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Design and implementation of a Byzantine fault tolerance framework 
for Web services '" 

Wenbing Zhao * 
Df'ponmenr of f/l'C"lrirol and (ompuler fnginf'l'ring. Cleveland SIOlt Universicy, 2121 Euclid Ave, Cleveland, OH 441/5, United Slares 

1. Introduction 

Driven by business needs dnd the availability of the latest Web 
services technology. we have seen increasing reliance on services 
provided over the Web. This undoubtedly has increased the 
dependability requirement on these services. Recognizing this 
need, the Web services community has proposed the Web Services 
Reliable Messaging (WS~RM) specification (Bilorusets et aI., 2005) 
and it is recently ratified by OASIS (Organization for the Advance-
ment of Structured Information Standards). WS-RM is a very good 
staning point to increase the reliability of Web services interactions 
and furthe rmore it has been widely supported by many commercial 
and open-source fra meworks.1 

However. for many mission-critical Web services. WS-RM 
might be inadequate to meet the high reliability needs. First of 
all, WS-RM does nor guarantee the high availability of Web ser­
vices, which would require the use of space redundancy, i.e., the 
Web services must be replicated. Second, conSidering the unt rust­
ed communication environment in which these services operate. 

there are legitimate concerns on the security of the Web services 
because if a Web service is compromised by an adversaty, not only 
may it be made unavailable, perhaps more seriously, it may be ren­
dered to provide false/ invalid information to the clients. Further­
more. when the service is replicated. a new type of attacks could 
arise, i.e., both a faulty client and a faulty server replica could dis­
seminate conflicting information to different replicas, aiming to 
destroy strong replica consistency. which is an essential require­
ment for state machine replication (Schneider. 1990). 

To control these types of threats. the arbitrary fault model must 
be adopted. An arbitrary fault, often referred to as a Byzantine fault 
(Lamport et aI., 1982 ), encompasses both a benign fau lt such as a 
crash fault. and a malicious fault imposed by an adversary. In the 
presence of Byzantine faults, WS-RM cannot guarantee the integ­
rity of the Web services. e.g .. a comprom ised Web service may 
not adhere to the exactly-once delivery policy even if the Web ser­
vice is configured to do so. As recognized by many researchers 
(Castro and liskov, 1999; Yin et al.. 2003), Byzantine fault tolerance 
(BFf) seems to be a promising approach to achieving highly secure 
and reliable Web services. 

In this article. we describe such a Byzantine fault tolerance 
framework for Web services, referred to as BFf-WS in thi s paper. 
Our framework diffe rs from similar work primarily in the following 
two aspects: 

(1) BFf-WS 	is backward compatible with WS-RM. Due to the 
widespread adoption of WS-RM, we anticipate that many 
reliability-awa re Web services are already supporti ng WS­
RM. It seems to be natural to upgrade these Web services 
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Fig. 1. (a) The reliable messaging model in WS-RM. (b) The reliable messaging protocol in WS-RM. 

for Byzantine fault tolerance. The compatibility of our 
framework with WS-RM means that these Web services 
would need virtually no changes except the addition of state 
retrieval and restoration handlers. We believe that this 
would ease the adoption of Byzantine fault tolerance tech­
nology for Web services. 

(2) Our framework is based entirely on Web services core tech­
nology (such as SOAP and WSDL) and the WS-* standards, 
without resorting to any proprietary communication proto­
cols or APIs. 

BFT-WS is implemented on top of Sandesha2,2 which is an open-
source implementation of the WS-RM standard for Apache Axis2 in 
Java. In BFT-WS, all fault tolerance mechanisms operate on top of 
the standard SOAP messaging framework for maximum interopera­
bility. BFT-WS inherits Sandesha2’s pluggability, and hence, it re­
quires minimum changes to the Web applications (both the client 
and the service sides). The core fault tolerance mechanisms in BFT­
WS are based on the well-known Castro and Liskov’s BFT algorithm 
(Castro and Liskov, 1999). The framework also incorporated the idea 
of the separation of agreement (on the total ordering of messages) 
and execution introduced by Yin et al. (2003) so that the BFT-WS 
framework can be used in several different configurations, and 
thereby increasing the flexibility of BFT-WS for use in practical 
systems. 

The performance evaluation of BFT-WS has been carefully con­
ducted. The results show that the BFT-WS framework indeed intro­
duces only moderate runtime overhead verses the original 
Sandesha2 framework considering the complexity of the Byzantine 
fault tolerance mechanisms. 

