
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

6-2009

Design and Implementation of a Byzantine Fault Tolerance Design and Implementation of a Byzantine Fault Tolerance

Framework for Web Services Framework for Web Services

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons, and the Electrical and Computer

Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
Zhao, W. (2009). Design and implementation of a Byzantine fault tolerance framework for Web services.
The Journal of Systems & Software, 82(6), 1004-1015. doi:10.1016/j.jss.2008.12.037

Repository Citation
Zhao, Wenbing, "Design and Implementation of a Byzantine Fault Tolerance Framework for Web Services" (2009).
Electrical Engineering and Computer Science Faculty Publications. 68.
https://engagedscholarship.csuohio.edu/enece_facpub/68

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/68?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Design and implementation of a Byzantine fault tolerance framework
for Web services '"

Wenbing Zhao *
Df'ponmenr of f/l'C"lrirol and (ompuler fnginf'l'ring. Cleveland SIOlt Universicy, 2121 Euclid Ave, Cleveland, OH 441/5, United Slares

1. Introduction

Driven by business needs dnd the availability of the latest Web
services technology. we have seen increasing reliance on services
provided over the Web. This undoubtedly has increased the
dependability requirement on these services. Recognizing this
need, the Web services community has proposed the Web Services
Reliable Messaging (WS~RM) specification (Bilorusets et aI., 2005)
and it is recently ratified by OASIS (Organization for the Advance-
ment of Structured Information Standards). WS-RM is a very good
staning point to increase the reliability of Web services interactions
and furthe rmore it has been widely supported by many commercial
and open-source fra meworks.1

However. for many mission-critical Web services. WS-RM
might be inadequate to meet the high reliability needs. First of
all, WS-RM does nor guarantee the high availability of Web ser
vices, which would require the use of space redundancy, i.e., the
Web services must be replicated. Second, conSidering the unt rust
ed communication environment in which these services operate.

there are legitimate concerns on the security of the Web services
because if a Web service is compromised by an adversaty, not only
may it be made unavailable, perhaps more seriously, it may be ren
dered to provide false/ invalid information to the clients. Further
more. when the service is replicated. a new type of attacks could
arise, i.e., both a faulty client and a faulty server replica could dis
seminate conflicting information to different replicas, aiming to
destroy strong replica consistency. which is an essential require
ment for state machine replication (Schneider. 1990).

To control these types of threats. the arbitrary fault model must
be adopted. An arbitrary fault, often referred to as a Byzantine fault
(Lamport et aI., 1982), encompasses both a benign fau lt such as a
crash fault. and a malicious fault imposed by an adversary. In the
presence of Byzantine faults, WS-RM cannot guarantee the integ
rity of the Web services. e.g .. a comprom ised Web service may
not adhere to the exactly-once delivery policy even if the Web ser
vice is configured to do so. As recognized by many researchers
(Castro and liskov, 1999; Yin et al.. 2003), Byzantine fault tolerance
(BFf) seems to be a promising approach to achieving highly secure
and reliable Web services.

In this article. we describe such a Byzantine fault tolerance
framework for Web services, referred to as BFf-WS in thi s paper.
Our framework diffe rs from similar work primarily in the following
two aspects:

(1) BFf-WS 	is backward compatible with WS-RM. Due to the
widespread adoption of WS-RM, we anticipate that many
reliability-awa re Web services are already supporti ng WS
RM. It seems to be natural to upgrade these Web services

Endpoint A Endpoint A

Application
Source

Application
Destination

RM
Source

Transmit

Sequence

Send

Receive

RM
Destination

Deliver

CreateSequence

CreateSequenceResponse

SequenceAcknowledgement

SequenceAcknowledgement

TerminateSequence

TerminateSequenceResponse

Fig. 1. (a) The reliable messaging model in WS-RM. (b) The reliable messaging protocol in WS-RM.

for Byzantine fault tolerance. The compatibility of our
framework with WS-RM means that these Web services
would need virtually no changes except the addition of state
retrieval and restoration handlers. We believe that this
would ease the adoption of Byzantine fault tolerance tech
nology for Web services.

(2) Our framework is based entirely on Web services core tech
nology (such as SOAP and WSDL) and the WS-* standards,
without resorting to any proprietary communication proto
cols or APIs.

BFT-WS is implemented on top of Sandesha2,2 which is an open-
source implementation of the WS-RM standard for Apache Axis2 in
Java. In BFT-WS, all fault tolerance mechanisms operate on top of
the standard SOAP messaging framework for maximum interopera
bility. BFT-WS inherits Sandesha2’s pluggability, and hence, it re
quires minimum changes to the Web applications (both the client
and the service sides). The core fault tolerance mechanisms in BFT
WS are based on the well-known Castro and Liskov’s BFT algorithm
(Castro and Liskov, 1999). The framework also incorporated the idea
of the separation of agreement (on the total ordering of messages)
and execution introduced by Yin et al. (2003) so that the BFT-WS
framework can be used in several different configurations, and
thereby increasing the flexibility of BFT-WS for use in practical
systems.

The performance evaluation of BFT-WS has been carefully con
ducted. The results show that the BFT-WS framework indeed intro
duces only moderate runtime overhead verses the original
Sandesha2 framework considering the complexity of the Byzantine
fault tolerance mechanisms.

This paper is structured as follows. Section 2 introduces some
necessary background information. Section 3 describes the design
rationale, the system models, and the architecture of BFT-WS. Sec
tion 4 presents the performance evaluation results. Section 5 de
scribes related work, and Section 6 concludes the paper.

2. From reliable messaging to Byzantine fault tolerance

2.1. Web services reliable messaging

The Web services reliable messaging (WS-RM) standard de
scribes a reliable messaging (RM) protocol between two endpoints,
termed as RM source (RMS) and RM destination (RMD). The reli
able messaging model in the WS-RM standard and an example of
the reliable messaging protocol are shown in Fig. 1a and b, respec-

The Apache Sandesha2 project, http://ws.apache.org/sandesha/sandesha2/.

tively. The core concept introduced in WS-RM is sequence. A se
quence is a unidirectional reliable channel between the RMS and
the RMD. As shown in Fig. 1b, at the beginning of a reliable conver
sation between the two endpoints, a unique sequence (identified
by a unique sequence ID) must first be created (through the Create-
Sequence request and response). The sequence is terminated when
the conversation is over (through the TerminateSequence request
and response). For each message sent over the sequence, a unique
message number must be assigned to it. The message number
starts at 1 and is incremented by 1 for each subsequent message.
The reliability of the messaging is achieved by the retransmission
and positive acknowledgement mechanisms. At the RMS, a mes
sage sent is buffered and retransmitted until the corresponding
acknowledgement from the RMD is received, or until a predefined
retransmission limit has been exceeded. For efficiency reason, the
RMD might not send acknowledgement immediately upon receiv
ing an application message, and the acknowledgements for multi
ple messages can be piggybacked with another application
message in the response sequence, or be aggregated in a single ex
plicit acknowledgement message.

