next, in

Tables XX-XXII, we list the best result obtained by each approach. Since, gen-

erally, our goal is to find a single optimal trajectory, these tables provide us

with the results that would be employed from each algorithm in the real world.

Table XVII. Mean (and standard deviation) of final cost function value after 25 Monte

Carlo simulations with GA and its oppositional versions.

Problem GA GA/x̂o GA/x̂qo GA/x̂qr

esa1 18.63(4.74) 10.56(3.88) 14.42(4.34) 17.95(3.26)

esa2 31.44(4.66) 24.97(1.68) 26.54(2.09) 26.32(1.44)

esa3 -280922(185322) -768476(218896) -461517(368769) -339683(369646)

esa4 21.92(3.07) 16.86(1.64) 17.87(2.73) 19.25(2.20)

esa5 27.16(4.57) 20.00(1.72) 24.92(4.72) 27.36(7.60)

esa6 15.71(2.60) 10.25(2.86) 11.97(3.34) 9.29(2.37)

esa7 1710.89(160.57) 1059.45(155.34) 1131.1(288.32) 1135.52(277.07)

60



Table XVIII. Mean (standard deviation) of final cost function after 25 Monte Carlo

simulations with DE and its oppositional versions.

Problem DE DE/x̂o DE/x̂qo DE/x̂qr

esa1 10.36(3.55) 8.40(3.55) 11.21(3.02) 11.14(2.98)

esa2 19.76(4.67) 18.55(2.77) 18.67(2.39) 20.39(2.26)

esa3 -459008(386101) -835807(386714) -951889(424493) -878495(392723)

esa4 15.55(3.41) 13.01(1.91) 13.19(2.249) 13.19(2.15)

esa5 22.94(7.11) 15.94(4.37) 14.49(1.39) 14.79(1.957)

esa6 7.08(4.06) 5.08(2.70) 4.57(2.49) 4.56(2.34)

esa7 987.79(31.34) 951.46(57.78) 964.93(19.19) 905.72(226.75)

Table XIX. Mean (standard deviation) of final cost function after 25 Monte Carlo sim-

ulations with BBO and its oppositional versions.

Problem BBO BBO/x̂o BBO/x̂qo BBO/x̂qr

esa1 19.72(7.52) 10.73(3.95) 12.11(4.24) 14.71(3.87)

esa2 30.51(3.928) 24.75(2.83) 24.91(1.35) 26.05(2.27)

esa3 -303629(220240) -654887(269287) -560691(411569) -548817(446057)

esa4 21.05(2.72) 16.95(1.66) 16.53(2.05) 17.62(2.03)

esa5 31.43(7.05) 21.22(3.80) 21.84(4.18) 20.13(3.38)

esa6 15.94(3.39) 10.30(2.86) 11.02(3.33) 10.54(3.38)

esa7 1711.32(234.26) 937.21(175.90) 889.59(228.82) 888.73(235.47)

The GA results, Table XVII, are dominated by GA/x̂o’s performance which

provides the lowest mean for six out of seven problems. The other minimum is

achieved by GA/x̂qr.

The mean results of DE are listed in Table XVIII and the success rate

is more uniformly distributed among the OBL algorithms. Three of the best

results are obtained by DE/x̂o, two are obtained by DE/x̂qr, and two are obtained

by DE/x̂qo. For esa1, the expected DE performance is better that DE/x̂qo and

DE/x̂qr. However, DE performs worse than all of its oppositional variations, on
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average.

From Table XIX, we observe that the lowest mean for four out of seven

problems is obtained with BBO/x̂o, the lowest means for two problems are

achieved with BBO/x̂qr, and the lowest mean for one problem is achieved with

BBO/x̂qo. Notice that on average, the expected performance of each OBL is

significantly better that BBO.

If we compare the means from the three EAs, we note that DE-based

approaches provide the lowest mean cost for six out of seven problems and

BBO has the lowest mean for esa7. Among the OBL methods for the three

EAs, x̂o has three of the lowest means while x̂qr and x̂qo each have two. On

the other hand, none of the original EAs performed best for any of the seven

problems.

Minimum results for GA, Table XX, indicate that GA/x̂o finds the lowest

cost for three of the problems, GA/x̂qo for two of the problems, and GA and

GA/x̂qr each find the lowest cost for one of the problems. For esa2, GA returns

a lower cost than any of the OBL enhanced algorithms.

Table XX. Minimum cost achieved after 25 Monte Carlo simulations with GA and its

oppositional versions.

Problem GA GA/x̂o GA/x̂qo GA/x̂qr

esa1 9.21 5.56 6.36 8.78

esa2 19.88 21.19 23.03 24.05

esa3 -701380 -1224444 -1079288 -1005413

esa4 15.96 13.46 12.36 14.48

esa5 20.53 17.33 17.85 17.55

esa6 10.19 6.17 6.60 5.00

esa7 1418.62 981.57 438.39 825.47

Minimums achieved by DE, Table XXI, show that DE, DE/x̂qo and DE/x̂qr

each find the lowest minimum for two problems while DE/x̂o only finds the
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best minimum for one of the problems. For esa1, all three OBL algorithms

seems to get stuck at the same local minima whereas DE reaches a slightly

lower cost. For esa7, the minimum achieved by DE/x̂qr is very close to the

best-known global minimum (regardless of the low iteration count) and is sig-

nificantly lower than the other results.

Table XXI. Minimum cost achieved after 25 Monte Carlo simulations with DE and its

oppositional versions.

Problem DE DE/x̂o DE/x̂qo DE/x̂qr

esa1 4.93 5.30 5.30 5.30

esa2 12.13 12.81 13.92 13.42

esa3 -1203488 -1309175 -1452754 -1358905

esa4 10.47 10.20 10.24 9.87

esa5 14.66 9.61 11.29 11.29

esa6 1.96 2.04 1.93 1.98

esa7 932.61 691.59 932.58 20.93

Among the minimums found by BBO, Table XXII, we observe that both

BBO/x̂qr and BBO/x̂qo find the best result for three of the problems. BBO/x̂o

reaches a better solution for one of the problems. For esa6 and esa7, OBL

algorithms return much lower cost results than BBO.
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Table XXII. Minimum cost achieved after 25 Monte Carlo simulations with BBO and

its oppositional versions.

Problem BBO BBO/x̂o BBO/x̂qo BBO/x̂qr

esa1 6.86 5.66 5.61 6.15

esa2 23.61 16.60 22.24 24.12

esa3 -776421 -1262728 -1253848 -1325004

esa4 16.20 13.98 13.40 14.32

esa5 21.15 16.86 15.00 14.47

esa6 9.42 5.60 6.09 3.18

esa7 1166.76 431.04 223.10 253.53

Comparing the minimum results for the three EAs, we observe that DE-

based algorithms found the best result for all of the problems. The highest

number of minimums achieved by the EAs is about uniformly distributed be-

tween DE, DE/x̂qo and DE/x̂qr.

3.7 Statistical Tests

In order to analyze the significance of our findings, we perform t-tests

on our simulation results. For each problem, we compare the results of the 25

Monte Carlo simulations for the oppositional algorithms to that of the original

EA. The null hypothesis is that the mean of the EA and that of the OBL en-

hanced EA are equal and the alternative hypothesis is that their means are dif-

ferent. Tables XXIII-XXV provide the two-tailed p-value of the t-distribution.

We can reject the null hypothesis if the p-value is significant, i.e., less than

0.05.

For our analysis, we assume that the data sets have equal sample size

and variance. These assumptions are valid as each data set has 25 data points

and the standard deviations listed in Tables XVII-XIX are, in general, of the
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same order of magnitude.

The p-values for the GA and DE algorithms are listed in Tables XXIII-

XXIV and indicate a similar performance. x̂o has the lowest p-values and all x̂o

algorithms reject the null hypothesis successfully. On the other hand, there are

a few instances where x̂qo or x̂qr fail to reject the null hypothesis. This might be

due to the fact that the jumping rate was adjusted based on the performance

of x̂o.

Table XXV lists the p-values of the null hypothesis for BBO and its op-

positional versions. x̂qr provides the least significant results, while x̂o has the

highest number of null-hypothesis rejections. This, again, could be the result of

tuning the oppositional algorithms based on the performance of x̂o. A different

opposition rate might provide a higher significance for x̂qr and x̂o.

Table XXIII. P-values of two-tailed t-tests comparing the statistical significance of

the GA results to those of each oppositional algorithm. Results that are not

statistically significant are shown in bold font.

Problem GA/x̂o GA/x̂qo GA/x̂qr

esa1 3.18E-8 1.98E-3 5.57E-1

esa2 3.94E-8 1.62E-5 3.44E-6

esa3 3.91E-11 3.36E-2 4.81E-1

esa4 2.79E-9 9.93E-6 8.90E-4

esa5 2.29E-9 9.44E-2 9.12E-1

esa6 5.70E-9 5.52E-5 4.37E-12

esa7 0.00E+0 1.48E-11 7.50E-12

65



Table XXIV. P-values of two-tailed t-test comparing the statistical significance of DE’s

results to that of each oppositional algorithm. Results that are not statisti-

cally significant are shown in bold font.

Problem DE/x̂o DE/x̂qo DE/x̂qr

esa1 5.71E-2 3.65E-1 4.02E-1

esa2 2.73E-1 3.07E-1 5.40E-1

esa3 1.19E-3 8.47E-5 3.97E-4

esa4 2.08E-3 5.78E-3 5.13E-3

esa5 1.17E-4 4.48E-7 1.33E-6

esa6 4.55E-2 1.12E-2 9.68E-3

esa7 8.09E-3 3.14E-3 7.94E-2

Table XXV. P-values of two-tailed t-test comparing the statistical significance of

BBO’s results to that of each oppositional algorithm. All results are sta-

tistically significant.

Problem BBO/x̂o BBO/x̂qo BBO/x̂qr

esa1 2.97E-6 5.92E-5 4.80E-3

esa2 2.94E-7 1.78E-8 1.06E-5

esa3 6.83E-6 8.30E-3 1.74E-2

esa4 5.73E-8 2.74E-8 6.91E-6

esa5 6.79E-8 4.28E-7 3.38E-9

esa6 7.37E-8 4.49E-6 9.02E-7

esa7 0.00E+0 0.00E+0 2.22E-16
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CHAPTER IV

DISCRETE AND COMBINATORIAL

OPPOSITION

The previous chapters discussed continuous domain optimization prob-

lems. Recently, there has been research to extend BBO to combinatorial prob-

lems such as the traveling salesman problem (TSP) [183, 184, 185]. Opposi-

tional learning, created for accelerating continuous search spaces, can also be

modified and integrated with BBO to solve combinatorial problems, such as

graph-coloring and TSP.

We recognize that applying opposition to a TSP path by simply reversing

that path is meaningless because the reversed path will yield the same cost

as the original path. For example, in a TSP problem, if a tour between cities

(1, 2, 3, 4) has a cost of c, so would its opposite, (4, 3, 2, 1) because all of

the cities preserve their neighbors. Therefore a new definition of opposition is

needed. For TSP problems, we define an opposite path as a path that seeks

to (or approximately) maximizes the distance between the adjacent vertices in

the original path. Based on this definition, a tour may have more than one

possible opposite.

We propose two new definitions of opposition in discrete space. The first
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proposed definition is for open graph problems, where the final node may be

disconnected from the first node, such as the graph-coloring problem and is

presented in Appendix 4.1. The latter opposition method is for closed walk

problems, where the endpoints of the graph are linked, such as the traveling

salesman problem. We named this method cycle opposition and introduce it in

Appendix 4.2. The combinatorial biogeography-based optimization is proposed

in Appendix 4.3. The effectiveness of these algorithms are tested on vertex

coloring and traveling salesman problems and their results are discussed in

Appendix 4.4. Appendix 4.5 lists possible directions for future research.

4.1 Open-path Opposition

The first method of opposition for discrete domain problems that we pro-

pose is open-path opposition. Open path indicates that we complete the path

when we reach the last vertex on the path. An example of such a problem would

be the vertex coloring problem. Refer to Section 4.4.1 for more information on

graph coloring.

In order to implement open-path opposition, proximities between nodes

are calculated. If nodes share an edge so that they are directly connected,

their proximity is taken as one. If nodes connect through another node, their

distance is two; and if nodes connect through two nodes, their proximity is

three; and so on. Consider a path of four nodes, sorted as (1, 2, 3, 4). Table XXVI

lists the proximity between each nodes.
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Table XXVI. Distances of nodes (1, 2, 3, 4) for calculating the opposite path.