This paper is structured as follows. Section 2 introduces some 
necessary background information. Section 3 describes the design 
rationale, the system models, and the architecture of BFT-WS. Sec­
tion 4 presents the performance evaluation results. Section 5 de­
scribes related work, and Section 6 concludes the paper. 

2. From reliable messaging to Byzantine fault tolerance 

2.1. Web services reliable messaging 

The Web services reliable messaging (WS-RM) standard de­
scribes a reliable messaging (RM) protocol between two endpoints, 
termed as RM source (RMS) and RM destination (RMD). The reli­
able messaging model in the WS-RM standard and an example of 
the reliable messaging protocol are shown in Fig. 1a and b, respec-

The Apache Sandesha2 project, http://ws.apache.org/sandesha/sandesha2/. 

tively. The core concept introduced in WS-RM is sequence. A se­
quence is a unidirectional reliable channel between the RMS and 
the RMD. As shown in Fig. 1b, at the beginning of a reliable conver­
sation between the two endpoints, a unique sequence (identified 
by a unique sequence ID) must first be created (through the Create-
Sequence request and response). The sequence is terminated when 
the conversation is over (through the TerminateSequence request 
and response). For each message sent over the sequence, a unique 
message number must be assigned to it. The message number 
starts at 1 and is incremented by 1 for each subsequent message. 
The reliability of the messaging is achieved by the retransmission 
and positive acknowledgement mechanisms. At the RMS, a mes­
sage sent is buffered and retransmitted until the corresponding 
acknowledgement from the RMD is received, or until a predefined 
retransmission limit has been exceeded. For efficiency reason, the 
RMD might not send acknowledgement immediately upon receiv­
ing an application message, and the acknowledgements for multi­
ple messages can be piggybacked with another application 
message in the response sequence, or be aggregated in a single ex­
plicit acknowledgement message. 

Because it is quite common for two endpoints to engage in two-
way communications, the RMS can include an Offer element in its 
CreateSequence request to avoid an explicit new sequence estab­
lishment step for the traffic in the reverse direction. 

Furthermore, WS-RM defines a set of delivery assurances, 
including AtMostOnce, AtLeastOnce, ExactlyOnce, and InOrder. 
The meaning of these assurances are self-explanatory. The InOrder 
assurance can be used together with any of the first three assur­
ances. The strongest assurance is ExactlyOnce combined with InOr­
der delivery. 

The WS-RM standard has been widely supported and there exist 
many implementations, most of which are commercial. We choose 
to use Sandesha2 for this research, due to its open-source nature 
and its support for Axis2, the second generation open-source SOAP 
engine that enables pluggable modules. 

2.2. Byzantine fault tolerance 

Byzantine fault tolerance (BFT) refers to the capability of a sys­
tem to tolerate Byzantine faults. In a client–server system, it can be 
achieved by replicating the server and by ensuring all server repli­
cas to execute the same request in the same order. The latter 
means that the server replicas must reach an agreement on the 
set of requests and their relative ordering despite Byzantine faulty 
replicas and clients. Such an agreement is often referred to as Byz­
antine agreement (Lamport et al., 1982). 

Byzantine agreement algorithms had been too expensive to be 
practical until Castro and Liskov invented the BFT algorithm men­2 
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tioned earlier (Castro and Liskov, 1999). The BFT algorithm is de­
signed to support client–server applications running in an asyn­
chronous distributed environment with the Byzantine fault 
model. The implementation of the algorithm contains two parts. 
At the client-side, a lightweight library is responsible to send the 
client’s request to the primary replica, to retransmit the request 
to all server replicas on the expiration of a retransmission timer 
(to deal with the primary faults), and to collect and vote on the re­
plies. The main BFT algorithm is executed at the server-side by a 
set of 3f þ 1 replicas to tolerate f Byzantine faulty replicas. One 
of the replicas is designated as the primary while the others are 
backups. 

In the BFT framework, a replica is modeled as a state machine. 
The replica is required to run (or rendered to run) deterministi­
cally. The state change is triggered by remote invocations on the 
methods offered by the replica. 

As shown in Fig. 2, the normal operation of the (server-side) BFT 
algorithm involves three phases. During the first phase (called pre-
prepare phase), the primary multicasts a pre-prepare message con­
taining the client’s request, the current view and a sequence num­
ber assigned to the request to all backups. 