Because it is quite common for two endpoints to engage in two-
way communications, the RMS can include an Offer element in its
CreateSequence request to avoid an explicit new sequence estab
lishment step for the traffic in the reverse direction.

Furthermore, WS-RM defines a set of delivery assurances,
including AtMostOnce, AtLeastOnce, ExactlyOnce, and InOrder.
The meaning of these assurances are self-explanatory. The InOrder
assurance can be used together with any of the first three assur
ances. The strongest assurance is ExactlyOnce combined with InOr
der delivery.

The WS-RM standard has been widely supported and there exist
many implementations, most of which are commercial. We choose
to use Sandesha2 for this research, due to its open-source nature
and its support for Axis2, the second generation open-source SOAP
engine that enables pluggable modules.

2.2. Byzantine fault tolerance

Byzantine fault tolerance (BFT) refers to the capability of a sys
tem to tolerate Byzantine faults. In a client–server system, it can be
achieved by replicating the server and by ensuring all server repli
cas to execute the same request in the same order. The latter
means that the server replicas must reach an agreement on the
set of requests and their relative ordering despite Byzantine faulty
replicas and clients. Such an agreement is often referred to as Byz
antine agreement (Lamport et al., 1982).

Byzantine agreement algorithms had been too expensive to be
practical until Castro and Liskov invented the BFT algorithm men2

http://www.ws.apache.org/sandesha/sandesha2

REPL

tioned earlier (Castro and Liskov, 1999). The BFT algorithm is de
signed to support client–server applications running in an asyn
chronous distributed environment with the Byzantine fault
model. The implementation of the algorithm contains two parts.
At the client-side, a lightweight library is responsible to send the
client’s request to the primary replica, to retransmit the request
to all server replicas on the expiration of a retransmission timer
(to deal with the primary faults), and to collect and vote on the re
plies. The main BFT algorithm is executed at the server-side by a
set of 3f þ 1 replicas to tolerate f Byzantine faulty replicas. One
of the replicas is designated as the primary while the others are
backups.

In the BFT framework, a replica is modeled as a state machine.
The replica is required to run (or rendered to run) deterministi
cally. The state change is triggered by remote invocations on the
methods offered by the replica.

As shown in Fig. 2, the normal operation of the (server-side) BFT
algorithm involves three phases. During the first phase (called pre-
prepare phase), the primary multicasts a pre-prepare message con
taining the client’s request, the current view and a sequence num
ber assigned to the request to all backups.

A backup verifies the request message and the ordering infor
mation. If the backup accepts the message, it multicasts to all other
replicas a prepare message containing the ordering information
and the digest of the request being ordered. This starts the second
phase, i.e., the prepare phase. A replica waits until it has collected
2f prepare messages from different replicas (including the message
it has sent if it is a backup) that match the pre-prepare message be
fore it multicasts a commit message to other replicas, which starts
the third phase (i.e., commit phase). The commit phase ends when
a replica has received 2f matching commit messages from other
replicas. At this point, the request message has been totally or
dered and it is ready to be delivered to the server application if
all previous requests have already been delivered.

The BFT framework uses a number of optimizations to improve
the runtime performance under normal operation. The most rele
vant optimization related to this work is the batching mechanism.
When batching is enabled, the primary postpones total ordering of
a request until there are already k batches of messages being or
dered, where k is a tunable parameter and it is often set to 1. When
the primary is ready to order a new batch of messages, it assigns
the next sequence number for the entire group of application re
quests. This mechanism could significantly improve the system
throughput under heavy request load.

For garbage collection, each replica periodically takes a snap
shot of its state (referred to as a checkpoint) and multicasts a
checkpoint message including the sequence number n of the last
request whose execution is reflected in the checkpoint, the digest

of the checkpoint d, and the replica id. A checkpoint becomes stable
when a replica has collected 2f þ 1 checkpoint messages for the
same sequence number n with the same digest d signed by differ
ent replicas. At this point, the replica can discard all control mes
sages (such as pre-prepare, prepare and commit messages) with
sequence number less than or equal to n, and all earlier check
points and checkpoint messages. A stable checkpoint is also useful
to bring a slow replica up-to-date.

If the primary or the client is faulty, a Byzantine agreement on
the ordering of a request might not be reached, in which case, a
new view is initiated, triggered by a timeout on the current view.
A different primary is designated in a round-robin fashion for each
new view installed.

Since the publication of the seminal work of Castro and Liskov
(1999), a number of alternative BFT algorithms have been
proposed (Cowling et al., 2006; Abd-El-Malek et al., 2005; Kotla
et al., 2007), each offers better performance in some circumstances.
Among them, HQ (Cowling et al., 2006) and QU (Abd-El-Malek
et al., 2005) both assume that the BFT infrastructure knows if a
request will update the server state. In practice, however, it might
not be feasible for a generic BFT infrastructure to gain such knowl
edge unless it is customized to run a specific application. Despite
the fact that Zyvzzya (Kotla et al., 2007) improves the runtime per
formance significantly during normal operation (i.e., when there is
no fault) in most cases, the recovery mechanisms (needed to han
dle primary failures) are considerably more complicated and we
are not aware of any implementation of the complete Zyvzzya
algorithm. Therefore, we choose to use the Castro and Liskov’s
BFT algorithm in our framework. In particular, the availability of
a publicly-accessible C++ implementation of Castro and Liskov’s
algorithm is instrumental for us to build a working prototype of
BFT-WS in a reasonable time-frame.

3. Design and implementation of BFT-WS

In this section, we first elaborate the rationale on the design of
BFT-WS. Then, we present the system models and the architecture
of our framework.

3.1. Rationale for our approach

Based on our previous experiences in building fault-tolerant
CORBA frameworks (Zhao et al., 2004), we classify typical ap
proaches to building Byzantine fault tolerance (BFT) middleware
frameworks into the following three categories.

(1)	 Application Programming Interface (API) Based Approach. In
this approach, a Web server application must program the
fault tolerance logic, such as replication group creation, join
and leave, explicitly into the application logic. The main ben-

Client R

Y

Execution

Pre-

P
R

E-P
R

E
PA

R
E

PREPARE C
OM

M
IT

EQUEST

Prepare Commit

efit of this approach is that fault tolerance itself can be pro
vided as a high-level Web service, which is very desirable for
service-oriented computing. However, this approach has
obvious drawbacks: (1) mixing fault tolerance logic and
application logic increases the complexity of the application
design and implementation, which might lead to more
buggy software, instead of achieving better robustness
against faults, and (2) it might be very difficult to retrofit
existing applications for fault tolerance using these APIs,
especially when the source code is not available. Due to
the above concerns, we prefer not to follow this approach.