Node 1 Node 2 Proximity

1 2 1

1 3 2

1 4 3

2 3 1

2 4 2

3 4 1

The opposite of this path would be a path that maximizes the proxim-

ity between adjacent nodes while minimizing the proximity between further

nodes. Table XXVII lists the original path and its calculated opposite. Num-

bers above the arrows indicate the proximity between the nodes in the original

path as shown in Table XXVI. The goal of open-path opposition is to maximize

the total proximity traveled by a path by spreading the adjacent nodes apart.

We can say that the greater the total proximity, the greater is the opposition.

The maximum opposite achievable for our example is seven and it is shown

in the table as the exact opposite path. A lesser opposite path, named greedy

opposite, is also shown in the table. The greedy opposite path uses a greedy al-

gorithm to quickly calculate the approximate opposite of a given path; however,

it might not yield the highest degree of opposition.

Table XXVII. Opposite path of nodes in a tour (1, 2, 3, 4) .

Tour Path with proximities Total Proximity

Original Path 1
1−→ 2

1−→ 3
1−→ 4 3

Exact Opposite 3
2−→ 1

3−→ 4
2−→ 2 7

Greedy Opposite 1
3−→ 4

2−→ 2
1−→ 3 6

Notice that calculating the optimal or exact opposite is a combinatorial
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problem of its own; therefore a greedy approximation is developed. The greedy

opposition is implemented to maximize the proximity one city at a time. For

this example, based on Table XXVI, nodes 1 and 4 have the highest distance

between them, so they start the greedy opposite tour. Then, we find the node

with the highest distance that can continue the tour, node 2, and continue until

the tour is completed. Because the greedy algorithm seeks the local optimum

at each step, it is unsuccessful in finding the exact opposite even for such a

small problem.

Since there is no randomness involved in the definition of opposite path,

a greedy opposite path can be defined at the beginning of a program based on

node count and the opposite population can always be created based on this

path to save processing time. Reconsider our example of 4 nodes. Seeing that

the output of the greedy opposition algorithm is deterministic, we can use our

greedy path from Table XXVII to calculate the opposite of any other 4-node

path. To do this, we refer to (1, 2, 3, 4) as a list of node indices, instead of a list

of nodes. Therefore, we can map any 4-node map to its opposite.

For a given number of variables in a combinatorial problem, we can cal-

culate its greedy opposite by using Algorithm 7.
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Algorithm 7 Open-path greedy opposite algorithm
1: procedure GREEDY OPPOSITE PATH(n) ▷ n is the number of nodes

2: Initialize odd index counter, oddidx = 1

3: Initialize even index counter, evenidx = n

4: for each node index ci from 1 to n do

5: if ci is odd then

6: Opposite node index Oci = oddidx

7: Increment oddidx

8: else ci is even

9: Oci = evenidx

10: Decrement evenidx

11: end if

12: end for

13: return Oci

14: end procedure

For the 4-node problem, the presented greedy algorithm would yield the

greedy opposite path: 1 → 4 → 2 → 3. This greedy algorithm can be used to

accelerate the convergence rate of various combinatorial problems, including

the graph-coloring problem. Also, as possible future work, different mapping

algorithms that create different degrees of opposition can be developed, similar

to x̂qr , x̂qo and x̂Kr , and their statistical significance can be analyzed.

4.2 Cycle Opposition

In the previous section, we discussed opposition on a open path. How-

ever, some problems, such as the symmetric TSP, are closed since the endpoints

of the graph are connected. Open-path opposition will not yield a high degree

of opposition for these cases as it assumes that the extreme vertices have max-

imal separation when they are actually adjacent. Therefore, here we propose
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opposite cycle as an alternative to opposite path for problems with closed paths.

On a symmetric TSP, starting at any city on a path, moving in either

direction, we will return to our starting point and travel the same amount.

Thus, a closed path can be seen as a circular tour to reflect the symmetry of

progressing in opposite directions on the path and yet returning to the same

point and traveling the same distance. Fig. 13 illustrates a symmetric TSP

with eight cities on a circular path. This is an intuitive representation of this

problem.

1

2

3

4

5

6

7

8

Figure 13. 8-city closed path problem where the path is represented as a circle.

Based on Fig. 13, we can see that to maximize the proximity between the

adjacent vertices, we must travel to the opposite side of the circle. This is our

definition of opposition for problems with closed path. Fig. 14 illustrates the

opposite of each city in the tour.
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Figure 14. 8-city closed path problem with opposite cities indicated across the circular

path.

Although Fig. 14 shows the opposite of each city, it does not indicate an

opposite path. It reveals that if we start at city 1, its opposite is city 5. But

where do we go from there? The opposite of city 5 is 1, but we cannot revisit the

same city. The next best thing for us is to travel to city 2 or 8 since both yield

the same amount of opposition. We can choose either of these cities randomly

or based on the opposition order, which is explained below. We continue this

process until all cities are visited.

We can define permutations on our opposite circuits based on the direc-

tion in which we move around the circular path. We call this the order of

opposition and four possibilities of it are presented in Table XXVIII. These

permutations are named according to the direction we choose to advance. For

example, CCW opposite indicates that after reaching an opposite city, we would

always move counter-clockwise around the circle to progress on the path. Thus,

after we visit city 5, we would start moving counter-clockwise to find the fur-

thest vertex, in this case city 2. The CW opposite is similar, but advances in

the clockwise direction to form an opposite cycle. Notice that both the CW and

CCW paths following our choice on city 5 are mirror images of each other and

yield the same amount of opposition. We can define the CW opposite path as

follows.

Definition Let n be the number of nodes in a graph and P be a cycle with an

73



even number of nodes n. CW opposite path, PCW
o of P is defined as

P = [1, 2, . . . , n] (4.1)

PCW
o =

[
1, 1 +

n

2
, 2, 2 +

n

2
, . . . ,

n

2
− 1, n− 1,

n

2
, n
]

The other two techniques, CW-CCW and CCW-CW oppositions, reverse

direction after each decision. So if CW-CCW opposition moves clockwise to get

to city 2, it would then advance counter-clockwise and link to city 6. Notice

that CW-CCW and CCW-CW oppositions create less opposition as we progress

around the circle. Table XXVIII lists the possible CW-CCW and CCW-CW cycles

for a 8-city TSP.

Table XXVIII. Permutations of opposite tour of cities (1, 2, . . . , 7, 8). Tours are named

after the direction followed around the opposition circle after each city

visit. For example, CW opposite indicates that from the current location,

we must travel clockwise around the circle to find the largest opposition.

Path Name Path Followed Total Proximity

Original path 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8 7

CW Opposite 1→ 5→ 2→ 6→ 3→ 7→ 4→ 8 31

CCW Opposite 1→ 5→ 8→ 4→ 7→ 3→ 6→ 2 25

CW-CCW Opposite 1→ 5→ 2→ 6→ 8→ 4→ 3→ 7 30

CCW-CW Opposite 1→ 5→ 8→ 4→ 2→ 6→ 7→ 3 26

Notice that we cannot assign opposite cities as defined in Eq. 4.1 if n is

odd. If we follow the opposite circle (Fig. 14) in an odd-length cycle, the opposite

point would end up being between two cities. Then, the CW or CCW option

would specify which direction to travel around the circle to find the opposite

city.

One way of implementing CW opposition in odd-length graphs is to add

an auxiliary node to the end of the path to force the city count to an even num-

ber. We then calculate the CW opposite of the tour and remove the auxiliary
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city from the end of tour. This procedure yields the same result as following

the opposite circle in the CW direction to find the opposite city.

Algorithm 8 lists the pseudocode for generating the CW opposite path for

even- and odd-length TSP cycles. In this algorithm, we define the middle node

to be the reflection point, rp, calculate opposite cities based on rp and link every

city to its opposite. As future work, different reflection points can be selected to

create different levels of opposition, analogous to x̂qo and x̂qr in the continuous

domain.

Algorithm 8 CW opposite cycle
1: procedure CW OPPOSITION(n) ▷ n is the number of nodes

2: if n is odd then

3: v = n+ 1

4: else n is even

5: v = n

6: end if

7: rp =
v
2

▷ rp is the reflection point

8: idx = 1

9: while vi ≤ rp do

10: Oidx = vi ▷ O is the opposite cycle

11: Oidx+1 = vi + rp

12: idx = idx+ 2

13: end while

14: if n is odd then

15: Remove last node from O

16: end if

17: return O

18: end procedure
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4.3 Combinatorial Biogeography-based Optimiza-

tion

To solve an optimization problem in a continuous domain, we search for

the best solution that exists within a given domain. Combinatorial problems,

such as the ones discussed in this chapter, are ordering type problems. We

are given a list of all vertices that must be part of the solution and we are to

find the best sequence of these vertices that will minimize the cost function.

In this chapter, we follow Du’s TSP migration pattern which is inspired by the

inver-over operator [186].

In the spirit of BBO, all the islands are assigned emigration and immi-

gration rates based on their fitness. We then perform roulette wheel to select

an immigrating and an emigrating island, Ii and Ie, and randomly choose a

city in the immigrating island to be our migration point, Mp. Next, we seek

the migration point in the emigrating island and locate the adjacent vertex as

the flipping point, Fp. A new island is created from the immigrating island by

flipping the sequence of vertices between Mp and Fp. Algorithm 9 demonstrates

the pseudocode for combinatorial BBO.

Algorithm 9 Combinatorial BBO migration
1: procedure MIGRATION(Ii, Ie)

2: Mp = rand(Ii(city)) ▷ Random migration point

3: Fp = Ie(Mp + 1) ▷ Flip point is adjacent to Mp

4: Inew =Flip Ii(Mp + 1 : Fc)

5: return Inew

6: end procedure

Algorithm 9 can be illustrated with the following example. Let the ran-

domly selected migration point be Mp = 3 and immigrating and emigrating
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islands be

Ii = [1→ 3Mp → 4→ 6→ 2→ 5]

Ie = [6→ 4→ 3→ 2Fp → 1→ 5]

Considering that in Ie,Mp is followed by 2, Fp = 2. We then flip the cities

between Mp and Fp in Ii to follow the same sequence from Ie and obtain

Inew = [1→ 3Mp → 2Fp → 6→ 4→ 5]

4.4 Experimental Results

All benchmark problems for vertex coloring and traveling salesman prob-

lems, are simulated in MATLAB R⃝ with the settings listed in Table XXIX. The

tabulated results are the best findings over 20 independent Monte Carlo simu-

lations at the end of 100 generations.

Table XXIX. Simulation settings for graph-coloring problems.

Variable Value

Population size 50

Generation limit 100

Number of elites 3

Monte Carlo runs 20

4.4.1 Vertex Coloring

We selected vertex coloring [187] as our combinatorial benchmark be-

cause it is the most popular graph-coloring problem. Furthermore, other col-

oring problems can be transformed into vertex coloring. Graph-coloring has

many real-world applications related to scheduling including register alloca-

tion [188], wireless network testing [189] and final exam timetables at univer-

sities [190].
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In vertex coloring, we are giving a a graph G(V,E) denoting a list of

countries on a map (vertices) and their neighbors (edges). The neighboring

cities are represented as vertices that are linked with an edge. Connected

vertices cannot share the same color. The goal is to find the minimum number

of colors needed to color the vertices. This number is denoted as the chromatic

number, χ(G). Vertex coloring is an NP-complete problem.

Fig. 15 illustrates a 3-color graph-coloring problem and its solution. In

this problem, there are eight countries (vertices) and 13 connections (edges).

The minimum number of colors needed is χ(G) = 3.

Figure 15. Example of a three-color map with eight vertices and 13 edges. The figure

on the right is the properly colored map.

Various evolutionary approaches have been created to solve the graph-

coloring problem [191, 192, 193]. Our method is a hybrid between an evolution-

ary algorithm (BBO) and the greedy algorithm described in Algorithm 11. The

role of BBO is to sort the list of countries and to provide this re-ordered list to

the greedy algorithm which quickly assigns a color to each country. This simple

methodology does not guarantee that an optimal solution is found, but it stores

the vertices as a list so that open-path opposition can be easily applied.

Each BBO individual in the population stores a list of vertices as its

solution features (islands). Vertices are rearranged from one generation to the

next and conveyed to the greedy algorithm to minimize the chromatic number.

Algorithm 10 outlines the hybrid BBO/Greedy algorithm.
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Algorithm 10 Vertex coloring with BBO
1: procedure BBO VERTEX(V,E)

2: Initialize population by shuffling the order of vertices

3: while Generation count is not reached do

4: BBO migration for each individual

5: Cost function calls Greedy Vertex (Algorithm 11)

6: end while

7: end procedure

The goal of the greedy algorithm is to quickly assign a valid color to

each country based on the order of vertices generated by BBO. Algorithm 11

presents the pseudocode for the greedy vertex coloring algorithm.