A backup verifies the request message and the ordering infor­
mation. If the backup accepts the message, it multicasts to all other 
replicas a prepare message containing the ordering information 
and the digest of the request being ordered. This starts the second 
phase, i.e., the prepare phase. A replica waits until it has collected 
2f prepare messages from different replicas (including the message 
it has sent if it is a backup) that match the pre-prepare message be­
fore it multicasts a commit message to other replicas, which starts 
the third phase (i.e., commit phase). The commit phase ends when 
a replica has received 2f matching commit messages from other 
replicas. At this point, the request message has been totally or­
dered and it is ready to be delivered to the server application if 
all previous requests have already been delivered. 

The BFT framework uses a number of optimizations to improve 
the runtime performance under normal operation. The most rele­
vant optimization related to this work is the batching mechanism. 
When batching is enabled, the primary postpones total ordering of 
a request until there are already k batches of messages being or­
dered, where k is a tunable parameter and it is often set to 1. When 
the primary is ready to order a new batch of messages, it assigns 
the next sequence number for the entire group of application re­
quests. This mechanism could significantly improve the system 
throughput under heavy request load. 

For garbage collection, each replica periodically takes a snap­
shot of its state (referred to as a checkpoint) and multicasts a 
checkpoint message including the sequence number n of the last 
request whose execution is reflected in the checkpoint, the digest 

of the checkpoint d, and the replica id. A checkpoint becomes stable 
when a replica has collected 2f þ 1 checkpoint messages for the 
same sequence number n with the same digest d signed by differ­
ent replicas. At this point, the replica can discard all control mes­
sages (such as pre-prepare, prepare and commit messages) with 
sequence number less than or equal to n, and all earlier check­
points and checkpoint messages. A stable checkpoint is also useful 
to bring a slow replica up-to-date. 

If the primary or the client is faulty, a Byzantine agreement on 
the ordering of a request might not be reached, in which case, a 
new view is initiated, triggered by a timeout on the current view. 
A different primary is designated in a round-robin fashion for each 
new view installed. 

Since the publication of the seminal work of Castro and Liskov 
(1999), a number of alternative BFT algorithms have been 
proposed (Cowling et al., 2006; Abd-El-Malek et al., 2005; Kotla 
et al., 2007), each offers better performance in some circumstances. 
Among them, HQ (Cowling et al., 2006) and QU (Abd-El-Malek 
et al., 2005) both assume that the BFT infrastructure knows if a 
request will update the server state. In practice, however, it might 
not be feasible for a generic BFT infrastructure to gain such knowl­
edge unless it is customized to run a specific application. Despite 
the fact that Zyvzzya (Kotla et al., 2007) improves the runtime per­
formance significantly during normal operation (i.e., when there is 
no fault) in most cases, the recovery mechanisms (needed to han­
dle primary failures) are considerably more complicated and we 
are not aware of any implementation of the complete Zyvzzya 
algorithm. Therefore, we choose to use the Castro and Liskov’s 
BFT algorithm in our framework. In particular, the availability of 
a publicly-accessible C++ implementation of Castro and Liskov’s 
algorithm is instrumental for us to build a working prototype of 
BFT-WS in a reasonable time-frame. 

3. Design and implementation of BFT-WS 

In this section, we first elaborate the rationale on the design of 
BFT-WS. Then, we present the system models and the architecture 
of our framework. 

3.1. Rationale for our approach 

Based on our previous experiences in building fault-tolerant 
CORBA frameworks (Zhao et al., 2004), we classify typical ap­
proaches to building Byzantine fault tolerance (BFT) middleware 
frameworks into the following three categories. 

(1)	 Application Programming Interface (API) Based Approach. In  
this approach, a Web server application must program the 
fault tolerance logic, such as replication group creation, join 
and leave, explicitly into the application logic. The main ben-
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vice application via a group communication system (Salas 
et al., 2006), or a consensus-based algorithm (Castro and Lis­
kov, 1999). The interception layer also injects additional 
mechanisms for fault tolerance, such as state synchroniza­
tion among the replicas and voting at the client. Interception 
is typically achieved by using a separate proxy process, as in 
Salas et al. (2006), or by using an under-the-SOAP-engine 
hook, as in Merideth et al. (2005). The benefit of this 
approach is that existing and future Web services can be 
rendered fault-tolerant nearly transparently (with the 
exception that the application must provide a way for the 
fault tolerance framework to retrieve and restore the appli­
cation state, which is a common requirement for all fault tol­
erance frameworks). However, the main issue of this 
approach lies in its use of proprietary messaging protocols. 
This is incompatible with the design principles of Web ser­
vices, which call for transport independence and mandate 
SOAP-based communications. The use of proprietary mes­
saging protocols compromises the interoperability of Web 
services. Secondly, the use of a separate proxy process or 
an under-the-SOAP-engine hook often leads to repeated 
parsing of SOAP messages (as we will show later in this 
paper, not all SOAP messages should be totally ordered, 
and these messages must be identified prior to the total 
ordering operation), which can lead to performance 
degradation. 