(2) Interception Based Approach. In this approach, incoming and
Prepare
Phase

Phase Phase	 outgoing messages to and from a Web service, respectively,
are intercepted at the sender. The intercepted requests are

Fig. 2. Normal operation of the BFT algorithm. then totally ordered prior to their delivery to the Web ser

http:Approach.In

vice application via a group communication system (Salas
et al., 2006), or a consensus-based algorithm (Castro and Lis
kov, 1999). The interception layer also injects additional
mechanisms for fault tolerance, such as state synchroniza
tion among the replicas and voting at the client. Interception
is typically achieved by using a separate proxy process, as in
Salas et al. (2006), or by using an under-the-SOAP-engine
hook, as in Merideth et al. (2005). The benefit of this
approach is that existing and future Web services can be
rendered fault-tolerant nearly transparently (with the
exception that the application must provide a way for the
fault tolerance framework to retrieve and restore the appli
cation state, which is a common requirement for all fault tol
erance frameworks). However, the main issue of this
approach lies in its use of proprietary messaging protocols.
This is incompatible with the design principles of Web ser
vices, which call for transport independence and mandate
SOAP-based communications. The use of proprietary mes
saging protocols compromises the interoperability of Web
services. Secondly, the use of a separate proxy process or
an under-the-SOAP-engine hook often leads to repeated
parsing of SOAP messages (as we will show later in this
paper, not all SOAP messages should be totally ordered,
and these messages must be identified prior to the total
ordering operation), which can lead to performance
degradation.

(3)	 Integration Based Approach. In this approach, the fault toler
ance mechanisms are built directly into the SOAP engine
and only standard Web services messaging and transport
protocols are used. For this approach to be practical, it
requires that the SOAP engine support pluggable modules
for user customization. Fortunately, the Apache Axis2 SOAP
engine,3 the most popular open-source SOAP engine, satis
fies this requirement. We believe that this approach pos
sesses the benefits of the other two approaches while
avoiding their drawbacks:

•	 Fault tolerance in effect is still provided as a Web service.
The difference between the integration based approach
and the API based approach is that, in the integration
based approach, the fault tolerance Web service opera
tions are invoked not directly by the Web application,
but by the fault tolerance modules plugged into the SOAP
engine, which avoids the problem of the API based
approach.

•	 The benefit of fault tolerance transparency in the inter
ception based approach is obviously satisfied as well
because the invocations on the fault tolerance services
are carried out transparently by the plugin modules. The
only obligation from the user is to specify the fault toler
ance parameters such as the replication degree in a con
figuration file, which can be changed during the
deployment phase. Furthermore, because the fault toler
ance mechanisms are built into the plugin modules in
the integration based approach, standard Web services
messaging and transport protocols are used for replica
coordination and recovery, and hence, avoiding the prob
lems of the interception based approach.

We believe that any type of middleware for Web services must
use standard Web services technologies and must follow the de
sign principles of Web services, and fault tolerance middleware
for Web services is no exception. Therefore, we decide to follow

The Apache Axis2 project, http://ws.apache.org/axis2/.

the integration based approach to develop a Byzantine fault toler
ance framework for Web services. Furthermore, we strive to build a
framework that not only uses basic Web services techniques such
as SOAP and WSDL, but is compatible with existing WS-* specifica
tions as well (Web services would not have been widely adopted
without these WS-* specifications). In particular, our framework
is designed to be backward compatible with the WS-RM standard
(Bilorusets et al., 2005) because Byzantine fault tolerance is logi
cally the next step beyond reliable messaging for mission-critical
Web services. By offering this backward compatibility, we hope
to make it possible to upgrade existing WS-RM compliant applica
tions for Byzantine fault tolerance with minimum modifications.

3.2. System models

We assume that the Web services applications operate in an
asynchronous distributed environment. To ensure liveness, it is
necessary to assume certain synchrony, i.e., the message transmis
sion and processing delay has an asymptotic upper bound (Castro
and Liskov, 1999). This bound is dynamically explored in the BFT
algorithm in that each time a view change occurs, the timeout
for the new view is doubled. We assume that the synchronous
communication style is used by the Web services application, i.e.,
a client (or a middle-tier server) would issue a request (or a nested
request) to a server and then is blocked waiting for the correspond
ing reply.

Both the client and the server can be Byzantine faulty, i.e., they
are subject to arbitrary faults (both hardware and malicious faults).
To achieve Byzantine fault tolerance, the server is replicated with
3f þ 1 replicas to tolerate up to f faulty nodes. We assume that
the server replicas are sufficiently diversified so that they fail inde
pendently under Byzantine attacks. A common approach to achiev
ing diversity is to employ the n-version programming technique
(Chen and Avizienis, 1995) where each replica is implemented
according to a different design and possibly using a different pro
gramming language. For some applications, such as the networked
file system, there already exist many off-the-shelf different imple
mentations, which could readily be used for Byzantine fault toler
ance (Castro et al., 2003).

Each replica is modeled as a state machine, consequently, we
assume that the application would run (or would be rendered to
run) deterministically. The state change is triggered by remote
invocations on the methods offered by the replica. We are fully
aware that practical applications often exhibit non-deterministic
behaviors. How to render such applications to run deterministi
cally has been studied by many researchers (Castro and Liskov,
1999; Yin et al., 2003; Zhao, 2007b) and it is out of the scope of this
paper.

For the purposes of checkpointing and recovery, we require that
two additional operations, one for get_state and the other for set_
state, be defined in the WSDL file for the Web services to be repli
cated. When it is needed to retrieve the application state, a
get_state request message is delivered to the application and the
reply should contain a snapshot of the application’s current state.
Likewise, when it is time to restore the application state according
to a checkpoint, a set_state request message is delivered to the
application.

We assume that all messages are protected by a digital signa
ture to ensure their integrity and the adversaries have limited
computing power so that they cannot break the digital signatures
of correct replicas. Ideally, we could replace digital signatures by
message authentication codes in most of cases to reduce the com
putational cost, and hence improve the runtime performance of
our framework. However, because the Rampart library (an open-
source implementation of the WS-Security standard) (Nadalin
et al., 2004) that we use in our framework does not yet support 3

http://www.ws.apache.org/axis2

message authentication code, we decide to use digital signatures to
protect all messages exchanged. The implementation of our frame
work can be upgraded relatively easily to using message authenti
cation code when it becomes available in the future. For normal
operation, the changes would be made mainly at the security han
dler, without disrupting other parts of the framework.

Finally, we assume that the clients who are interested in con
suming the replicated Web services would negotiate a contract
with the services provider and download all necessary software
(including the client library for the BFT-WS framework) to get
started. The initial locations of the service replicas provided to
the client could be generic, and the requests from the client would
then be dispatched (by a load balancer, for example) to the set of
replicas designated for the client based on the client’s identity
and service contact. Dynamic service discovery, while an interest
ing topic, is out of the scope of this paper.