Algorithm 11 Greedy vertex coloring
1: procedure GREEDY VERTEX(V,E)

2: for Each vertex do

3: Find all of its neighbors

4: Find the colors of all the neighbors

5: Assign the smallest available color index not assigned to a neighbor

6: end for

7: return number of colors

8: end procedure

Table XXX lists the benchmark problems borrowed from [194] which are

assembled from various resources, including [195, 191, 196]. The table lists

the number of vertices and edges for each problem along with the chromatic

number, χ(G), if one was available.
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Table XXX. List of benchmark problems along with their optimal solution for vertex

coloring. "NA" indicates not available (i.e., not known).

Benchmark χ(G) # Vertices # Edges

anna 11 138 493

david 11 87 406

DSJC125.1 NA 125 1472

DSJR500.1 NA 500 7110

games120 9 120 638

huck 11 74 301

le450.5a 5 450 5714

miles750 31 128 2113

myciel3 4 11 20

myciel4 5 23 71

myciel5 6 47 236

myciel6 7 95 755

queen10.10 NA 100 2940

queen11.11 11 121 3960

queen5.5 5 25 160

queen6.6 7 36 290

queen7.7 7 49 476

Simulation results for graph-coloring benchmarks are depicted in Ta-

ble XXXI. These are the best results obtained from each algorithm after 20 in-

dependent Monte Carlo simulations. We note that BBO augmented with open-

path opposition (BBO/OPO) performs no worse than BBO. BBO/OPO achieved

a better minimum than BBO for three of the benchmark problems and both

algorithms reached the optimal solution for 6 of the problems.

BBO/OPO is a hybrid between BBO and a greedy algorithm and thus,

BBO migration might not have been as effective as it could. As future work,
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BBO/OPO can be restructured to solve the graph-coloring problem without the

help of the greedy algorithm.

Table XXXI. Best results obtained by BBO and BBO/OPO (open-path opposition) al-

gorithms after 100 generations for graph-coloring problems.

Benchmark BBO BBO/OPO

anna 11 11

david 11 11

DSJC125.1 11 11

DSJR500.1 19 19

games120 11 11

huck 11 11

le450.5a 31 30

miles750 35 35

myciel3 4 4

myciel4 5 5

myciel5 6 6

myciel6 12 10

queen10.10 22 22

queen11.11 26 26

queen5.5 7 7

queen6.6 10 9

queen7.7 13 13

4.4.2 Traveling Salesman Problem

The traveling salesman problem (TSP) [197] is a well-known closed path

combinatorial problem. The TSP is classified as a NP-hard problem and cur-

rently there is no polynomial-time algorithm that can guarantee an optimal

solution. In the TSP, we are given a list of cities and their coordinates. We
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sort this list to minimize the length of the path traveled while visiting each

city only once and returning to the starting city. This problem is based on the

challenge faced by the traveling salesman who tries to find the shortest route

which would allow him to visit all the cities once before returning to the de-

parture city. The TSP represents many real-world applications such as vehicle

routing (i.e., for postal services or buses) [198, 199, 200], and printed circuit

board (PCB) drilling problems [201, 202]. For instance, to manufacture a PCB,

tens of thousands of holes must be drilled to place components. The solution of

the TSP, where the cities represent the holes, would portray the path the drill

must follow from one hole to the next.

In this section, we will focus solely on the symmetric traveling salesman

problem where the distance between two nodes is identical when traveling from

either direction. The set of TSP benchmark problems employed are borrowed

from TSPLIB [203]. Table XXXII lists these benchmark problems, their di-

mensions and minimum costs. For our simulations, we chose to implement

clockwise (CW) circular opposition, Table XXVIII, as our opposite algorithm.
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Table XXXII. Symmetric TSP benchmark problems and their optimal results as

posted by TSPLIB [203].

Benchmark Optimal Solution Dimension

att532 27686 532

berlin52 7542 52

bier127 118282 127

ch130 6110 130

d18512 645238 18512

gr202 40160 202

kroA150 26524 150

kroA200 29368 200

kroC100 20749 100

lin105 14379 105

lin318 42029 318

p654 34643 654

rat575 6773 575

st70 675 70

usa13509 19982859 13509

vm1084 239297 1084

The best results obtained from both algorithms is represented in Ta-

ble XXXIII along with their geometric mean. BBO with CW circular opposi-

tion, BBO/CO, is able to find a shorter route for 14 of the benchmark problems

while BBO had a better route for 1 problem.
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Table XXXIII. Best results obtained by BBO and BBO with circular opposition

(BBO/CO) for symmetric TSP benchmark problems.

Benchmark BBO BBO/CO

att532 1413346 1377743

berlin52 14493 14493

bier127 455327 444256

ch130 31226 31955

d18512 58765326 58590744

gr202 2467 2443

kroA150 175305 168672

kroA200 253296 244031

kroC100 98980 95513

lin105 72946 72162

lin318 481978 480803

p654 1765633 1742126

rat575 99960 98846

st70 1956 1880

usa13509 2123405375 2115346146

vm1084 7918373 7891132

Geometric Mean 343679 338639

4.5 Conclusions on Combinatorics

In this section, we introduced open-path and circular opposition tech-

niques to assist our evolutionary algorithm, BBO, to solve combinatorial opti-

mization problems. The objective of both opposition methods was to create an

opposite path by maximizing the proximity between adjacent nodes. The open-

path opposition was developed for open-ended combinatorics and was tested on
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17 graph-coloring problems. BBO was able to reach the optimal solution in 6

of these benchmarks without the aid of opposition, while open-path opposition

surpassed BBO on three of the remaining problems.

The circular opposition technique was developed for graphs where the

last node was connected to the first one. The circular opposition was tested on

16 traveling salesman problems and was found to outperform standard BBO in

14 of them.

Further research could focus on combining the proposed methods with

other EAs for combinatorial opposition and exploring different degrees of op-

position for open- and closed-path combinatorics. Also, future research efforts

could concentrate on removing BBO’s dependency on the greedy algorithm in

the graph-coloring problem. Effects of such modifications on open-path opposi-

tion’s performance should be investigated.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

T HIS section provides concluding remarks as well as direction for future

work. Section 5.1 discusses the extension of the mathematical proofs to

higher dimensions. Section 5.2 proposes a method to handle constraints with

BBO and Section 5.3 explores possible extensions to BBO inspired by biogeog-

raphy and coevolution.

Evolutionary algorithms are tools for heuristically solving global opti-

mization problems. As new approaches are developed, their success is com-

monly measured based on empirical analysis. In this research, we developed

the mathematical proofs that allow us to quantify the effectiveness of employ-

ing opposite points in EAs. We derived the probability that the distance be-

tween an OBL point and the solution is less than the distance between an EA

solution candidate and the solution. Our investigations for three OBL algo-

rithms (opposition, quasi-opposition and quasi-reflection) showed that quasi-

reflection is the most likely OBL method to be closer to the solution of an opti-

mization problem.

We also modified the quasi-reflection algorithm to allow the opposition

amount to be a function of the solution candidate’s ranking. This algorithm is

named fitness-weighted quasi-reflection. We obtained the probability of x̂Krbeing
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closer than an EA individual to the solution as a function of the reflection

weight. We then derived the expected distance to the solution and concluded

that the probability of being closer to the solution and the expected distance to

the solution both decrease with the reflection weight.

After the theoretical analysis, we compared the performance of these

OBL algorithms on three popular EAs (GA, DE, BBO) through empirical stud-

ies. As benchmark problems, we selected seven space trajectory problems pro-

vided by the ESA, as well as 22 well-known problems from the literature, and

showed the statistical significance of our results. For lower dimensional prob-

lems, we found that compared to BBO, BBO/x̂o , reduces the number of function

calls necessary by 96.5% while providing a higher success rate. Inspection of

the variable-dimensional benchmarks suggested that oppositional BBO algo-

rithms failed to converge to the exact solution even though they approach it

closely. By limiting opposition to first 40 generations for BBO/x̂qr , we reduced

its number of function calls by 31% and increased its average success rate by

4% . Thus, for future work, a more intelligent oppositional jumping-rate algo-

rithm needs to established. For the ESA problems, we found that, on average,

none of the original EAs (GA, DE or BBO) could outperform any of the opposi-

tional algorithms.

5.1 Opposition Probabilities in Higher Dimen-

sions

In Chapter 2, we defined opposite points in one-dimensional space. Then,

we derived the probability of the opposite of a point being closer than the point

itself to the solution. We extended this proof for the quasi-opposite points,

again for one-dimensional problems. However, since meta-heuristic algorithms,

such as OBBO, are generally employed for multidimensional problems, we need

to show the validity of our results in higher dimensions.
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In Fig. 16, we present the probabilities of success as the problem dimen-

sion increases. Figure legends have been abbreviated for clarification purposes.

Pr [x̂o, x̂] is shorthand for Pr [|x̂o − x| < |x̂− x|] or the probability of x̂o being

closer than x̂ to the solution. These results are obtained using a MATLAB

simulation as as described in Algorithm 12.

Algorithm 12 Pseudocode for simulating the high dimensional probabilities of

the oppositional algorithms
1: for dimensions between 1 to 100 do

2: for 201 uniformly distributed solution candidates, x ∈ [a, b] do

3: Randomly select 5000 points as EA individuals, x̂

4: Compute their corresponding opposite points, x̂o , x̂qo and x̂qr , as de-

fined in Chapter II

5: Calculate the distances between each point and the solution

6: if the opposite point is closer than x̂ to x then

7: Increment counter

8: end if

9: end for

10: end for

According to these findings, for a 20-dimensional problem, such as the

ones presented in Section 3.2, the quasi-reflected estimate has a 91% probabil-

ity of being closer than the EA individual to the solution. More importantly,

Fig. 16 demonstrates that the effectiveness of quasi populations increases with

the problem dimension.

Based on Fig. 16 and the empirical results presented on Section 3.3, con-

jecture that the theorems presented in Section 2.5 are qualitatively valid in

higher dimensions. However, future research can focus on extending the math-

ematical proofs to support these findings.
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Pr [x̂qr , x̂] = Pr [x̂qo , x̂o ]
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Pr [x̂o , x̂] = Pr [x̂qr , x̂qo ]

Figure 16. Effects of dimension on the probabilities of various opposition methods.

Pr [x̂qr, x̂]) is the probability that x̂qr is closer to the solution than x̂ . Other

legends can be read similarly.

5.2 Constrained Optimization

Nonlinear programming problems (NLP) with numerous constraints are

complicated and [204] argues that it is impossible to develop a single determin-

istic method that would work effectively for all NLPs. He argues that such a

study would concludes in performing exhaustive search which is computation-

ally expensive. Therefore, meta-heuristic search algorithms, such as BBO, are

commonly employed in solving constrained optimization problems.

A modified version of BBO, blended BBO, has been employed for con-

strained optimization in [158]. One generation of blended BBO where α ∈ [0, 1]

is the blending parameter is outlined in Algorithm 13.
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Algorithm 13 Pseudocode for blended migration
1: for each solution candidate Si do

2: for each parameter p do

3: Select an immigrating variable, Si(p)

4: Select an emigrating variable, Sk(p)

5: Si(p)← αSi(p) + (1− α)Sk(p)

6: end for

7: end for

The definition for constrained optimization is the following. Given the

objective function f , feasible region F and search space S, our goal is to

optimize f(x⃗), s.t. x⃗ = (x1, . . . , xn) ∈ ℜn

and x⃗ ∈ F ⊆ S

where the feasible region has m constraints. q of these constraints are inequal-

ity constraints and the rest of them are equality constraints:

gj(x⃗) ≤ 0, for j = (1, . . . , q)

hj(x⃗) = 0, for j = (q + 1, . . . ,m)

These equality constraints are commonly rewritten as inequality constraints

hj(x⃗) ≤ ϵ and hj(x⃗) ≥ −ϵ

for small ϵ > 0.

A comprehensive survey of existing constrained optimization methods is

presented in [205]. A large number of real-world problems involve constraints

and these constraints are generally handled by penalizing the infeasible solu-

tions based on the distance from the feasible region. However other methods

such as decoders and separation of feasible and infeasible solutions also exist

in the literature. A future research goal is to select one these methods and

combine it with oppositional theory to create a new constraint handling algo-

rithm. We could then study the effects of oppositional BBO on constrained

optimization problems and compare with existing methods.
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5.3 Biogeographical Extensions

BBO is inspired by biogeography and can be extended by its discoveries.

We can acquire motivations from biogeography, such as the effects of island

isolation, island size, the types of islands created or coevolution (for multi-

objective optimization).