(3)	 Integration Based Approach. In this approach, the fault toler­
ance mechanisms are built directly into the SOAP engine 
and only standard Web services messaging and transport 
protocols are used. For this approach to be practical, it 
requires that the SOAP engine support pluggable modules 
for user customization. Fortunately, the Apache Axis2 SOAP 
engine,3 the most popular open-source SOAP engine, satis­
fies this requirement. We believe that this approach pos­
sesses the benefits of the other two approaches while 
avoiding their drawbacks: 

•	 Fault tolerance in effect is still provided as a Web service. 
The difference between the integration based approach 
and the API based approach is that, in the integration 
based approach, the fault tolerance Web service opera­
tions are invoked not directly by the Web application, 
but by the fault tolerance modules plugged into the SOAP 
engine, which avoids the problem of the API based 
approach. 

•	 The benefit of fault tolerance transparency in the inter­
ception based approach is obviously satisfied as well 
because the invocations on the fault tolerance services 
are carried out transparently by the plugin modules. The 
only obligation from the user is to specify the fault toler­
ance parameters such as the replication degree in a con­
figuration file, which can be changed during the 
deployment phase. Furthermore, because the fault toler­
ance mechanisms are built into the plugin modules in 
the integration based approach, standard Web services 
messaging and transport protocols are used for replica 
coordination and recovery, and hence, avoiding the prob­
lems of the interception based approach. 

We believe that any type of middleware for Web services must 
use standard Web services technologies and must follow the de­
sign principles of Web services, and fault tolerance middleware 
for Web services is no exception. Therefore, we decide to follow 

The Apache Axis2 project, http://ws.apache.org/axis2/. 

the integration based approach to develop a Byzantine fault toler­
ance framework for Web services. Furthermore, we strive to build a 
framework that not only uses basic Web services techniques such 
as SOAP and WSDL, but is compatible with existing WS-* specifica­
tions as well (Web services would not have been widely adopted 
without these WS-* specifications). In particular, our framework 
is designed to be backward compatible with the WS-RM standard 
(Bilorusets et al., 2005) because Byzantine fault tolerance is logi­
cally the next step beyond reliable messaging for mission-critical 
Web services. By offering this backward compatibility, we hope 
to make it possible to upgrade existing WS-RM compliant applica­
tions for Byzantine fault tolerance with minimum modifications. 

3.2. System models 

We assume that the Web services applications operate in an 
asynchronous distributed environment. To ensure liveness, it is 
necessary to assume certain synchrony, i.e., the message transmis­
sion and processing delay has an asymptotic upper bound (Castro 
and Liskov, 1999). This bound is dynamically explored in the BFT 
algorithm in that each time a view change occurs, the timeout 
for the new view is doubled. We assume that the synchronous 
communication style is used by the Web services application, i.e., 
a client (or a middle-tier server) would issue a request (or a nested 
request) to a server and then is blocked waiting for the correspond­
ing reply. 

Both the client and the server can be Byzantine faulty, i.e., they 
are subject to arbitrary faults (both hardware and malicious faults). 
To achieve Byzantine fault tolerance, the server is replicated with 
3f þ 1 replicas to tolerate up to f faulty nodes. We assume that 
the server replicas are sufficiently diversified so that they fail inde­
pendently under Byzantine attacks. A common approach to achiev­
ing diversity is to employ the n-version programming technique 
(Chen and Avizienis, 1995) where each replica is implemented 
according to a different design and possibly using a different pro­
gramming language. For some applications, such as the networked 
file system, there already exist many off-the-shelf different imple­
mentations, which could readily be used for Byzantine fault toler­
ance (Castro et al., 2003). 