3.3. BFT-WS architecture

For increased flexibility, BFT-WS offers three different configu
rations, as shown in Fig. 3. The BFT-WS system architecture and
the main components are first introduced for configuration I. The
variations needed to accommodate the other two configurations
are discussed subsequently. We conclude this section by discussing
the support for advanced interaction patterns between Web
services.

The configuration I follows the traditional BFT style where total
ordering and execution of application requests are handled by the
same set of 3f þ 1 replicas to tolerate up to f faulty replicas, and the
configurations II and III are based on the idea of separation of
agreement and execution (Yin et al., 2003). The difference between
the latter two configurations is that in configuration II, 2f þ 1 of the
3f þ 1 agreement nodes are collocated with the 2f þ 1 execution
nodes, and in configuration III, the 3f þ 1 agreement nodes are
physically separated from the 2f þ 1 execution nodes, and there
fore, they can be used to provide agreement service for multiple
Web services.

3.3.1. Configuration I
The overview of the BFT-WS architecture for configuration I is

shown in Fig. 4. BFT-WS is implemented as an Axis2 module. Dur
ing the out-flow of a SOAP message, Axis2 invokes the BFT-WS Out
Handler during the user phase, and invokes the Rampart handler
for message signing during the security phase. Then, the message
is passed to the HTTP transport sender to send to the target end
point. During the in-flow of a SOAP message, Axis2 first invokes
the default handler for preliminary processing (to find the target
object for the message based on the URI and SOAP action specified
in the message) during the transport phase, it then invokes the
Rampart handler for signature verification during the security
phase. This is followed by the invocation of the BFT-WS Global In
Handler during the dispatch phase. This handler performs tasks

Client Client Client

BFT BFT BFTMessage
Middleware Logic Middleware Logic

(I) (II) (III)

Fig. 3. Three alternative configurations of the BFT-WS framework.

ClientApplication

Plus

BFT-WS

BFT-WS

BFT-WS

Internet

Fig. 4. The overview of the BFT-WS architecture in configuration I.

Manager

BFT-WS

Multicast
Sender

Queue

SendDeliver

Queue

Invoker

BFT-WS

BFT-WS

Client
Application

BFT-WS

Multicast
Sender

Queue

SendDeliver

BFT-WS
Voter

Queue

InOrder
Invoker

BFT-WS

BFT-WS

Fig. 5. The main components of the BFT-WS module.

that should be done prior to dispatching, such as duplicate sup
pression at the server-side. If the message is targeted toward a
BFT-WS-enabled service, the BFT-WS In Handler is invoked for fur
ther processing during the user-defined phase, otherwise, the mes
sage is directly dispatched to the Axis2 message receiver. For
clarity, Fig. 4 shows only a one-way flow of a request from the cli
ent to the replicated Web service. The response flow is similar. Also
not shown in Fig. 4 are the multicast process and the internal com
ponents of the BFT-WS module.

The main components of the BFT-WS module are illustrated in
Fig. 5. The client-side bears a lot of similarity to the Sandesha2 cli
ent-side module, with the exception of the addition of BFT-WS Vo
ter, the replacement of Sandesha Sender by a Multicast Sender, and
the replacement of the Sandesha Out Handler by the BFT-WS Out
Handler. The server-side contains more additions and modifica
tions to the Sandesha2 components. Furthermore, a set of actions
are added to the module configuration to allow total ordering of
messages, view change management and replica state synchroni
zation. Besides the Multicast Sender, the server-side introduced a
Total Order Manager, and replaced the original Global In Handler,
In Handler, and InOrder handler, by BFT-WS Global In Handler,
BFT-WS In Handler and Total Order Invoker, respectively. The stor
age framework in Sandesha2 is not changed. The functions of these
components (both Sandesha2 original and the modified or new
components) are elaborated in the following subsections, starting
with the components dealing with the out-flow, and then the com
ponents for the in-flow. We note that the modification to Sandes
ha2 is carried out in a way such that BFT-WS is backward
compatible with Sandesha2, i.e., if BFT is not needed, the system
can be reconfigured to support only WS-RM without the need of
re-compilation or re-deployment of the Web services. Similarly,
the BFT functionality can be turned on dynamically when the need
occurs.

3.3.1.1. BFT-WS out handler. This handler performs out-flow pro
cessing for reliable messaging. In particular, it generates a Create-
Sequence request when the application sends the first message of a
new sequence, and sends a terminate-sequence request after the
last message of a sequence is transmitted.

The difference between the BFT-WS Out Handler and the origi
nal Sandesha Out Handler lies in the creation and handling of the
CreateSequence message. In the original implementation, the Cre
ateSequence message does not contain any element that can be
used for the server-side to perform duplicate detection. If the Cre
ateSequence request contains an Offer element, it may be used as a
way to check for duplicate. However, not all CreateSequence re

quests contain such an element, because its existence is specified
by the client application. To address this problem, we propose to
include a UUID string in the CreateSequence request. The UUID is
embedded in the CreateSequence/any element, an optional ele
ment specified by the WS-RM standard to enable extensibility.

The addition of this UUID element also helps alleviate a tricky
problem that would cause replica inconsistency. The WS-RM stan
dard does not specify how the sequence ID for the newly created
sequence should be determined. In Sandesha2, a UUID string is
generated and used as the sequence ID at the server-side. If we al
low each replica to generate the sequence ID unilaterally in this
fashion, the client would adopt the sequence ID present in the first
CreateSequence response it receives. This would prevent the client
from communicating with other replicas, and would prevent the
replicas from referring to the same sequence consistently when
ordering the application messages sent over this sequence. There
fore, we modified the CreateSequence request handling code to
generate the sequence ID deterministically based on the client sup
plied UUID and the Web service group endpoint information.

3.3.1.2 Multicast sender. In BFT-WS, the sequence between the cli
ent and the service provider endpoints is mapped transparently to
a virtual sequence between the client and the group of replicas.
The same sequence ID is used for the virtual sequence so that other
components can keep referring to this sequence regardless if it is a
one-to-one or a one-to-many (or many-to-one) sequence. The
mapping is carried out by the multicast sender.

To make the mapping possible, we assume that each service to
be replicated bears a unique group endpoint, in addition to the spe
cific endpoint for each replica. Higher level components, including
the application, must use the group endpoint when referring to the
replicated Web service. When a message to the group endpoint is
detected, including application messages and BFT-WS control mes
sages, the multicast sender translates the group endpoint to a list
of individual endpoints and multicasts the message to these end
points. We assume the mapping information is provided by a con
figuration file. The Multicast Sender runs as a separate thread and
periodically poll the Out Message Queue for messages to send.

One additional change is the garbage collection mechanism. For
point-to-point reliable communication, it is sufficient to discard a
buffered message as soon as an acknowledgement for the message
is received. However, this mechanism does not work for reliable
multicast for apparent reasons. Consequently, a message to be
multicast is kept in the buffer until the acknowledgement from
all destinations have been collected, or a predefined retransmission
limit has been exceeded.