In future work, I would like to focus on a more specific type of ecology:

island biogeography. From the point of view of species, islands have a special

place in biogeography. They host species that are endemic, native to the island

or archipelago and exist exclusively on their native land and provide a lot more

species than mainlands proportional to their size [206]. Because of these char-

acteristics they are referred as “biodiversity hotspots". Since BBO models the

migration of species, we can study island biogeography and supplement BBO

with the developments in island biogeography.

In island biogeography, islands are classified in two categories based on

their formation [207]. Continental islands are pieces of mainland that get iso-

lated, so they already accommodate species before they are formed. The other

type of islands are called oceanic. Oceanic islands are formed by the elevation

of the ocean floor and they are devoid of any species when they are formed. As

time passes, continental islands fail to retain their original number of species

whereas the oceanic islands gain species. In BBO, all islands (candidate solu-

tions) are created in the same manner at the beginning of the program. One

way to implement the differences in island formation in BBO could be to create

inhabited, oceanic islands during optimization and give them time to evolve

their own endemic species. Also, we can create new continental islands by sep-

arating islands from the main population. These new continental islands can

contain a subset of species from their “mainland".

Other dichotomies in island speciation are related to the age, size and

isolation of the islands. Evolution requires isolation and extensive periods of

time [207] so an island might host a larger number of species as it gets older.
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In BBO this idea can be integrated with the immigration and emigration func-

tions. For example, as islands get more mature, their emigration rate can in-

crease. On the other hand, a newly formed island should be more open to

immigration even if it has a high fitness value.

Another effect that helps determine the species richness on an island is

the area of an island. The number of species hosted by an island is directly

proportional to the island size [208]. The last effect that we examine is called

the distance effect. An example is presented in [209] where the author com-

pares the number of species on islands of equivalent area and finds that the

further the island is from the mainland, the fewer species it hosts. According

his results, an island 2000 km away from the mainland is expected to have

half the species found on an island near the mainland. Thus, immigration

rates are inversely proportional to the island’s isolation. In order to apply size

and isolation affects in BBO, further research must be conducted to develop

emergent/adaptive species (independent solution variables) where the number

of individuals vary during the program.

Furthermore, future work can focus on coevolution where multiple sets

of populations evolve independently. Individuals in these populations can coop-

erate and compete with each other. Definitions presented for simulated cooper-

ative coevolution by different authors are conflicting. We examine Potter and

De Jong’s model [210] because, like BBO, it is based on the evolution of species.

In this model, each variable in a given problem is represented by a different

species and each species evolves separately in its own population. After each

iteration, a group of representatives are selected from their own population to

form solution candidates to be evaluated. This scheme motivates the species

to compete with each other in their own population to be selected as repre-

sentatives and it encourages different species to cooperate to survive. Fig. 17

illustrates an iteration of the cooperative coevolutionary evolution [211]. His

simulations showed that coevolution reduces computational costs. Also, due

to the modularity of the algorithm, it would be a strong candidate for paral-
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lel programming. The coevolution theory can be also be combined with the

archipelago algorithm presented by [212]. An OBL approach to coevolution is

presented in [213] where the authors find a Pareto front for multi-objective op-

timization. They implement opposition in the competitive level by creating a

set of opponents to compete against the representatives.
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Figure 17. Potter and De Jong’s model for cooperative coevolution [211]. Reprinted

by permission of MIT Press Journals. The figure illustrates a problem with

three variables split into three independent populations. Each population

takes a turn to select representatives that form individuals with the help of

other populations.
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Another recent advance in coevolution is proposed by ESA’s advanced

concepts team which allows parallel programming on multi-core processors.

Their approach is named the generalized island-model (GIM) paradigm [214].

GIM enables evolutionary and non-heuristic optimization algorithms to co-

operate with each other to solve constrained/un-constrained, single/multiple-

objective global optimization problems. These algorithms can form various

topologies and asynchronously exchange information to accelerate their conver-

gence properties. Reference [215] illustrates an example where an archipelago

of seven islands is created where each island represents an optimization algo-

rithm. In this case, three differential evolution and three simulated annealing

instances are placed on an outer ring while subplex, a local optimization algo-

rithm [216], is in the center of a wheel rim topology as shown in Fig. 18. Each

island is executed on a separate thread; thus, each optimization algorithm can

run on its own processor. A python/C++ implementation of GIM called PyGMO

is made available at [217]. PyGMO gives the user the ability to combine vari-

ous algorithms depending on the problem and processing power. I believe such

implementations, although hard to implement, are the future of global opti-

mization.
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Figure 18. An archipelago of seven islands connected with wheel rim topology as dis-

cussed in [215]. Each island represents a solver: differential evolution, sim-

ulated annealing or subplex. The islands are fully and bi-directionally con-

nected.
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APPENDIX A

PROOFS

A.1 Quasi-Opposition vs. Opposite

Theorem 2.2.1 Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-opposite point is closer than the opposite

of an EA individual to the solution is 11/16.

Proof. Given the scenario in Fig. 3 where a and b are the end points of the

solution domain and c is the center of this domain, the solution x is located

in one of these four sections: (A) x ∈ [a, x̂], (B) x ∈ [x̂, c], (C) x ∈ [c, x̂o] or (D)

x ∈ [x̂o, b]. We examine each scenario separately in Cases A, B, C and D below.

Case (A)

x ∈ [a, x̂] as illustrated in Fig. 19. From Fig. 19, we note that x̂qo is always

closer than x̂o to solution, x. Hence,

Pr [ | x̂qo − x | < | x̂o − x | ] = 1 for x ∈ [a, x̂] (A.1)
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a bcx̂ x̂o

x̂qo︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 19. Solution domain if x ∈ [a, x̂]

Case (B)

x ∈ [x̂, c] as illustrated in Fig. 20. x is still always closer than x̂o to x̂qo.

Hence,

Pr [ | x̂qo − x | < | x̂o − x | ] = 1 for x ∈ [x̂, c] (A.2)

a bcx̂ x̂o

x̂qo︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 20. Solution domain if x ∈ [x̂, c]

Case (C)

x ∈ [c, x̂o] as illustrated in Fig. 21. From Fig. 21, we see that x̂o is always

greater than x, hence we can remove the absolute value in | x̂o − x | :

Pr[ | x̂qo − x | < | x̂o − x | ] = Pr [ | x̂qo − x | < x̂o − x] for x ∈ [c, x̂o] (A.3)

We can now employ the total probability theorem from [164] (Eq. 2-41) to

rewrite Eq. A.3 as:

Pr [ | x̂qo − x | < x̂o − x] = Pr [ | x̂qo − x | < x̂o − x | x̂qo − x < 0]×

Pr [x̂qo − x < 0] +

Pr [ | x̂qo − x | < x̂o − x | x̂qo − x > 0]×

Pr [x̂qo − x > 0] (A.4)
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Eliminating the remaining absolute values in | x̂qo − x | in (A.4) and combin-

ing similar terms yields:

Pr [ | x̂qo − x | < x̂o − x] = Pr [x̂qo > 2x− x̂o | x̂qo < x] Pr[x̂qo < x] +

Pr [x̂qo < x̂o | x̂qo > x] Pr [x̂qo > x] (A.5)

a bcx̂ x̂o

x, x̂qo︷ ︸︸ ︷

Figure 21. Solution domain if x ∈ [c, x̂o]

We solve Eq. (A.5) in three parts:

1. If we assume that x and x̂qo have uniform distribution in [c, x̂o], then

Pr[x̂qo < x] = Pr[x̂qo > x] = 1
2
.

2. From Fig. 21, note that Pr[x̂qo < x̂o | x̂qo > x] = 1.

3. We can solve the first of the two expressions on the right side of Equa-

tion (A.5) as

Pr[x̂qo > 2x− x̂o | x̂qo < x] Pr [x̂qo < x] =
Pr [x̂qo > 2x− x̂o, x̂qo < x]

Pr [x̂qo < x]
Pr [x̂qo < x]

=
Pr [2x− x̂o < x̂qo < x]

Pr [x̂qo < x]
Pr [x̂qo < x]

= Pr [2x− x̂o < x̂qo < x] (A.6)

The probability region for this inequality is shown in Fig. 22.
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x

x̂qo

x = x̂qo

x̂qo = 2x− x̂o

x̂o
x̂o/2

x̂o

0

Figure 22. Integration region of 2x− x̂o < x̂qo < x

Suppose that the center of the domain is 0; then based on Fig. 22, Eq. (A.6)

can be solved as

Pr [2x− x̂o < x̂qo < x] =

¨
f(x, x̂qo)dxdx̂qo

=

ˆ x̂o

0

ˆ x̂qo+x̂o
2

x̂qo

f(x)f(x̂qo)dxdx̂qo

=

ˆ x̂o

0

ˆ x̂qo+x̂o
2

x̂qo

1

x̂2
o

dxdx̂qo

=
1

2x̂2
o

ˆ x̂o

0

x̂o − x̂qo dx̂qo

=
1

2x̂2
o

[
x̂2
o −

x̂2
o

2

]
=

1

4
(A.7)

where f(x, x̂qo) is the joint density function of x and x̂qo . We can now solve

Equation (A.3):

Pr [ | x̂qo − x | < | x̂o − x | ] = 1

4
+ (1)

(
1

2

)
=

3

4
for x ∈ [c, x̂o] (A.8)

Case (D)

x ∈ [x̂o, b] as illustrated in Fig. 23. From Fig. 23, we see that x̂o is always

closer than x̂qo to x. Hence,

Pr [ | x̂qo − x | < | x̂o − x | ] = 0 for x ∈ [x̂o, b] (A.9)
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a bcx̂ x̂o

x̂qo︷ ︸︸ ︷ x︷ ︸︸ ︷

Figure 23. Solution domain if x ∈ [x̂o, b]

Conditional Probability of Quasi-Opposition vs. Opposite

Equations (A.1), (A.2), (A.8), and (A.9) can be combined to calculate the

conditional probability of the quasi-opposition point being closer than the op-

posite point to the solution in the domain [a, b]:

Pr
[
| x̂qo − x | < | x̂o − x |

∣∣ x̂o

]
=

1(x̂− a) + 1(c− x̂) +
3

4
(x̂o − c) + 0(b− x̂o)

b− a

=

1

4
c− a+

3

4
x̂o

b− a
(A.10)

Since c = (a+ b)/2, we can rewrite Eq. (A.10) as

Pr
[
| x̂qo − x | < | x̂o − x |

∣∣ x̂o

]
=

1

8
(a+ b)− a+

3

4
x̂o

b− a
(A.11)

Assuming that the domain is symmetric (that is b = −a), Eq. (A.11) becomes

Pr
[
| x̂qo − x | < | x̂o − x |

∣∣ x̂o

]
=

b+
3

4
x̂o

2b
for x ∈ [a, b] (A.12)

Probability of Quasi-Opposition vs. Opposite

We now take the previous results to prove Theorem 2.2.1. Let x̂o have a

uniform distribution; we can then calculate the probability as

Pr [ | x̂qo − x | < | x̂o − x | ] =
ˆ b

−b

b+
3

4
x̂o

2b
f(x̂o)dx̂o (A.13)

Since x̂o is uniformly distributed between 0 and b, that is, x̂o ∼ U[0, b],
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Eq. (A.13) becomes

Pr [ | x̂qo − x | < | x̂o − x | ] = 1

b

ˆ b

0

b+
3

4
x̂o

2b
dx̂o

=
3
16
x̂o(x̂o +

16
6
b)

b2

∣∣∣∣b
0

(A.14)

=
11

16

This gives the result stated in Theorem 2.2.1

A.2 Quasi-Reflection vs. Opposite

Theorem 2.2.2 Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-reflected point is closer than the opposite

of an EA individual to the solution is 9/16.

Proof. We compute the probability of x̂qr being closer than x̂o to the solution, x,

and the expected value of this probability under certain conditions.

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷ x̂qo︷ ︸︸ ︷
x̂o+c
2

Figure 24. Opposite points defined in domain [a, b]. c is the center of the domain and

x̂ is an EA individual, generated by an EA. x̂o is the opposite of x̂, and x̂qo and

x̂qr are the quasi-opposite and quasi-reflected points, respectively.