Each replica is modeled as a state machine, consequently, we 
assume that the application would run (or would be rendered to 
run) deterministically. The state change is triggered by remote 
invocations on the methods offered by the replica. We are fully 
aware that practical applications often exhibit non-deterministic 
behaviors. How to render such applications to run deterministi­
cally has been studied by many researchers (Castro and Liskov, 
1999; Yin et al., 2003; Zhao, 2007b) and it is out of the scope of this 
paper. 

For the purposes of checkpointing and recovery, we require that 
two additional operations, one for get_state and the other for set_­
state, be defined in the WSDL file for the Web services to be repli­
cated. When it is needed to retrieve the application state, a 
get_state request message is delivered to the application and the 
reply should contain a snapshot of the application’s current state. 
Likewise, when it is time to restore the application state according 
to a checkpoint, a set_state request message is delivered to the 
application. 

We assume that all messages are protected by a digital signa­
ture to ensure their integrity and the adversaries have limited 
computing power so that they cannot break the digital signatures 
of correct replicas. Ideally, we could replace digital signatures by 
message authentication codes in most of cases to reduce the com­
putational cost, and hence improve the runtime performance of 
our framework. However, because the Rampart library (an open-
source implementation of the WS-Security standard) (Nadalin 
et al., 2004) that we use in our framework does not yet support 3 
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message authentication code, we decide to use digital signatures to 
protect all messages exchanged. The implementation of our frame­
work can be upgraded relatively easily to using message authenti­
cation code when it becomes available in the future. For normal 
operation, the changes would be made mainly at the security han­
dler, without disrupting other parts of the framework. 

Finally, we assume that the clients who are interested in con­
suming the replicated Web services would negotiate a contract 
with the services provider and download all necessary software 
(including the client library for the BFT-WS framework) to get 
started. The initial locations of the service replicas provided to 
the client could be generic, and the requests from the client would 
then be dispatched (by a load balancer, for example) to the set of 
replicas designated for the client based on the client’s identity 
and service contact. Dynamic service discovery, while an interest­
ing topic, is out of the scope of this paper. 

3.3. BFT-WS architecture 

For increased flexibility, BFT-WS offers three different configu­
rations, as shown in Fig. 3. The BFT-WS system architecture and 
the main components are first introduced for configuration I. The 
variations needed to accommodate the other two configurations 
are discussed subsequently. We conclude this section by discussing 
the support for advanced interaction patterns between Web 
services. 

The configuration I follows the traditional BFT style where total 
ordering and execution of application requests are handled by the 
same set of 3f þ 1 replicas to tolerate up to f faulty replicas, and the 
configurations II and III are based on the idea of separation of 
agreement and execution (Yin et al., 2003). The difference between 
the latter two configurations is that in configuration II, 2f þ 1 of the 
3f þ 1 agreement nodes are collocated with the 2f þ 1 execution 
nodes, and in configuration III, the 3f þ 1 agreement nodes are 
physically separated from the 2f þ 1 execution nodes, and there­
fore, they can be used to provide agreement service for multiple 
Web services. 

3.3.1. Configuration I 
The overview of the BFT-WS architecture for configuration I is 

shown in Fig. 4. BFT-WS is implemented as an Axis2 module. Dur­
ing the out-flow of a SOAP message, Axis2 invokes the BFT-WS Out 
Handler during the user phase, and invokes the Rampart handler 
for message signing during the security phase. Then, the message 
is passed to the HTTP transport sender to send to the target end­
point. During the in-flow of a SOAP message, Axis2 first invokes 
the default handler for preliminary processing (to find the target 
object for the message based on the URI and SOAP action specified 
in the message) during the transport phase, it then invokes the 
Rampart handler for signature verification during the security 
phase. This is followed by the invocation of the BFT-WS Global In 
Handler during the dispatch phase. This handler performs tasks 
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Fig. 3. Three alternative configurations of the BFT-WS framework. 
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that should be done prior to dispatching, such as duplicate sup­
pression at the server-side. If the message is targeted toward a 
BFT-WS-enabled service, the BFT-WS In Handler is invoked for fur­
ther processing during the user-defined phase, otherwise, the mes­
sage is directly dispatched to the Axis2 message receiver. For 
clarity, Fig. 4 shows only a one-way flow of a request from the cli­
ent to the replicated Web service. The response flow is similar. Also 
not shown in Fig. 4 are the multicast process and the internal com­
ponents of the BFT-WS module. 