Note that in BFT-WS, the client multicasts its requests to all rep
licas via the Multicast Sender component. Even though it may be
less efficient in some scenarios, such as when the client is geo
graphically farther away from the Web service and the Web service
replicas are close to each other, this design is more robust against
adversary attacks since the clients do not need to know which rep
lica is currently serving as the primary. Without such information,
the adversary can only randomly pick up a replica to attack, instead
of focusing on the primary directly. From the availability perspec
tive, the compromise of the primary can result in much severe per
formance degradation than that of a backup. It is important to
encapsulate internal state information as much as possible to im
prove system robustness. Information encapsulation also reduces
the dependency between the clients and the Web services.

3.3.1.3. BFT-WS global in handler. The Sandesha Global In Handler
performs duplicate filtering on application messages. This is fine
for the server-side, however, it would prevent the client from per
forming voting on the responses. Therefore, the related code is
modified so that no duplicate detection is done on the client-side.
The other functionalities of this handler, e.g., generating acknowl
edgement for the dropped messages, is not changed.

3.3.1.4. BFT-WS in handler. Axis2 dispatches all application mes
sages targeted to the BFT-WS-enabled services and the BFT-WS
control messages to this handler. The BFT-WS In Handler operates
differently for the client and the server-sides.

At the client-side, all application messages are passed immedi
ately to the BFT-WS Voter component for processing. The rest of
control messages are processed by the set of internal message pro
cessors as usual.

At the server side, all application messages are handled by an
internal application message processor. Such messages are stored
in the In Message Queue for ordering and delivery. All BFT-related
control messages, such as pre-prepare, prepare, commit, and view
change messages, are passed to the Total Order Manager for further
processing. The WS-RM-related control messages such as CreateSe
quence and terminate-sequence requests, are handled by the inter
nal message processors available from the original Sandesha2
module, with the exception of the handling of sequence ID creation.

3.3.1.5 BFT-WS voter. This component only exists at the client-side.
The Voter verifies the authenticity of the application messages re
ceived and temporarily stores the verified messages in its data
structure. For each request issued, the Voter waits until it has col
lected f þ 1 identical response messages from different replicas be
fore it invokes the application message handler to process the
response message. When the processing is finished, the message
is passed to the In Message Queue for delivery.

3.3.1.6. Storage manager. This component consists of the In Mes
sage Queue, the Out Message Queue, and a number of other sub
components for sequence management, acknowledgement and
retransmission management, and in-order delivery. This compo
nent comes with the Sandesha2 module. It is instrumented only
for the purpose of performance profiling.

3.3.1.7. Total order invoker. This component replaces the Sandesha
InOrder Invoker. This invoker runs as a separate thread to poll peri
odically the received application messages (stored in the In Mes
sage Queue) for ordering and delivery. To be eligible for ordering,
the message must be in-order within its sequence, i.e., all previous
messages in the sequence has been received and ordered (or being
ordered). If the message is eligible for ordering, the Total Order
Manager is notified to order the message. Note that only the pri
mary initiates the ordering of application messages.

The Total Order Invoker asks the Total Order Manager for the
next message to be delivered. If there is a message ready for deliv
ery, the Invoker retrieves the message from the In Message Queue
and delivers it to the Web service application logic via the Axis2
message receiver.

3.3.1.8. Total order manager. This component is responsible for
imposing a total order on all application requests according to
the BFT algorithm. To facilitate reliable communication among
the replicas themselves, each replica establishes a sequence with
the rest of the replicas. The reliability of the control messages sent
over these sequences are guaranteed by the WS-RM mechanisms
and the Multicast Sender. The Total Order Manager starts an in
stance of the BFT algorithm when a request that is in-order in its
sequence becomes available, and it uses a TotalOrderBean object
to keep track of the ordering status for each application message.
A new TotalOrderBean is created when the first pre-prepare mes
sage for each application message is sent (at the primary) or ac
cepted (at the backups). The Total Order Manager also maintain
an OrderedMessages queue to store the ids of the application re
quest messages that have already been totally ordered. An entry
is removed from the OrderedMessages queue when the referenced
message has been delivered to the application.

The Total Order Manager is also in charge of performing peri
odic checkpointing and garbage collections, and initiating/partici
pating view changes according to the BFT algorithm. When
performing a checkpointing, the manager injects a get_state re
quest message at the head of the OrderedMessages queue and
the message will be subsequently delivered to the application to
produce a snapshot of the current application state. The retrieved
state then is stored in a local data structure. When a new check
point becomes stable, the previous checkpoints, together with all
control messages prior to the checkpoint, are garbage collected.
During recovery, the recovering replica creates a set_state request
message (with the checkpoint as the input parameter) and inserts
it at the head of the OrderedMessages queue for delivery. When
this message is dispatched, the application should restore its state
according to the given checkpoint. State restoration might also be
needed when a slow replica realizes that it has fallen too far behind
(e.g., a message that it has missed is older than the latest stable
checkpoint). In this case, the slow replica sends a fetch-state re
quest to the primary for the latest stable checkpoint and the pri
mary subsequently sends the entire stable checkpoint with proof
(the set of 2f þ 1 checkpoint messages collected) to the requesting
replica. Note that we choose not to follow the hierarchical state
partitions based approach introduced in Castro and Liskov (1999)
because the requirement for doing so is not compatible with the
Java programming model. Our current approach could be opti
mized by considering application-specific state structure.

3.3.2. Configuration II
In Configuraiton II, the components described previously are

virtually unchanged except that in Configuration II the Web ser
vices for the application are loaded only at 2f þ 1 replicas, i.e.,
the remaining f replicas do not deliver the application requests
and they are not bothered with the handling of application re
sponses. The major motivation for using this configuration is to
save physical resources because the replicas that do not load the
application Web services could be used to order requests for multi
ple different Web services, assuming that the throughput of these
Web services are limited by application request processing rather
than by the total ordering of requests.

3.3.3. Configuration III
Similar to Configuration II, this configuration also has the

benefit of saving physical resources. In addition, by completely

Client

(1)
Request

(2)

(3)

(4)
Reply

(1)
Request

Request

Request

Reply

Client

BFTMessage

Reply

C-III

Fig. 6. Major communication steps (other than those for message ordering) for three-tier Web services interactions with different configurations.

separating the agreement nodes and the execution nodes, this
configuration offers potentially better fault isolation and more
flexibility in replication management. In Configurations I and II,
since the execution of application requests is collocated with the
agreement node, the compromise of the Web service logic due to
a malformed application request, or a software bug in the applica
tion logic might disrupt the normal operation of the agreement
process. The separation of the agreement nodes and the execution
nodes enables the use of different replication degrees for the exe
cution nodes and the agreement nodes according to the reliability
analysis results of these two types of nodes.

3.4. Support for multi-tiered Web services interactions

Multi-tiered Web services interactions are common in practice.
In such interactions, nested invocations are made by a Web service
to another Web service, in response to an invocation. In essence,
the Web service acts as the server for its clients and also as a client
for some other Web service when issuing the nested invocations,
as shown in Fig. 6.