Given the scenario in Fig. 24 where a and b are the end points of the

solution domain and c is the center of this domain, the solution x is in one of

these five sections: (A) x ∈ [a, x̂], (B) x ∈ [x̂, c], (C) x ∈ [c, x̂o+c
2

], (D) x ∈ [ x̂o+c
2

, x̂o]

or (E) x ∈ [x̂o, b]. We examine each scenario separately in Cases A, B, C, D and

E below.
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Case (A)

x ∈ [a, x̂] as illustrated in Fig. 25. From Fig. 25, we note that x̂qr is always

closer than x̂o to solution, x. Hence,

Pr [ | x̂qr − x | < | x̂o − x | ] = 1 for x ∈ [a, x̂] (A.15)

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 25. Solution domain if x ∈ [a, x̂]

Case (B)

x ∈ [x̂, c] as illustrated in Fig. 26. x is always closer to x̂qr than x̂o. Hence,

Pr [ | x̂qr − x | < | x̂o − x | ] = 1 for x ∈ [x̂, c] (A.16)

a bcx̂ x̂o

x, x̂qr︷ ︸︸ ︷

Figure 26. Solution domain if x ∈ [x̂, c]

Case (C)

x ∈ [c, x̂o] as illustrated in Fig. 27. We eliminate absolute value signs,

knowing that x̂qr < x < x̂o:

Pr [ | x̂qr − x | < | x̂o − x | ] = Pr [2x− x̂o < x̂qr] for x ∈ [c, x̂o] (A.17)

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷ x︷ ︸︸ ︷

Figure 27. Solution domain if x ∈ [c, x̂o]
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The probability region for this inequality is shown in Fig. 28.

x

x̂qr

x̂qr = 2x− x̂o

x̂o
x̂o/2

x̂

0

Figure 28. Integration region of 2x− x̂o < x̂qr

Once again, we suppose that the end points of the solution domain are

equal in magnitude, or b = −a. Thus, x̂o = −x̂. We can solve Eq. (A.17) based

on Fig. 28:

Pr [2x− x̂o < x̂qr] =

¨
f(x, x̂qr)dxdx̂qr

=

ˆ 0

−x̂o

ˆ x̂qr+x̂o
2

0

f(x)f(x̂qr)dxdx̂qr

=

ˆ 0

−x̂o

ˆ x̂qr+x̂o
2

0

1

x̂2
o

dxdx̂qr

=
1

x̂2
o

ˆ 0

−x̂o

x̂qr + x̂o

2
dxdx̂qr

=
1

2x̂2
o

[
x̂2
o −

x̂2
o

2

]
=

1

4
(A.18)

Case (D)

x ∈ [x̂o, b] as illustrated in Fig. 29. From Fig. 29, we see that x̂o is always

closer than x̂qr to x. Hence,

Pr [ | x̂qr − x | < | x̂o − x | ] = 0 for x ∈ [x̂o, b] (A.19)
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a bcx̂ x̂o

x̂qr︷ ︸︸ ︷ x︷ ︸︸ ︷

Figure 29. x̂qr solution domain, x ∈ [x̂o, b]

Conditional Probability of Quasi-Reflection vs. Opposite

Equations (A.15), (A.16), (A.18) and (A.19) can be combined to calcu-

late the probability of the quasi-opposition point being closer than the opposite

point to the solution in the domain [a, b]:

Pr
[
| x̂qr − x | < | x̂o − x |

∣∣ x̂o

]
=

1(x̂− a) + 1(c− x̂) +
1

4
(x̂o − c) + 0(b− x̂o)

b− a

=
b+

1

4
x̂o

2b
for x ∈ [a, b] (A.20)

Probability of Quasi-Reflection vs. Opposite

We now take the previous results to prove Theorem 2.2.2. Let x̂o have a

uniform distribution; we can then calculate the probability as

Pr [ | x̂qr − x | < | x̂o − x | ] = 1

b

ˆ b

−b

b+
1

4
x̂o

2b
f(x̂o)dx̂o (A.21)

and since x̂o ∈ [0, b], Eq. (A.21) becomes

Pr [ | x̂qo − x | < | x̂o − x | ] =
1

b

ˆ b

0

b+
1

4
x̂o

2b
dx̂o

=
9

16
for x ∈ [x̂o, b] (A.22)

This gives the result stated in Theorem 2.2.2

A.3 Quasi-Opposition vs. EA Individual

Theorem 2.2.3 Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-
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eraged over all x and all x̂ that a quasi-opposite point is closer than an EA

individual to the solution is 9/16.

Proof. Given the scenario in Fig. 3 where a and b are the end points of the

solution domain and c is the center of this domain, there are four possibilities

for the solution, x: (A) x ∈ [a, x̂], (B) x ∈ [x̂, c], (C) x ∈ [c, x̂o] or (D) x ∈ [x̂o, b]. We

examine each scenario separately in Cases A, B, C and D below.

Case (A)

x ∈ [a, x̂] as illustrated in Fig. 30. From Fig. 30, we note that x̂ is always

closer than x̂qo to solution, x. Hence, when x ∈ [a, x̂], the probability that the

quasi-opposition point is closer than the opposite point to the solution is

Pr [ | x̂qo − x | < | x̂− x | ] = 0 for x ∈ [a, x̂] (A.23)

Also, note that this case is a reflection of Case D from Section A.2.

a bcx̂ x̂o

x̂qo︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 30. Solution domain if x ∈ [a, x̂]

Case (B)

x ∈ [x̂, c] as illustrated in Fig. 31. From Fig. 31, we note that x̂ < x < x̂qo.

We then eliminate the absolute value signs:

Pr [ | x̂qo − x | < | x̂− x | ] = Pr [x̂qo < 2x− x̂o] for x ∈ [x̂, c] (A.24)

a bcx̂ x̂o

x̂qo︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 31. Solution domain if x ∈ [x̂, x̂+c
2 ]
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The probability region for this inequality is shown in Fig. 32.

x

x̂qo

x̂qo = 2x− x̂

x̂ x̂/2

−x̂

0

Figure 32. Integration region of x̂qo < 2x− x̂

Assuming that center of the solution domain c is 0 and x̂qo and x are

uniformly distributed, we can solve Eq. A.24 using Fig. 32:

Pr [x̂qo < 2x− x̂] =

¨
f(x, x̂qo)dxdx̂qo

=

ˆ −x̂

0

ˆ 0

x̂qo+x̂

2

f(x)f(x̂qo)dxdx̂qo

=

ˆ −x̂

0

ˆ 0

x̂qo+x̂

2

1

x̂2
dxdx̂qo

=
−1
x̂2

ˆ 0

−x̂o

x̂qo + x̂

2
dx̂qo

=
−1
2x̂2

[
x̂2

2
− x̂2

]
=

1

4
(A.25)

Also, note that this case is similar to Case C of Section A.2.

Cases (C) and (D)

If we look back at Section A.2, we note that x̂qr versus x̂o is the mirrored

version of x̂qo versus x̂ . Thus, Case (A) of Section A.3 is equivalent to Case (D)

of Section A.2. Table XXXIV summarizes the results of these findings.
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Solution region if Solution region if Pr

[ | x̂qo − x | < | x̂− x | ] [ | x̂qr − x | < | x̂o − x | ]

x ∈ [a, x̂] x ∈ [x̂o, b] 0

x ∈ [x̂, c] x ∈ [c, x̂o] 1/4

x ∈ [c, x̂o] x ∈ [x̂, c] 1

x ∈ [x̂o, b] x ∈ [a, x̂] 1

Table XXXIV. Similar probabilities of different opposite points: x̂qo vs. x̂ and x̂qr vs.

x̂qo

Conditional Probability of Quasi-Opposition vs. EA Indi-

vidual

We will now use the the probabilities derived in Equations (A.15), (A.16),

(A.18) and (A.19) to calculate the probability of the quasi-opposition point being

closer than the EA individual to the solution in the domain [a, b].

Pr
[
| x̂qo − x | < | x̂− x |

∣∣ x̂] = 0(x̂− a) +
1

4
(c− x̂) + 1 (x̂o − c) + 1(b− x̂o)

b− a

=
4b− 3c− x̂

4(b− a)

=
b− 1

4
x̂

2b
for x ∈ [a, b] (A.26)

Probability of Quasi-Opposition vs. EA Individual

We now take the previous results to prove Theorem 2.2.3. Let x̂ have a

uniform distribution; we can then calculate the probability as

Pr [ | x̂qo − x | < | x̂− x | ] =
ˆ b

−b

b− 1

4
x̂

2b
f(x̂)dx̂ (A.27)

108



and since x̂ ∈ [−b, 0], Eq. (A.27) becomes

Pr [ | x̂qo − x | < | x̂− x | ] = 1

b

ˆ 0

−b

b− 1

4
x̂

2b
dx̂ =

x̂(b− 1

8
x̂)

2b2

∣∣∣∣∣∣∣
0

−b

=
9

16
(A.28)

This gives the result stated in Theorem 2.2.3

A.4 Quasi-Reflection vs. EA Individual

Theorem 2.2.4 Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-reflected point is closer than an EA

individual to the solution is 11/16.

Proof. Given the scenario in Fig. 3 where a and b are the end points of the

solution domain and c is the center of this domain, there are four possibilities

for the solution, x: (A) x ∈ [a, x̂], (B) x ∈ [x̂, c], (C) x ∈ [c, x̂o] or (D) x ∈ [x̂o, b]. We

examine each scenario separately in Cases A, B, C and D below.

Case (A)

x ∈ [a, x̂] as illustrated in Fig. 33.

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 33. Solution domain if x ∈ [a, x̂]

From Fig. 33, we note that x̂ is always closer than x̂qr to solution, x.

Hence, when x ∈ [a, x̂], the probability that the quasi-reflected point is closer

than the opposite point to the solution is

Pr [ | x̂qr − x | < | x̂− x | ] = 0 for x ∈ [a, x̂] (A.29)
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Also, note that this case is similar to Case D of Section A.1.

Case (B)

x ∈ [x̂, c] as illustrated in Fig. 34.

a bcx̂ x̂o

x, x̂qr︷ ︸︸ ︷

Figure 34. Solution domain if x ∈ [x̂, c]

From Fig. 34, we note that this case is a reflection of Case C of Section A.1

shown in Fig. 21. This results in

Pr [ | x̂qr − x | < | x̂− x | ] = 3/4 for x ∈ [x̂, c] (A.30)

Cases (C) and (D)

If we look carefully at Section A.1, we realize that x̂qr versus x̂ is the

mirrored version of our analysis in Section A.1. Thus, Case (A) of Session A.4

is equivalent to Case(D) of Section A.1. Table XXXV summarizes the results of

these findings.

Solution region if Solution region if Pr

[ | x̂qr − x | < | x̂− x | ] [ | x̂qo − x | < | x̂o − x | ]

x ∈ [a, x̂] x ∈ [x̂o, b] 0

x ∈ [x̂, c] x ∈ [c, x̂o] 3/4

x ∈ [c, x̂o] x ∈ [x̂, c] 1

x ∈ [x̂o, b] x ∈ [a, x̂] 1

Table XXXV. Similar probabilities of different opposite points: x̂qr vs. x̂ and x̂qo vs.

x̂o
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Conditional Probability of Quasi-Reflection vs. EA Indi-

vidual

Equations (A.1), (A.2), (A.8) and (A.9) can be combined to calculate the

probability of the quasi-reflected point being closer than the EA individual to

the solution in the domain [a, b]:

Pr
[
| x̂qr − x | < | x̂− x |

∣∣ x̂] = 0(x̂− a) +
3

4
(c− x̂) + 1 (x̂o − c) + 1(b− x̂o)

b− a

=
4b− c− 3x̂

4(b− a)

=
b− 3

4
x̂

2b
(A.31)

Probability of Quasi-Reflection vs. EA Individual

We now take the previous results to prove Theorem 2.2.4. Let x̂ have a

uniform distribution; we can calculate the probability as

Pr [ | x̂qr − x | < | x̂− x | ] =
ˆ b

−b

b− 3

4
x̂

2b
f(x̂)dx̂ (A.32)

Since x̂ ∈ [−b, 0], Eq. (A.32) becomes

Pr [ | x̂qr − x | < | x̂− x | ] = 1

b

ˆ 0

−b

b− 1

2
x̂

2b
dx̂ =

x̂(8b− 3x̂)

16b2

∣∣∣∣∣
0

−b

=
11

16
(A.33)

This gives the result stated in Theorem 2.2.4

A.5 Probabilistic Analysis of Fitness-Weighted

Quasi-Reflection

Theorem 2.3.1 Assume that the solution of an optimization problem is uni-

formly distributed in a one-dimensional search space. Then the probability av-

eraged over all x and all x̂ that a quasi-reflected point (as a function of the
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reflection weight, K) is closer than an EA individual to the solution is (6−K)/8

when K ∈ [0, 1].

Proof. Given the scenario in Fig. 35 where a and b are the end points of the

solution domain and c is the center of this domain, the solution, x, will always

be in one of these four segments: (A) x ∈ [a, x̂], (B) x ∈ [x̂, c], (C) x ∈ [c, x̂o] or (D)

x ∈ [x̂o, b]. We examine each scenario separately in Cases A, B, C and D below.

a bcx̂ x̂o

x̂Kr︷ ︸︸ ︷ x̂qo︷ ︸︸ ︷

Figure 35. Opposite points defined in domain [a, b]. c is the center of the domain and

x̂ is an EA individual. x̂o is the opposite of x̂, and x̂qo and x̂Kr are the quasi-

opposite and quasi-reflected points, respectively.