The main components of the BFT-WS module are illustrated in 
Fig. 5. The client-side bears a lot of similarity to the Sandesha2 cli­
ent-side module, with the exception of the addition of BFT-WS Vo­
ter, the replacement of Sandesha Sender by a Multicast Sender, and 
the replacement of the Sandesha Out Handler by the BFT-WS Out 
Handler. The server-side contains more additions and modifica­
tions to the Sandesha2 components. Furthermore, a set of actions 
are added to the module configuration to allow total ordering of 
messages, view change management and replica state synchroni­
zation. Besides the Multicast Sender, the server-side introduced a 
Total Order Manager, and replaced the original Global In Handler, 
In Handler, and InOrder handler, by BFT-WS Global In Handler, 
BFT-WS In Handler and Total Order Invoker, respectively. The stor­
age framework in Sandesha2 is not changed. The functions of these 
components (both Sandesha2 original and the modified or new 
components) are elaborated in the following subsections, starting 
with the components dealing with the out-flow, and then the com­
ponents for the in-flow. We note that the modification to Sandes­
ha2 is carried out in a way such that BFT-WS is backward 
compatible with Sandesha2, i.e., if BFT is not needed, the system 
can be reconfigured to support only WS-RM without the need of 
re-compilation or re-deployment of the Web services. Similarly, 
the BFT functionality can be turned on dynamically when the need 
occurs. 

3.3.1.1. BFT-WS out handler. This handler performs out-flow pro­
cessing for reliable messaging. In particular, it generates a Create-
Sequence request when the application sends the first message of a 
new sequence, and sends a terminate-sequence request after the 
last message of a sequence is transmitted. 

The difference between the BFT-WS Out Handler and the origi­
nal Sandesha Out Handler lies in the creation and handling of the 
CreateSequence message. In the original implementation, the Cre­
ateSequence message does not contain any element that can be 
used for the server-side to perform duplicate detection. If the Cre­
ateSequence request contains an Offer element, it may be used as a 
way to check for duplicate. However, not all CreateSequence re­

quests contain such an element, because its existence is specified 
by the client application. To address this problem, we propose to 
include a UUID string in the CreateSequence request. The UUID is 
embedded in the CreateSequence/any element, an optional ele­
ment specified by the WS-RM standard to enable extensibility. 

The addition of this UUID element also helps alleviate a tricky 
problem that would cause replica inconsistency. The WS-RM stan­
dard does not specify how the sequence ID for the newly created 
sequence should be determined. In Sandesha2, a UUID string is 
generated and used as the sequence ID at the server-side. If we al­
low each replica to generate the sequence ID unilaterally in this 
fashion, the client would adopt the sequence ID present in the first 
CreateSequence response it receives. This would prevent the client 
from communicating with other replicas, and would prevent the 
replicas from referring to the same sequence consistently when 
ordering the application messages sent over this sequence. There­
fore, we modified the CreateSequence request handling code to 
generate the sequence ID deterministically based on the client sup­
plied UUID and the Web service group endpoint information. 

3.3.1.2 Multicast sender. In BFT-WS, the sequence between the cli­
ent and the service provider endpoints is mapped transparently to 
a virtual sequence between the client and the group of replicas. 
The same sequence ID is used for the virtual sequence so that other 
components can keep referring to this sequence regardless if it is a 
one-to-one or a one-to-many (or many-to-one) sequence. The 
mapping is carried out by the multicast sender. 

To make the mapping possible, we assume that each service to 
be replicated bears a unique group endpoint, in addition to the spe­
cific endpoint for each replica. Higher level components, including 
the application, must use the group endpoint when referring to the 
replicated Web service. When a message to the group endpoint is 
detected, including application messages and BFT-WS control mes­
sages, the multicast sender translates the group endpoint to a list 
of individual endpoints and multicasts the message to these end­
points. We assume the mapping information is provided by a con­
figuration file. The Multicast Sender runs as a separate thread and 
periodically poll the Out Message Queue for messages to send. 

One additional change is the garbage collection mechanism. For 
point-to-point reliable communication, it is sufficient to discard a 
buffered message as soon as an acknowledgement for the message 
is received. However, this mechanism does not work for reliable 
multicast for apparent reasons. Consequently, a message to be 
multicast is kept in the buffer until the acknowledgement from 
all destinations have been collected, or a predefined retransmission 
limit has been exceeded. 