In general, the client–server interaction implies a dependency
relationship, i.e., the client depends on the services provided by
the server, which usually imposes stronger dependability require
ment on the server. In the context of multi-tiered Web services
interactions, if a replicated Web service (in the middle-tier) in
vokes another Web service, it is logical to expect that the later is
also replicated for fault tolerance. Even though BFT-WS allows a
replicated Web service to invoke another, non-replicated Web ser
vice, this practice is discouraged because the use of a less depend
able service would reduce one’s own dependability.

Because the BFT-WS architecture described before contains
modules for both client-side and server-side BFT mechanisms,
extending it to support multi-tiered Web services interactions does
not require major changes. Nevertheless, the following enhance
ments are needed.

A sequence between two replicated Web services will be
mapped to a virtual sequence between two groups of replicas in
stead of between a single client and a group of replicas, as de
scribed in Section 3.3.1.2. The mechanism that enables the
mapping is identical to that in Section 3.3.1.2. However, an inter
esting issue arises as to when a server replica should start to order
a request sent by a replicated client. If the primary starts ordering a
request as soon as it receives the message, the system would be
vulnerable to the attack by a faulty client replica, e.g., if the faulty
client replica sends a malformed nested request to all server repli
cas ahead of other (correct) client replicas’ request, it would pre
vent the request from the correct client replicas from being

accepted. Therefore, an additional filtering mechanism (similar to
the voting mechanism for reply messages at the client-side) must
be introduced. The filtering mechanism ensures that a server rep
lica accepts a request from a replicated client if and only if it has
collected p þ 1 identical requests from different client replicas,
where p is the maximum faults tolerated by the replicated client.
(The filtering mechanism should be used by a backend server even
if it is not replicated.) For nested reply messages, the same client-
side voting mechanism as described in Section 3.3.1.5 is employed.

4. Performance evaluation

Our performance evaluation is carried out on a testbed consist
ing of 20 Dell SC440 servers connected by a 100 Mbps Ethernet.
Each server is equipped with a single Pentium D 2.8 GHz proces
sors and 1GB memory running SuSE 10.2 Linux. In this section,
we first present the experimental results to characterize runtime
overhead of BFT-WS during normal operation, and then report
the evaluation of checkpointing and recovery.

4.1. Runtime overhead characterization

An echo test application is used to characterize the runtime
overhead. The client sends a request to the replicated Web service
and waits for the corresponding reply within a loop without any
‘‘think” time between two consecutive calls. The request messages
contains an XML document with varying number of elements, en
coded using AXIOM (AXis Object Model).4 At the replicated Web
service, the request is parsed and a nearly identical reply XML doc
ument is returned to the client. For the multi-tier experiments, the
echo test application is chained to the desirable number of tiers
(i.e., in response to an echo request, the server invokes another
echo server before sending out a reply). For the multi-tier experi
ment, the echo test application is modified such that an intermedi
ate echo server relays the echo request to a backend echo server,
and it would not respond to the request until it has received the re
sponse to the nested echo request.

In each run, 1000 samples are obtained. The end-to-end latency
for the echo operation is measured at the client. The throughput
are measured at the replicated Web service. In our experiment,
we keep the number of replicas to 4 (for Configuration III, 4 repli
cas are used for agreement nodes and 3 replicas are used for Web
services) to tolerate a single Byzantine faulty replica, and vary the

4 Information regarding the Apache Axion can be found at http://ws.apache.org/
commons/axion/.

http://www.ws.apache.org/commons/axion
http://www.ws.apache.org/commons/axion

request sizes in terms of the number of elements in each request,
and the number of concurrent clients.

4.1.1. Client–server interactions
Fig. 7 shows the latency and throughput measurement results.

In Fig. 7a, The end-to-end latency of the echo operation is reported
for BFT replication with 4 replicas and a single client, for all three
configurations (referred in the figure as C-I for Configuration I, C-II
for Configuration II, and C-III for Configuration III). For comparison,
the latency for two other configurations are also included. The first
configuration involves no replication and no digital signing of mes
sages. The second configuration involves no replication, but with
all messages digitally signed. The measurements for these configu
rations reveal the cost of digital signing and verification. As can be
seen, such cost ranges from 90 ms for short messages to 130 ms for
longer messages. The latency overhead of running BFT replication
is significant. However, the overhead is very reasonable consider
ing the complexity of the BFT algorithm. Comparing with the la
tency for the no replication-with-signing configuration, the
overhead for Configuration I ranges from 150 ms for short mes
sages to over 310 ms for longer messages. The increased overhead
for larger messages is likely due to the CPU contention for process
ing of the application requests (by the Web service) and the BFT
replication mechanisms (by our framework). In Configuration II,
the end-to-latency is slightly smaller than that in Configuration I
because the primary is fully dedicated to message ordering and
its operations are not subject to the CPU contention from the appli
cation processing. This effect is more prominent when the message
complexity is higher. In Configuration III, the end-to-end latency is
noticeably larger than Configurations I and II because the addi

tional communication step introduced (i.e., the request and reply
must be relayed between the agreement nodes and the execution
nodes).

The throughput measurement results for different request sizes
are shown in Fig. 7b–d. Note that the results for the no replication
configurations include digital signing and verification of all mes
sages for fair comparison. It can be seen from Fig. 7b that the
throughput degradation is about 50% when BFT replication (Con
figuration I) is enabled for short request sizes. Again, this is antic
ipated. In Configuration I, even with optimal batching for 8
concurrent clients, the primary must multicast 2 control messages
(pre-prepare and commit) and receive 6 control messages (3 pre
pare and 3 commit messages from backups) to order the 8 applica
tion requests (recall that our measurements are carried out for
normal operation with no replica failure). The approximately 50%
reduction in throughput for short messages is nearly optimal.
When the application request length and complexity is increased,
the throughput reduction becomes far less, as shown in Fig. 7c
and d. In Configuration II, the throughput is slightly higher than
that for Configuration I, again likely due to the less CPU contention.
In Configuration III, the throughput is lower than that for Configu
ration I because of two reasons: (1) the extra communication step
incurs additional CPU cycles for sending/receiving, and for digital
signature verification, and (2) due to the larger end-to-end latency
in Configuration III, the request arrival rate under the same number
of concurrent clients is lower than that in Configurations I and II.