A.5.1 Case (A)

For this case, x ∈ [a, x̂] as shown in Fig. 36. From Fig. 36, we note that x̂

is always closer than x̂Kr to solution, x. Hence, when x ∈ [a, x̂], the probability

that the quasi-reflected point is closer than the opposite point to the solution is

Pr [ | x̂Kr − x | < | x̂− x | ] = 0 for x ∈ [a, x̂] (A.34)

a bcx̂ x̂o

x̂Kr︷ ︸︸ ︷x︷ ︸︸ ︷

Figure 36. Solution domain if x ∈ [a, x̂]

A.5.2 Case (B)

For this case we investigate the probability if x ∈ [x̂, c] as seen in Fig. 37.
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a bcx̂ x̂o

x, x̂Kr︷ ︸︸ ︷

Figure 37. Solution domain if x ∈ [x̂, c]

Pr [ | x̂Kr − x | < | x̂− x | ] = Pr [ | x̂(1−K)− x | < | x̂− x | ] (A.35)

From Fig. 37, we note that x̂ < x. Then, Eq. A.35 can be simplified as

Pr [ | x− x̂(1−K) | < x− x̂] (A.36)

We now use the Total Probability Theorem from [164], Eq. 241, and

obtain four probabilities:

Pr [ | x− x̂(1−K) | < x− x̂] = Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) < x]×

Pr [x̂(1−K) < x] +

Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) > x]×

Pr [x̂(1−K) > x] (A.37)

The subsequent sections analyzes these four terms individually.

Case (B1)

This case involves the term Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) < x]

from Eq. A.37

Pr[| x̂−Kx̂− x| < x− x̂ | x̂(1−K) < x] = Pr[x− x̂+Kx̂ < x− x̂ | x̂(1−K) < x]

= Pr[x̂K < 0 | x̂(1−K) < x] (A.38)

Since by definition K > 0 and x̂ < 0

Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) < x] = 1 for x ∈ [x̂, c] (A.39)
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Case (B2)

This case involves the term Pr [x̂(1−K) < x] from Eq. A.37 and it is

solved in two steps. We first hold x̂ fixed and find the probability over x. Then,

we let x̂ vary and calculate the corresponding expected probability.

When x̂ is fixed and x is uniform in [x̂, 0], that is, x ∼ U [x̂, 0], we obtain:

Pr [x̂(1−K) < x] =

∞̂

x̂(1−K)

f(x)dx =

0ˆ

x̂(1−K)

−1

x̂
dx

= −1

x̂
x

∣∣∣∣0
x̂(1−K)

= 1−K (A.40)

Now, we let x̂ ∼ U [−b, 0] and calculate the expected probability:

E [Pr [x̂(1−K) < x]] =

0ˆ

−b

Pr [x > x̂(1−K)] f(x̂)dx̂

=

0ˆ

−b

(1−K)(
1

b
)dx̂ =

1−K

b
x̂

∣∣∣∣0
−b

= 1−K (A.41)

Case (B3)

Here we solve the term Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) > x] from

Eq. A.37.

Pr[ | x̂(1−K)− x | < x− x̂ | x̂(1−K) > x] =
Pr[x̂(2−K) < 2x , x̂(1−K) > x]

Pr [x̂(1−K) > x]

=
Pr
[
2−K
2

x̂ < x , x̂(1−K) > x
]

Pr [x̂(1−K) > x]

=
Pr
[
2−K
2

x̂ < x < x̂(1−K)
]

Pr [x̂(1−K) > x]
(A.42)

Eq. A.42 consists of two probabilities. The second probability is solved in

Section A.5.2. The first probability will be calculated as an expected probabil-
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ity. This will be done in two steps where we hold x̂ fixed and x ∼ U [x̂, 0]:

Pr

[
2−K

2
x̂ < x < x̂(1−K)

]
=

(1−K)x̂ˆ
2−K

2
x̂

f(x)dx =

(1−K)x̂ˆ
2−K

2
x̂

−1

x̂
dx

= −1

x̂
x

∣∣∣∣(1−K)x̂

2−K
2

x̂

= −1

x̂

[
x̂−Kx̂− x̂+

Kx̂

2

]
=

K

2
(A.43)

We let x̂ ∼ U [−b, 0] and calculate the expected probability:

E
[
Pr

[
2−K

2
x̂ < x < x̂(1−K)

]]
=

0ˆ

−b

Pr

[
2−K

2
x̂ < x < x̂(1−K)]

]
f(x̂)dx̂

=

0ˆ

−b

K

2

1

b
dx̂ =

K

2b
x̂

∣∣∣∣
−b,0

=
K

2
(A.44)

We then combine Eq. A.44 and Eq. A.47 to solve Eq. A.42:

Pr[ | x̂(1−K)− x | < x− x̂ | x̂(1−K) > x] =
Pr
[
2−K
2

x̂ < x < x̂(1−K)
]

Pr [x̂(1−K) > x]

=
K

2

1

K
=

1

2
(A.45)

Case (B4)

This case solves the term Pr [x̂(1−K) > x] from Eq. A.37. This is solved

in two steps. We first hold x̂ fixed and find the probability over x. Then, we let

x̂ vary and calculate the corresponding expected probability.

When x̂ is fixed and x ∼ U [x̂, 0], we obtain:

Pr [x̂(1−K) > x] = Pr [x < x̂(1−K)] = Fx(x̂(1−K))

=

x̂(1−K)ˆ

−∞

f(x)dx =

x̂(1−K)ˆ

x̂

−1

x̂
dx

= −1

x̂
x

∣∣∣∣x̂(1−K)

x̂

= −1

x̂
[x̂−Kx̂− x̂]

= K (A.46)
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Now, we let x̂ ∼ U [−b, 0] and calculate the expected probability:

E [Pr [x̂(1−K) > x]] =

0ˆ

−b

Pr [x < x̂(1−K)] f(x̂)dx̂

=

0ˆ

−b

K
1

b
dx̂ =

K

b
x̂

∣∣∣∣0
−b

=
K

b
b

= K (A.47)

Case (B) Conclusion

We can now solve Eq. A.35 and Eq. A.37 using Eq. A.39, Eq. A.41, Eq. A.45

and Eq. A.47:

Pr[ | x̂Kr − x | < | x̂− x | ] = Pr [ | x̂(1−K)− x | < | x̂− x | ]

= Pr [ | x̂(1−K)− x | < x− x̂ | x̂(1−K) < x]×

Pr [x̂(1−K) < x] +

Pr[ | x̂(1−K)− x | < x− x̂ | x̂(1−K) > x]×

Pr[x̂(1−K) > x]

= 1(1−K) +
1

2
(K)

= 1− K

2
(A.48)

Thus,

Pr [ | x̂Kr − x | < | x̂− x | ] = 1− K

2
for x ∈ [x̂, c] (A.49)

A.5.3 Case (C)

For this case x ∈ [c, x̂o] as shown in Fig. 38.

a bcx̂ x̂o

x̂Kr︷ ︸︸ ︷ x︷ ︸︸ ︷

Figure 38. Solution domain if x ∈ [c, x̂o]
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When x ∈ [c, x̂o], the probability that the quasi-reflected point is closer

than the estimated point to the solution is

Pr [ | x̂Kr − x | < | x̂− x | ] = Pr [ | x̂(1−K)− x | < | x̂− x | ] (A.50)

From Fig. 38, we note that x̂ < x and x̂(1 −K) < x. Then, Eq. A.35 can

be simplified as

Pr[x− x̂(1−K) < x− x̂] = Pr[x̂(K + 1− 1) < x(1− 1)] = Pr[Kx̂ < 0] (A.51)

Thus,

Pr [ | x̂Kr − x | < | x̂− x | ] = 1 for x ∈ [c, x̂o] (A.52)

A.5.4 Case (D)

This is the case if x ∈ [x̂o, b] as shown in Fig. 39.

a bcx̂ x̂o

x̂Kr︷ ︸︸ ︷ x︷ ︸︸ ︷

Figure 39. Solution domain if x ∈ [x̂o, b]

This case is very similar to Case (C). From Fig. 39, we again note that

x̂ < x and x̂(1−K) < x.

Pr [ | x̂Kr − x | < | x̂− x | ] = Pr[Kx̂ < 0]

= 1 for x ∈ [x̂o, b] (A.53)

A.5.5 Conditional Probability

We can now combine all of the cases to calculate the conditional proba-

bility in the domain [a, b].

Pr
[
| x̂Kr − x | < | x̂− x |

∣∣ x̂] = 0(x̂+ b) + (1− K
2
)(0− x̂) + 1(x̂o − 0) + 1(b− x̂o)

2b

=
−x̂(1− K

2
) + b

2b
(A.54)
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A.5.6 Probability

We now take the previous results to prove Theorem 2.3.1. The probabil-

ity for uniform x̂ can be calculated as

Pr [ | x̂Kr − x | < | x̂− x | ] =
0ˆ

−b

Pr [ | x̂Kr − x | < | x̂− x | ] f(x̂)dx̂

=

0ˆ

−b

(
−x̂(1− K

2
) + b

2b

)(
1

b

)
dx̂

=
x̂(K − 2) + 4b

8b2
x̂

∣∣∣∣0
−b

=
6−K

8
(A.55)

This gives the result stated in Theorem 2.3.1

A.6 Expected Distance of Fitness-Weighted Quasi-

Reflected Point

A.6.1 Probability Distribution Functions

This section defines the expected distance between a fitness-weighted

quasi-reflected point, x̂Kr , and the solution as a new random variable, Z, which

is a function of two RVs.

Distribution of x

We assume that x is uniformly distributed in [−b, b] so x ∼ U [−b, b] and

f(x) = 1
2b

. Fig. 40 illustrates the distribution of x.
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x

fx

−b b0

1
2b

Figure 40. Distribution of x in domain [−b, b].

Distribution of x̂

Let us assume that x̂ , the EA individual, is uniformly distributed in

[−b, 0] so x̂ ∼ U [−b, 0] and f(x) = 1
b
. Fig. 41 illustrates the distribution of x̂ .

x̂

fx̂

−b 0

1
b

Figure 41. Distribution of x̂ in domain [−b, 0].

Distribution of x̂Kr

It can be shown that the quasi-reflection, x̂Kr , is a function of one random

variable, x̂ , and is uniformly distributed in [b(K−1), 0], or x̂Kr ∼ U [b(K − 1), 0].

Fig. 42 shows the distribution of x̂Kr .

x̂

fx̂Kr

b(K − 1) 0

1
b(1−K)

Figure 42. Distribution of x̂Kr in domain [a, b] where K is the reflection weight.
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Distribution of two random variables

We find the distribution of two random variables using the following

equation from [164]. If X and Y are uniformly distributed random variables

and Z = X − Y ,

fZ(z) =
ˆ

fX(z + y) fY (y)dy (A.56)

If we let Z = x̂Kr − x, then Z ∈ [b(K − 2), b] and

fZ(z) =
∞̂

−∞

fx̂Kr
(z + y) fx (y) dy (A.57)

and the expected distance equation can be written as

E [ | x̂Kr − x | ] = E [ | z | ] =
ˆ
| z | f | Z | (z)dz (A.58)

Calculation of fx̂Kr
(z + y)

Notice that Eq. A.57 is convolution of the random variables fx̂Kr
(z + y)

and fx (y) as shown in Fig. 44. This convolution requires the pdf fx̂Kr
(z + y).

This distribution is obtained by shifting the distribution of fx̂Kr
(y) by z. The

result is shown in Fig. 43.

y

fx̂Kr

b(K − 1)− Z

−Z 0

1
b(1−K)

Figure 43. fx̂Kr
(z + y) in domain [a, b] where K is the reflection weight.

A.6.2 Distance between x̂Kr and x

We can now convolve fx̂Kr
and fx̂ to find fZ . This convolution is calculated

graphically based on Fig. 44 as Z shifts from −b to b.
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y

fx(y)

−b b0

1
2b

y

fx̂Kr
(z + y)

b(K − 1)− Z

−Z 0

1
b(1−K)

Figure 44. fx̂Kr−x(y) can be obtained by convolving fx̂Kr
and fx as Z shifts from −b to b

We will shift Z in fx̂Kr
(z+y) in four steps. Note that each case corresponds

to its respective section in Fig. 45. For example, the region calculated in Case

A corresponds to A⃝ in Fig. 45.

z

fZ(z)

b(K − 2) −b bK b0

1
2bA D C B A

Figure 45. Convolution of fx̂Kr
and fx.