Note that in BFT-WS, the client multicasts its requests to all rep­
licas via the Multicast Sender component. Even though it may be 
less efficient in some scenarios, such as when the client is geo­
graphically farther away from the Web service and the Web service 
replicas are close to each other, this design is more robust against 
adversary attacks since the clients do not need to know which rep­
lica is currently serving as the primary. Without such information, 
the adversary can only randomly pick up a replica to attack, instead 
of focusing on the primary directly. From the availability perspec­
tive, the compromise of the primary can result in much severe per­
formance degradation than that of a backup. It is important to 
encapsulate internal state information as much as possible to im­
prove system robustness. Information encapsulation also reduces 
the dependency between the clients and the Web services. 

3.3.1.3. BFT-WS global in handler. The Sandesha Global In Handler 
performs duplicate filtering on application messages. This is fine 
for the server-side, however, it would prevent the client from per­
forming voting on the responses. Therefore, the related code is 
modified so that no duplicate detection is done on the client-side. 
The other functionalities of this handler, e.g., generating acknowl­
edgement for the dropped messages, is not changed. 

3.3.1.4. BFT-WS in handler. Axis2 dispatches all application mes­
sages targeted to the BFT-WS-enabled services and the BFT-WS 
control messages to this handler. The BFT-WS In Handler operates 
differently for the client and the server-sides. 

At the client-side, all application messages are passed immedi­
ately to the BFT-WS Voter component for processing. The rest of 
control messages are processed by the set of internal message pro­
cessors as usual. 

At the server side, all application messages are handled by an 
internal application message processor. Such messages are stored 
in the In Message Queue for ordering and delivery. All BFT-related 
control messages, such as pre-prepare, prepare, commit, and view 
change messages, are passed to the Total Order Manager for further 
processing. The WS-RM-related control messages such as CreateSe­
quence and terminate-sequence requests, are handled by the inter­
nal message processors available from the original Sandesha2 
module, with the exception of the handling of sequence ID creation. 

3.3.1.5 BFT-WS voter. This component only exists at the client-side. 
The Voter verifies the authenticity of the application messages re­
ceived and temporarily stores the verified messages in its data 
structure. For each request issued, the Voter waits until it has col­
lected f þ 1 identical response messages from different replicas be­
fore it invokes the application message handler to process the 
response message. When the processing is finished, the message 
is passed to the In Message Queue for delivery. 

3.3.1.6. Storage manager. This component consists of the In Mes­
sage Queue, the Out Message Queue, and a number of other sub­
components for sequence management, acknowledgement and 
retransmission management, and in-order delivery. This compo­
nent comes with the Sandesha2 module. It is instrumented only 
for the purpose of performance profiling. 

3.3.1.7. Total order invoker. This component replaces the Sandesha 
InOrder Invoker. This invoker runs as a separate thread to poll peri­
odically the received application messages (stored in the In Mes­
sage Queue) for ordering and delivery. To be eligible for ordering, 
the message must be in-order within its sequence, i.e., all previous 
messages in the sequence has been received and ordered (or being 
ordered). If the message is eligible for ordering, the Total Order 
Manager is notified to order the message. Note that only the pri­
mary initiates the ordering of application messages. 

The Total Order Invoker asks the Total Order Manager for the 
next message to be delivered. If there is a message ready for deliv­
ery, the Invoker retrieves the message from the In Message Queue 
and delivers it to the Web service application logic via the Axis2 
message receiver. 

3.3.1.8. Total order manager. This component is responsible for 
imposing a total order on all application requests according to 
the BFT algorithm. To facilitate reliable communication among 
the replicas themselves, each replica establishes a sequence with 
the rest of the replicas. The reliability of the control messages sent 
over these sequences are guaranteed by the WS-RM mechanisms 
and the Multicast Sender. The Total Order Manager starts an in­
stance of the BFT algorithm when a request that is in-order in its 
sequence becomes available, and it uses a TotalOrderBean object 
to keep track of the ordering status for each application message. 
A new TotalOrderBean is created when the first pre-prepare mes­
sage for each application message is sent (at the primary) or ac­
cepted (at the backups). The Total Order Manager also maintain 
an OrderedMessages queue to store the ids of the application re­
quest messages that have already been totally ordered. An entry 
is removed from the OrderedMessages queue when the referenced 
message has been delivered to the application. 