4.1.2. Multi-tier interactions
The results of the performance measurements for a three-tier

interaction between a set of clients (up to eight) and two Web ser

0

 200

 400

 600

 800

 1000

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
m

ill
is

ec
on

ds
)

No Replication, without Signing
No Replication, with Signing

BFT Replication (C-I)
BFT Replication (C-II)

BFT Replication (C-III)

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

ca
lls

/s
ec

on
d)

Number of Concurrent Clients

100 Elements Per Call

Without Replication
With BFT Replication (C-I)

With BFT Replication (C-II)
With BFT Replication (C-III)

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

ca
lls

/s
ec

on
d)

Number of Concurrent Clients

500 Elements Per Call

Without Replication
With BFT Replication (C-I)

With BFT Replication (C-II)
With BFT Replication (C-III)

 0

 1

 2

 3

 4

 5

 6

 7

T
hr

ou
gh

pu
t (

ca
lls

/s
ec

on
d)

1000 Elements Per Call

Without Replication
With BFT Replication (C-I)

With BFT Replication (C-II)
With BFT Replication (C-III)

100 200 300 400 500 600 700 800 900 1000 1 2 3 4 5 6 7 8

Request Size (Number of Elements) Number of Concurrent Clients

Fig. 7. BFT-WS performance during normal operation. (a) The end-to-end latency. For comparison, the latency for the no-replication configuration with and without digital
signing of messages are included as well. (b)–(d) Throughput vs. number of concurrent clients with different message sizes.

 1800 20

 181600
 16

 14
 1400

 1200

Without Replication
BFT Replication (C-I)

BFT Replication (C-II)
BFT Replication (C-III)

 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

ca
lls

/s
ec

on
d)

Without Replication
With BFT Replication (C-I)

With BFT Replication (C-II)
With BFT Replication (C-III)

1 2 3 4 5 6 7 8

E
nd

-t
o-

E
nd

 L
at

en
cy

 (
m

ill
is

ec
on

ds
)

12

 10

 8

 1000

 800

 600
 6

 4
 400 2

 200 0

Request Size (Number of Elements) Number of Concurrent Clients

Fig. 8. BFT-WS performance for a three-tier echo application. (a) The end-to-end latency. (b) Throughput vs. number of concurrent clients with a request size of 100 elements.

vices under different configurations are shown in Fig. 8. As can be
seen in Fig. 8a, the end-to-end latency virtually doubled that of the
client–server experiment. This is expected due to the extra com
munication steps as illustrated in Fig. 6. Correspondingly, the
throughput observed in Fig. 8b is much smaller than that of the cli
ent–server experiment, under the same number of concurrent cli
ents because the request arrival rate is virtually half of the value in
the client–server experiment.

4.2. Evaluation of checkpointing and recovery

For all the experiments in this section, only Configuration I is
used, and the number replicas is kept at 4.

4.2.1. Checkpointing
For the purpose of garbage collection and recovery, each replica

periodically performs checkpointing of its state. The cost of taking
a checkpointing is application-dependent because it is dominated
by the size and complexity of the application state. In our experi
ment, the application state consists of multiple XML elements,
and its size (in terms of the number of XML elements) is provided
via command-line argument when the replicas are started (i.e., the
state size is fixed during the life-cycle of each replica for the sake of
our measurements). The measurements are carried out in the pres
ence of a single client that continuously issues requests to the rep
licas. A checkpoint is taken for every 10 requests ordered and
executed. During these measurements, no fault is introduced.

The checkpointing latency, i.e., the time it takes for a replica to
obtain a checkpoint, for different state sizes (in terms of the num
ber of elements) is shown in Fig. 9a. Also shown in Fig. 9b is the
measured average time for a checkpoint to become stable (i.e.,
when 2f þ 1 ¼ 3 checkpoint messages for the same sequence has
been received) since a replica multicasts a checkpoint message.

70

4.2.2. State transfer
Because it rarely happens for the replica to run so slowly that it

requires a state transfer to catch up with other replicas, we mea
sure the state transfer time by restarting a replica with the pres
ence of a single client (that continuous issues requests to the
replicas). When the replica restarts, it would send a fetch-state re
quest to the primary, wait for the latest stable checkpoint with
proof, and restore its state accordingly. The state transfer latency
is the time from the sending of the fetch-state request until the
replica restores its state. The measurement results are summarized
in Fig. 10. The state transfer latency is dominated by the time it
takes for the primary to transmit its latest stable checkpoint with
proof to the recovering replica, and the time it takes for the recov
ering replica to restore its state, both exhibiting strong dependency
on the checkpoint size.

4.2.3. View change
In this experiment, we introduce view changes by shutting

down the primary of the current view and then measure the view
change latency at the new primary for the next view in the pres
ence of a single client. The view change latency is the time between
the sending of a view-change request and the installation of the
new view (i.e., the sending of the new-view message after the
new primary has collected 2f þ 1 ¼ 3 view-change requests and
completed the calculation for the new view).

Since the replicas are running on identical hardware, we do not
observe message losses and no state-transfer is triggered in this
experiment. Furthermore, the view change induced by shutting
down the primary always succeeds, i.e., the primary in the new view
is non-faulty and our testbed offers sufficient synchrony for the view
change to complete within the preset view change timeout of 2 s.

As shown in Fig. 11, the view change latency has strong depen
dency on the checkpoint interval. This is because a large check

0

T
im

e
to

 B
ec

om
e

St
ab

le
 (

m
ill

is
ec

on
ds

)

0

C
he

ck
po

in
tin

g
L

at
en

cy
 (

m
ill

is
ec

on
ds

) 100
 60

 50

 40

 80

 60

 30

 20
 40

 20
 10

 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Checkpoint Size (Number of Elements) Checkpoint Size (Number of Elements)

Fig. 9. (a) Checkpointing latency with respect to the size of the state. (b) The average time for a checkpoint to become stable.

V
ie

w
 C

ha
ng

e
L

at
en

cy
 (

m
ill

is
ec

on
ds

)
St

at
e

T
ra

ns
fe

r
L

at
en

cy
 (

m
ill

is
ec

on
ds

)
350

 300

 250

 200

 150

 100

 50

 0

Checkpoint Size (Number of Elements)

Fig. 10. State transfer latency.

 100 200 300 400 500 600 700 800 900 1000

1000

 800

 600

 400

 200

 0

Checkpointing Interval (Number of Requests)

Fig. 11. View change latency.

point interval often leads to the inclusion of the pre-prepare and
prepare records for many requests (the view change request must
contain records for each request ordered after the latest stable
checkpoint). This observation reveals that in practical deployments
of BFT frameworks, we must select an appropriate checkpoint
interval so that a good balance can be struck between achieving
good normal operation performance and ensuring relatively short
fail-over latencies.

5. Related work

A large number of high availability solutions for Web services
have been proposed in the last several years (Birman, 2004; Chan
et al., 2006; Dialani et al., 2002; Dobson, 2006; Erradi and Mahesh
wari, 2005; Fang et al., 2007; Looker et al., 2005; Merideth et al.,
2005; Moser et al., 2006; Pallemulle et al., 2008). Most of them
are designed to cope with crash faults only and very few offered
Byzantine fault tolerance capability (Merideth et al., 2005, 2008,
2005). While SWS (Li et al., 2005) proposed a few protocols to
achieve Byzantine fault tolerance for Web services, no prototype
system is implemented and only simulation results are reported.