A) The two end points, as shown in Fig. 46:

i) if −z < −b, then z > b

ii) if b(K − 1)− z > b, then z < b(K − 2)

and it is clear from the figure that the two distributions do not intersect, so the

area intersected by the two densities is zero.
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y
−b b0

z < b(K − 2) z > b

fx̂Kr
(z + y)

fx(y)

Figure 46. Convolution of fx̂Kr
and fx. Shifting at the end points

B) Shift in the first leg from the left hand side:

For this case−z > −b and b(K−1)−z < −b as shown in Fig. 47. Thus bK < z < b

This case corresponds to Section B⃝ in Fig. 45. The density of fZ(z) in this

section can be calculated using the equation for a line:

y(Z) = mZ + l

where m is the slope of y and l is the z-axis intersection.

m =
y2 − y1
Z2 − Z1

=
0− 1

2b

b− bK
=

−1
2b2(1−K)

To calculate the intersection point l, we evaluate y at bK:

y(bK) =
1

2b
=

−1
2b2(1−K)

bK + l

l =
1

2b
+

bk

2b2(1−K)
=

b

2b2(1−K)

We can now write fZ(z) in Section B⃝ as

fZ(z) =
−z + b

2b2(1−K)
for bK < z < b (A.59)
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y
−b b

Z < bb(K − 1)− Z < −b

fx̂Kr
(z + y)

fx(y)

Figure 47. Convolution of fx̂Kr
and fx. As z is increased, fx̂Kr

(z+y) is overlapping fx(y)

C) Both legs of fx̂Kr
(z + y) shifted in fx̂(y):

This case corresponds to Section C⃝ in Fig. 45. For this case −z > −b and

b(K − 1)− z > −b as shown in Fig. 48. Thus −b < z < bK

For Section C⃝, we can calculate the distribution of fZ(z) as

fZ(z) =
1

2b

1

b(1−K)
[(z − bK)− (z + b)]

=
1

2b
for − b < z < bK (A.60)

y
−b b

Z < b b(K − 1)− Z > −b

fx̂Kr
(z + y)

fx(y)

Figure 48. Convolution of fx̂Kr
and fx. fx̂(z + y) is enclosed in fx̂(y) as z is increased

D) Shift out the first leg from right hand side:

This case corresponds to Section D⃝ in Fig. 45. For this case −z > b and b(K −

1)− z < b as shown in Fig. 49. Thus b(K − 2) < z < −b

Once again, we use the equation for a line y(z) = mz + l where the slope,

m is

m =
y2 − y1
Z2 − Z1

=
1
2b
− 0

b− bK
=

1

2b2(1−K)
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To calculate the intersection point l, we evaluate y at b(K − 2):

y(b(K − 2)) = 0 =
1

2b2(1−K)
b(K − 2) + l

l =
−b(K − 2)

2b2(1−K)

We can now write fZ(z) in Section D⃝ as

fZ(z) =
z − b(K − 2)

2b2(1−K)
for b(K − 2) < z < −b (A.61)

y
−b b

−Z > bb(K − 1)− Z > −b

fx̂Kr
(z + y)

fx(y)

Figure 49. Convolution of fx̂Kr
and fx. fx̂(z + y) starts shifting out of fx(y) as z is in-

creased

Combining Cases A-D, we obtain fZ(z) as:

fZ(z) =
∞̂

−∞

fx̂Kr
(z + y) fx (y) dy =



0 if z < b(K − 2)

z−b(K−2)
2b2(1−K)

if b(K − 2) < z < −b

1
2b

if − b < z < bK

−z+b
2b2(1−K)

if bK < z < b

0 if z > b

(A.62)

These results are also presented in Fig. 45.

A.6.3 Absolute Value of Distance between x̂Kr and x

Based on Eq. A.62, we calculate f | Z | (z) graphically as shown in Fig. 50.
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z

f | Z | (z)

bK b b(2−K)0

1
b

Figure 50. f | Z | (z)

Fig. 50 can be mathematically defined as:

f | Z | (z) =



0 if z < 0

1
b

if 0 < z < bK

−z+b(K−2)
2b2(K−1)

if bK < z < b(2−K)

0 if z > b(2−K)

(A.63)

A.6.4 Expected Distance between x̂Kr and x

Lemma 2.4.1 Assume that the solution of an optimization problem is uniformly

distributed in a one-dimensional search space, the expected distance between

x̂Kr and x is [3bK2 − 2b(K − 1)(2 +K)] /6.

Proof. The expected distance can be calculated using Eq. A.63 as

E [ | x̂Kr − x | ] = E [ | z | ] =
ˆ
| z | f | Z | (z)dz

=

ˆ b(2−K)

0

z f | Z | (z)dz

=

ˆ bK

0

z f | Z | (z)dz +
ˆ b(2−K)

bK

z f | Z | (z)dz

=

ˆ bK

0

z
1

b
dz +

ˆ b(2−K)

bK

z
z + b(K − 2)

2b2(K − 1)
dz

=
1

b

z2

2

∣∣∣∣ bK
0 +

1

2b2(K − 1)

z3

3
+

z2(b−K)

2

∣∣∣∣ b(K−2)
bK

=
bK2

2
− b(K − 1)(2 +K)

3
(A.64)

This gives the result stated in Lemma 2.4.1
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A.6.5 Distance between x̂ and x

To find the expected distance between EA individual and the solution,

we will again refer to Eq. A.56. This time, we let Z = x̂− x, then

fZ(z) =
∞̂

−∞

fx̂ (z + y) fx (y) dy (A.65)

Eq. A.65 reflects a convolution of two random variables as Z shifts from

−b to b and is done graphically based on Fig. 51.

y

fx(y)

−b b0

1
2b

y

fx̂(z + y)

−b− z −z 0

1
b

Figure 51. fx̂−x(y) can be obtained by convolving fx̂ and fx as z shifts from [−b, b]

Cases as z shifts −b to b are shown in Fig. 52.

z

fZ(z)

−2b −b b0

1
2bA D C B A

Figure 52. Convolution of fx̂ and fx.

A) The two end points, as shown in Fig. 53.

i) if −z < −b, then z > b

ii) if −b− z > b, then z < −2b

Based on Fig. 51, we can see that that two densities do not intersect,

hence fZ(z) is zero for this case. This case corresponds to Section A⃝ in Fig. 52.
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y
−b b0

z < −2b z > b

fx̂(z + y)
fx(y)

Figure 53. Convolution of fx̂Kr
and fx. Shifting at the end points

B) Shift in the first leg from left hand side:

For this case, we increase z as −z > −b until −b − z < −b as shown in

Fig. 54. Thus 0 < z < b

The density of fZ(z) in this section increases as z increases until the den-

sities overlap when −b− z = −b. This case corresponds to Section B⃝ in Fig. 52.

y
−b b

z < b−b− z < −b

fx̂(z + y)
fx(y)

Figure 54. Convolution of fx̂ and fx. As z is increased, fx̂(z + y) is overlapping fx(y)

C) Both legs of fx̂(z + y) shifted in fx̂(y):

We continue to increase z while fx̂(z + y) is within fx̂(y). For this case

−z < b and −b− z > −b as shown in Fig. 55. Thus −b < z < 0

For Section C⃝, we can see that fZ(z) stays constant at its peak as seen in

Fig. 52.
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y
−b b

z < b −b− z > −b

fx̂(z + y)
fx(y)

Figure 55. Convolution of fx̂Kr
and fx. Shifting at the end points

D) Shift out the first leg from the right hand side:

For this case, fx̂(z + y) starts shifting out of fx̂(y). The boundaries for z

are −z > b and −b−z < b as shown in Fig. 56. This corresponds to −2b < z < −b

in Fig. 52, also labeled as Section D⃝ .

y
−b b

−z > b−b− z < b

fx̂(z + y)
fx(y)

Figure 56. Convolution of fx̂ and fx. fx̂(z + y) starts shifting out of fx(y) as z is in-

creased.

Combining the results from Cases A-D, we obtain fZ(z) as:

fZ(z) =
∞̂

−∞

fx̂ (z + y) fx (y) dy =



0 if z < −2b

z+2b
2b2

if − b < z < 0

1
2b

if − b < z < 0

b−z
2b2

if 0 < z < b

0 if z > b

(A.66)
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A.6.6 Absolute Value of Distance between x̂ and x

We calculate f|Z|(z) graphically based on Eq. A.66. The result is shown in

Eq. A.67 and Fig. 57.

f|Z|(z) =


0 if z < 0

−z+2b
2b2

if 0 < z < 2b

0 if z > 2b

(A.67)

z

f|Z|(z)

b 2b0

1
b

Figure 57. f|Z|(z)

A.6.7 Expected Distance between x̂ and x

Lemma 2.4.2 Assume that the solution of an optimization problem is uniformly

distributed in a one-dimensional search space, the expected distance between

x̂ and x is

E [ | x̂− x | ] = 2b

3
(A.68)

Proof. The expected distance can be calculated using Eq. A.67 as

E [ | x̂− x | ] = E [ | z | ] =
ˆ
| z | f | Z | (z)dz

=

ˆ 2b

0

z f | Z | (z)dz =

ˆ 2b

0

z
−z + 2b

2b2
dz

=
z2

2b
− z3

6b2

∣∣∣∣2b
0

=
2b

3
(A.69)
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This gives the result stated in Lemma 2.4.2
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APPENDIX B

BENCHMARK FUNCTIONS

B.1 Low-Dimensional Benchmark Problems

B.1.1 Beale

The equation representing the Beale function [174] is given in Eq. B.1

and is plotted as a mesh contour plot in Fig. 58. Table XXXVI provides the

overview of the problem.

F (x⃗) = [1.5− x1(1− x2)]
2 +

[
2.25− x1(1− x2

2)
]2

+
[
2.625− x1(1− x3

2)
]2 (B.1)

Table XXXVI. Beale function overview

Function Domain argmin min f(x)

Beale (−4.5, 4.5)2 (3, 0.5) 0
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Figure 58. Two dimensional plot of the Beale Function

B.1.2 Colville

The equation representing the Colville function [174] is given in Eq. B.2.

Table XXXVII provides the overview of the problem. Because of the dimension

size, we cannot include a plot of this function.

F (x⃗) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 +

10.1
(
(x2 − 1)2 + (x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1) (B.2)

Table XXXVII. Colville function overview

Function Domain argmin min f(x)

Colville (−10, 10)4 14 0
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B.1.3 DeJong F5

The equation representing Shekel’s Foxhole function [218], also known

as DeJong F5, is given in Eq. B.3 and is plotted as a mesh contour plot in

Fig. 59. The function is currently set to have 25 foxholes. Table XXXVIII pro-

vides the overview of the problem.

F (x⃗) =
1

0.002 +
25∑
i=1

1

i+
∑2

j=1(xj − aji)6

(B.3)

where [aji] =

 −32 −16 0 16 32
... −32 −16 ... 0 16 32

−32 −32 −32 −32 −32 ... −16 −16 ... 32 32 32


Table XXXVIII. DeJong F5 function overview

Function Domain argmin min f(x)

DeJong F5 (−65.536, 65.536)25 (−32, 32)25 0.998
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Figure 59. Two dimensional plot of the DeJong F5 function

B.1.4 Easom

The equation representing the Easom function [219] is given in Eq. B.4

and is plotted as a mesh contour plot in Fig. 60. Table XXXIX provides the

overview of the problem.

F (x⃗) = − cos(x1) cos(x2)e
−(x1−π)2−(x2−π)2 (B.4)

Table XXXIX. Easom function overview

Function Domain argmin min f(x)

Easom (−100, 100)2 (π, π) −1

134



Figure 60. Two dimensional plot of the Easom function

B.1.5 Perm

The equation representing the Perm function [141] is given in Eq. B.5

and is plotted as a mesh contour plot in Fig. 61. Table XL provides the overview

of the problem. Even though this is a multidimensional function, it could not

be solved at 20 dimensions and therefore, only used as a low dimension bench-

mark.

F (x⃗) =
n∑

k=1

[
n∑

i=1

(
ik + 0.5

)((xi

i

)k
− 1

)]2
(B.5)
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Table XL. Perm function overview

Function Domain argmin min f(x)

Perm (−n, n)n (1, 2, ..., n) 0

Figure 61. Two dimensional plot of the Perm function

B.1.6 Tripod

This function is taken from [140]. The equation representing the Tripod

function is given in Eq. B.6 and is plotted as a mesh contour plot in Fig. 62.

Table XLI provides the overview of the problem.

F (x⃗) = p(x2) (1 + (x1)) + |x1 + 50p(x2) (1− 2p(x1))|+

|x2 + 50 (1− 2p(x2))| (B.6)
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where p(x) =

1 if x > 0

0 otherwise

Table XLI. Tripod function overview

Function Domain argmin min f(x)

Tripod (−100, 100)2 (0,−50) 0

Figure 62. Two dimensional plot of the Tripod function
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B.2 Variable-Dimensional Benchmark Problems

B.2.1 Ackley

This popular function is first published in [220] as a two-dimensional

problem and later extended to n-dimensions in [221]. The equation represent-

ing the Ackley function is given in Eq. B.7 and is plotted as a mesh contour plot

in Fig. 63. Table XLII provides the overview of the problem.

F (x⃗) = −20 ·exp

−0.2
√√√√ 1

n
·

n∑
i=1

x2
i

−exp

[
1

n
·

n∑
i=1

cos(2πxi)

]
+20+exp(1) (B.7)

Table XLII. Ackley function overview

Function Domain argmin min f(x)

Ackley (−32.768, 32.768)n 0n 0
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Figure 63. Two dimensional plot of the Ackley function. Figure a) illustrates the func-

tion in its full domain while b) is zoomed in to [−2, 2]
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B.2.2 Alpine

The equation representing the Alpine function [141] is given in Eq. B.8

and is plotted as a mesh contour plot in Fig. 64. Table XLIII provides the

overview of the problem.

F (x⃗) =
n∑

i=1

|xi sin(xi) + 0.1xi| (B.8)

Table XLIII. Alpine function overview

Function Domain argmin min f(x)

Alpine (−10, 10)n 0n 0

Figure 64. Two dimensional plot of the Alpine function
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B.2.3 Fletcher/Powell

The Fletcher function is given in Eq. B.9 [222] and is plotted as a mesh

contour plot in Fig. 65. Table XLIV provides the overview of the problem.

Note that the parameters of Fletcher functions and its minimum, α is

randomly distributed. Therefore, the function will have a different contour

plot for each simulation. The plotted results are obtained when α = [0.97, 0.20].

Ai =
n∑

j=1

ai,j sin(αj) + bi,j cos(αj) i = 1, 2, . . . , n

Bi =
n∑

j=1

ai,j sin(xj) + bi,j cos(xj) i = 1, 2, . . . , n

F (x⃗) =
n∑

i=1

(Ai −Bi)
2 (B.9)

where ai,j and bi,j are random numbers ∈ [−100, 100] and αj is random ∈ [−π, π].

Table XLIV. Fletcher function overview

Function Domain argmin min f(x)

Fletcher (−π, π)n αn 0
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Figure 65. Two dimensional plot of the Fletcher function when α = [0.97, 0.20].

B.2.4 Griewangk

The Griewangk function is given in Eq. B.10 [223] and is plotted as a

mesh contour plot in Fig. 66. Table XLV provides the overview of the problem.

The surface of Griewang has an abundance of local minima and to present

these, we zoom in and plot a smaller section of its domain in Fig. 66.

F (x⃗) = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
(B.10)

Table XLV. Griewangk function overview

Function Domain argmin min f(x)

Griewangk (−600, 600)n 0n 0
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Figure 66. Two dimensional plot of the Griewangk function. Figure a) illustrates the

function in its full domain while b) is zoomed in to [−80, 80]

B.2.5 Penalty 1

Penalty 1 function is inspired from Problem 7 in [179] and has approx-

imately 5n local minimums. Penalty 1 function is given in Eq. B.11 and is

plotted as a mesh contour plot in Fig. 67. Table XLVI provides the overview of

the problem.

g(x) =
π

n

[
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2
(
1 + 10 sin2(πyi+1)

)
+ (yn − 1)2

]
yi = 1 +

xi − 1

4
i = 1, 2, . . . , n

ui =


100(xi − 10)4 if xi > 10

0 if − 10 ≤ xi ≤ 10 i = 1, 2, . . . , n

100(−xi − 10)4 if xi < −10

F (x⃗) = g(x) +
n∑

i=1

u(xi) (B.11)
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Table XLVI. Penalty 1 function overview

Function Domain argmin min f(x)

Penalty 1 (−50, 50)n 1n 0

Figure 67. Two dimensional plot of the Penalty 1 function.

B.2.6 Penalty2

Penalty 2 function is inspired from Problem 18 in [179] and has approx-

imately 30n local minimums. Penalty 2 function is given in Eq. B.12 and is

plotted as a mesh contour plot in Fig. 68. Table XLVII provides the overview of

the problem.
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g(x) = 0.1

[
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2
(
1 + sin2(3πxi+1)

)
+

(xn − 1)2
(
1 + sin2(2πxn)

) ]

ui =


100(xi − 5)4 if xi > 5

0 if − 5 ≤ xi ≤ 5 i = 1, 2, . . . , n

100(−xi − 5)4 if xi < −5

F (x⃗) = g(x) +
n∑

i=1

u(xi) (B.12)

Table XLVII. Penalty 2 function overview

Function Domain argmin min f(x)

Penalty 2 (−50, 50)n 1n 0

(a) (b)

Figure 68. Two dimensional plot of the Penalty 2 function. Figure a) illustrates the

function in its full domain while b) is zoomed in to [−3, 3]
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B.2.7 Quartic

We employ the quartic function with uniformly distributed noise on the

open interval (0, 1). Quartic function, also referred as the forth DeJong function

[224], is given in Eq. B.13 and is plotted as a mesh contour plot in Fig. 69.

Table XLVIII provides the overview of the problem.

F (x⃗) =
n∑

i=1

ix4
i + rand(0, 1) (B.13)

where rand is pseudorandom Gaussian noise.

Table XLVIII. Quartic function overview

Function Domain argmin min f(x)

Quartic (−1.28, 1.28)n 0n 0

Figure 69. Two dimensional plot of the Quartic function.
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B.2.8 Rastrigin

Rastrigin function is a modified version of the sphere problem [225]. It

has been made multimodal with the addition of the cosine term. Rastrigin

function is given in Eq. B.14 and is plotted as a mesh contour plot in Fig. 70.

Table XLIX provides the overview of the problem.

F (x⃗) = 10n+
n∑

i=1

(
x2
i − 10 cos(2πxi)

)
(B.14)

Table XLIX. Rastrigin function overview

Function Domain argmin min f(x)

Rastrigin (−5.12, 5.12)n 0n 0

Figure 70. Two dimensional plot of the Rastrigin function.

146



B.2.9 Rosenbrock

Rosenbrock function is proposed in [226] as a two-dimensional bench-

mark problem. Due to the valley-like shape of the function, it is challenging to

converge to the global optimum. It has been extended to higher dimensions by

different authors. Rosenbrock function is given in Eq. B.15 and is plotted as a

mesh contour plot in Fig. 71. Table L provides the overview of the problem.

F (x⃗) =
n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
(B.15)

Table L. Rosenbrock function overview

Function Domain argmin min f(x)

Rosenbrock (−2.048, 2.048)n 1n 0

Figure 71. Two dimensional plot of the Rosenbrock function.
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B.2.10 Schwefel 1.2

Schwefel 1.2, also referred as Schwefel’s double sum function, is another

popular benchmark [227]. Schwefel 1.2 function is given in Eq. B.16 and is

plotted as a mesh contour plot in Fig. 72. Table LI provides the overview of the

problem.

F (x⃗) =
n∑

i=1

(
i∑

j=1

xj

)2

(B.16)

Table LI. Schwefel 1.2 function overview

Function Domain argmin min f(x)

Schwefel 1.2 (−65.536, 65.536)n 0n 0

Figure 72. Two dimensional plot of the Schwefel 1.2 function.
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B.2.11 Schwefel 2.21

Schwefel 2.21 function is given in Eq. B.17 and is plotted as a mesh con-

tour plot in Fig. 73 [227]. Table LII provides the overview of the problem.

F (x⃗) = maxi {|xi| , 1 ≤ i ≤ n} , i = 1, 2, . . . , n (B.17)

where the max function returns the largest of its parameters.

Table LII. Schwefel 2.21 function overview

Function Domain argmin min f(x)

Schwefel 2.21 (−100, 100)n 0n 0

Figure 73. Two dimensional plot of the Schwefel 2.21 function.

149



B.2.12 Schwefel 2.22

Schwefel 2.22 function is given in Eq. B.18 and is plotted as a mesh con-

tour plot in Fig. 74 [227]. Table LIII provides the overview of the problem.

F (x⃗) =
n∑

i=1

|xi|+
n∏

i=1

|xi| (B.18)

Table LIII. Schwefel 2.22 function overview

Function Domain argmin min f(x)

Schwefel 2.22 (−10, 10)n 0n 0

Figure 74. Two dimensional plot of the Schwefel 2.22 function.
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B.2.13 Schwefel 2.26

Schwefel 2.26 function is given in Eq. B.19 and is plotted as a mesh con-

tour plot in Fig. 75 [228]. Table LIV provides the overview of the problem.

F (x⃗) = −
n∑

i=1

xi sin
(√
|xi|
)

(B.19)

Table LIV. Schwefel 2.26 function overview

Function Domain argmin min f(x)

Schwefel 2.26 (−512, 512)n 420.9867n f(argmin)n

For the two-dimensional case, global minimum can be calculated as:

min f(x) = 2F ([420.9867, 420.9867]) = −837.9658 (B.20)

Figure 75. Two dimensional plot of the Schwefel 2.26 function.
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B.2.14 Sphere

Sphere function is one of the earliest EA benchmarks [15]. Sphere func-

tion is given in Eq. B.21 and is plotted as a mesh contour plot in Fig. 76. Ta-

ble LV provides the overview of the problem.

F (x⃗) =
n∑

i=1

x2
i (B.21)

Table LV. Sphere function overview

Function Domain argmin min f(x)

Sphere (−5.12, 5.12)n 0n 0

Figure 76. Two dimensional plot of the Sphere function.
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B.2.15 Step

Step function is based on De Jong’s F3 which was created to test EA

performance on discontinuous functions [224]. Sphere function is given in

Eq. B.22 and is plotted as a mesh contour plot in Fig. 77. Table LVI provides

the overview of the problem.

F (x⃗) =
n∑

i=1

floor(xi + 0.5)2 (B.22)

where floor function rounds towards minus infinity.

Table LVI. Step function overview

Function Domain argmin min f(x)

Step (−100, 100)n (−0.5, 0.5)n 0

Figure 77. Two dimensional plot of the Step function. Dim1, Dim2 zoomed in to

[−10, 10] to illustrate the piecewise-constant steps of the funciton.

153



B.2.16 Zakharov

Zakharov function [141] is unimodal and flat. However, due to its rel-

ative uniform distribution of the solution, it is challenging to find the global

optima located at the corner of the domain. Zakharov function is given in

Eq. B.23 and is plotted as a mesh contour plot in Fig. 78. Table LVII provides

the overview of the problem.

F (x⃗) =
n∑

i=1

x2
i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

(B.23)

Table LVII. Zakharov function overview

Function Domain argmin min f(x)

Zakharov (−5, 10)n 0n 0

Figure 78. Two dimensional plot of the Zakharov function.
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APPENDIX C

PUBLISHED, PRESENTED, AND

SUBMITTED RESULTS FROM THIS
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M. Ergezer, D. Simon, “Mathematical and Experimental Analyses of Opposi-

tional Algorithms,” IEEE Transactions on Cybernetics, Accepted.

M. Ergezer, D. Simon, “Probabilistic Properties of Fitness-based Quasi-reflection

to Accelerate the Performance of Evolutionary Algorithms," Computers & Op-

erations Research, Submitted.

M. Ergezer, and I. Sikder, “Survey of Oppositional Algorithms,” 14th Inter-

national Conference on Computer and Information Technology, pp. 623–628,

2011.

M. Ergezer, and D. Simon, “Oppositional biogeography-based optimization for

combinatorial problems," IEEE Congress on Evolutionary Computation. pp.

1496–1503, 2011.

D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov models for biogeography-

based optimization," IEEE Transactions on Systems, Man, and Cybernetics,
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D. Simon, R. Rarick, M. Ergezer, and D. Du, “Analytical and numerical compar-

isons of biogeography-based optimization and genetic algorithms," Information

Sciences, vol. 181, pp. 1224–1248, 2011.

M. Ergezer, B. E. Abali, and D. Simon, “Biogeography-based Optimization Iden-

tifies Material Coefficients as an Inverse Problem," poster session presented at

NSF CMMI Research and Innovation Conference, Atlanta, GA, January 2011.

D. Du, D. Simon, and M. Ergezer, “Biogeography-based optimization combined

with evolutionary strategy and immigration refusal," IEEE International Con-

ference on Systems, Man and Cybernetics, pp. 997–1002, 2009.

M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-based optimiza-

tion," IEEE International Conference on Systems, Man and Cybernetics, pp.

1009–1014, 2009.
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