Similar to our work, Thema (Merideth et al., 2005) also relies on
the BFT algorithm to ensure total ordering of application messages.
However, a wrapper is used to interface with an existing imple
mentation of the BFT algorithm (Castro and Liskov, 1999), which
is based on IP multicast, rather than the standard SOAP/HTTP
transport, as such, it suffers from the interoperability problem
we mentioned in the beginning of this paper. This approach limits
its practicality.

Very recently, we became aware of Perpetual-WS (Pallemulle
et al., 2008), which is another BFT framework for Web services. It
is also implemented on top of Axis2 by exploiting Axis2’s plugga
bility. Therefore, similar to our BFT-WS framework, it can be cate

10 20 30 40 50 60 70 80 90 100

gorized as the integrated approach. (Perpetual-WS offers a set of
proprietary APIs for Axis2 clients to enable asynchronous commu
nication. Presumably, such APIs could be dropped when Axis2 adds
such feature in the future.) Furthermore, Perpetual-WS supports
asynchronous communication for multi-tiered applications, which
could offer much better throughput than BFT-WS. However, Per
petual-WS does not support WS-RM, which may limit its adoption
for practical systems.

6. Conclusion

In this paper, we presented the design and implementation of
BFT-WS, a Byzantine fault tolerance middleware framework for
Web services. It uses standard Web services technology to build
the Byzantine fault tolerance service, and hence, it is more suitable
to achieve interoperability. Furthermore, BFT-WS is backward
compatible with WS-RM. BFT-WS is carefully designed and imple
mented so that when there is no need to replicate a Web service, a
single instance of the Web service can run with the default WS-RM
implementation instead of our BFT mechanisms. We also docu
mented in detail the architecture and the major components of
our framework. We anticipate that such descriptions are useful
to practitioners as well as researchers working in the field of highly
dependable Web services. Finally, our framework has been care
fully tuned to exhibit optimal performance, as shown in our perfor
mance evaluation results.

References

Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M., Wylie, J.J., 2005. Fault-
scalable Byzantine fault-tolerant services. In: Proceedings of ACM Symposium
on Operating System Principles.

Bilorusets, R. et al., 2005. Web Services Reliable Messaging Specification. URL
<http://www.ibm.com/developerworks/library/specification/ws-rm>.

Birman, K., 2004. Adding high availability and autonomic behavior to Web services.
In: Proceedings of the 26th International Conference on Software Engineering,
Scotland, UK.

Castro, M., Liskov, B., 1999. Practical Byzantine fault tolerance. In: Proceedings of
the Third Symposium on Operating Systems Design and Implementation, New
Orleans, USA.

Castro, M., Rodrigues, R., Liskov, B., 2003. BASE: using abstraction to improve fault
tolerance. ACM Transactions on Computer Systems 21 (3), 236–269.

Chan, P., Lyu, M., Malek, M., 2006. Making services fault tolerant. Lecture Notes in
Computer Science 4328, 43–61.

Chen, L., Avizienis, A., 1995. N-version programming: a fault-tolerance approach to
reliability of software operation. In: Proceedings of the 25th International
Symposium on Fault-Tolerant Computing, p. 113.

Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L., 2006. HQreplication: a
hybrid quorum protocol for Byzantine fault tolerance. In: Proceedings of the
Seventh Symposium on Operating Systems Design and Implementations,
Seattle, Washington.

Dialani, V., Miles, S., Moreau, L., Roure, D.D., Luck, M., 2002. Transparent fault
tolerance for web services based architecture. Lecture Notes in Computer
Science 2400, 889–898.

Dobson, G., 2006. Using WS-BPEL to implement software fault tolerance for Web
services. In: Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications.

Erradi, A., Maheshwari, P., 2005. A broker-based approach for improving Web
services reliability. In: Proceedings of the IEEE International Conference on Web
Services, Orlando, Florida.

Fang, C., Liang, D., Lin, F., Lin, C., 2007. Fault tolerant web services. Journal of
Systems Architecture 53, 21–38.

Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E., 2007. Zyzzyva: speculative
Byzantine fault tolerance. In: Proceedings of ACM Symposium on Operating
System Principles.

Lamport, L., Shostak, R., Pease, M., 1982. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4 (3), 382–401.

Li, W., He, J., Ma, Q., Yen, I.-L., Bastani, F., Paul, R., 2005. A framework to support
survivable web services. In: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium, p. 93102.

Looker, N., Munro, M., Xu, J., 2005. Increasing web service dependability through
consensus voting. In: Proceedings of the 29th Annual International Computer
Software and Applications Conference. pp. 66–69.

Merideth, M., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan, P., 2005.
Thema: Byzantine-fault-tolerant middleware for web services applications. In:
Proceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 131–
142.

http://www.ibm.com/developerworks/library/specification/ws-rm

Moser, L., Melliar-Smith, M., Zhao, W., 2006. Making web services dependable. In:
Proceedings of the First International Conference on Availability, Reliability and
Security, Vienna University of Technology, Austria, pp. 440–448.

Nadalin, A., Kaler, C., Hallam-Baker, P., Monzillo, R., 2004. Web Services Security:
SOAP Message Security 1.0. OASIS, Oasis Standard 200401 Edition.

Pallemulle, S.L., Thorvaldsson, H.D., Goldman, K.J., 2008. Byzantine fault-tolerant
Web services for n-tier and service oriented architectures. In: Proceedings of the
28th International Conference on Distributed Computing Systems, pp. 260–268.

Salas, J., Perez-Sorrosal, F., Patino-Martinez, M., Jimenez-Peris, R., 2006. Ws
replication: a framework for highly available web services. In: Proceedings of
the 15th International Conference on World Wide Web, Edinburgh, Scotland,
pp. 357–366.

Schneider, F., 1990. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys 22 (4), 299–319.

Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., Dahlin, M., 2003. Separating
agreement from execution for byzantine fault tolerant services. In: Proceedings
of the ACM Symposium on Operating Systems Principles. Bolton Landing, NY,
USA, pp. 253–267.

Zhao, W., 2007a. BFT-WS: a Byzantine fault tolerance framework for Web services.
In: Proceedings of the Middleware for Web Services Workshop, Annapolis, MD,
USA, pp. 89–96.

Zhao, W., 2007b. Byzantine fault tolerance for nondeterministic applications. In:
Proceedings of the Third IEEE International Symposium on Dependable,
Autonomic and Secure Computing. Loyola College Graduate Center, Columbia,
MD, USA, pp. 108–115.

Zhao, W., Moser, L.E., Melliar-Smith, P.M., 2004. Design and implementation of a
pluggable fault tolerant CORBA infrastructure. Cluster Computing: The Journal
of Networks, Software Tools and Applications Special issue on Dependable
Distributed Systems 7 (4), 317–330.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Design and Implementation of a Byzantine Fault Tolerance Framework for Web Services
	Original Citation
	Repository Citation