The Total Order Manager is also in charge of performing peri­
odic checkpointing and garbage collections, and initiating/partici­
pating view changes according to the BFT algorithm. When 
performing a checkpointing, the manager injects a get_state re­
quest message at the head of the OrderedMessages queue and 
the message will be subsequently delivered to the application to 
produce a snapshot of the current application state. The retrieved 
state then is stored in a local data structure. When a new check­
point becomes stable, the previous checkpoints, together with all 
control messages prior to the checkpoint, are garbage collected. 
During recovery, the recovering replica creates a set_state request 
message (with the checkpoint as the input parameter) and inserts 
it at the head of the OrderedMessages queue for delivery. When 
this message is dispatched, the application should restore its state 
according to the given checkpoint. State restoration might also be 
needed when a slow replica realizes that it has fallen too far behind 
(e.g., a message that it has missed is older than the latest stable 
checkpoint). In this case, the slow replica sends a fetch-state re­
quest to the primary for the latest stable checkpoint and the pri­
mary subsequently sends the entire stable checkpoint with proof 
(the set of 2f þ 1 checkpoint messages collected) to the requesting 
replica. Note that we choose not to follow the hierarchical state 
partitions based approach introduced in Castro and Liskov (1999) 
because the requirement for doing so is not compatible with the 
Java programming model. Our current approach could be opti­
mized by considering application-specific state structure. 

3.3.2. Configuration II 
In Configuraiton II, the components described previously are 

virtually unchanged except that in Configuration II the Web ser­
vices for the application are loaded only at 2f þ 1 replicas, i.e., 
the remaining f replicas do not deliver the application requests 
and they are not bothered with the handling of application re­
sponses. The major motivation for using this configuration is to 
save physical resources because the replicas that do not load the 
application Web services could be used to order requests for multi­
ple different Web services, assuming that the throughput of these 
Web services are limited by application request processing rather 
than by the total ordering of requests. 

3.3.3. Configuration III 
Similar to Configuration II, this configuration also has the 

benefit of saving physical resources. In addition, by completely 
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Fig. 6. Major communication steps (other than those for message ordering) for three-tier Web services interactions with different configurations. 

separating the agreement nodes and the execution nodes, this 
configuration offers potentially better fault isolation and more 
flexibility in replication management. In Configurations I and II, 
since the execution of application requests is collocated with the 
agreement node, the compromise of the Web service logic due to 
a malformed application request, or a software bug in the applica­
tion logic might disrupt the normal operation of the agreement 
process. The separation of the agreement nodes and the execution 
nodes enables the use of different replication degrees for the exe­
cution nodes and the agreement nodes according to the reliability 
analysis results of these two types of nodes. 

3.4. Support for multi-tiered Web services interactions 

Multi-tiered Web services interactions are common in practice. 
In such interactions, nested invocations are made by a Web service 
to another Web service, in response to an invocation. In essence, 
the Web service acts as the server for its clients and also as a client 
for some other Web service when issuing the nested invocations, 
as shown in Fig. 6. 

In general, the client–server interaction implies a dependency 
relationship, i.e., the client depends on the services provided by 
the server, which usually imposes stronger dependability require­
ment on the server. In the context of multi-tiered Web services 
interactions, if a replicated Web service (in the middle-tier) in­
vokes another Web service, it is logical to expect that the later is 
also replicated for fault tolerance. Even though BFT-WS allows a 
replicated Web service to invoke another, non-replicated Web ser­
vice, this practice is discouraged because the use of a less depend­
able service would reduce one’s own dependability. 

Because the BFT-WS architecture described before contains 
modules for both client-side and server-side BFT mechanisms, 
extending it to support multi-tiered Web services interactions does 
not require major changes. Nevertheless, the following enhance­
ments are needed. 

A sequence between two replicated Web services will be 
mapped to a virtual sequence between two groups of replicas in­
stead of between a single client and a group of replicas, as de­
scribed in Section 3.3.1.2. The mechanism that enables the 
mapping is identical to that in Section 3.3.1.2. However, an inter­
esting issue arises as to when a server replica should start to order 
a request sent by a replicated client. If the primary starts ordering a 
request as soon as it receives the message, the system would be 
vulnerable to the attack by a faulty client replica, e.g., if the faulty 
client replica sends a malformed nested request to all server repli­
cas ahead of other (correct) client replicas’ request, it would pre­
vent the request from the correct client replicas from being 

accepted. Therefore, an additional filtering mechanism (similar to 
the voting mechanism for reply messages at the client-side) must 
be introduced. The filtering mechanism ensures that a server rep­
lica accepts a request from a replicated client if and only if it has 
collected p þ 1 identical requests from different client replicas, 
where p is the maximum faults tolerated by the replicated client. 
(The filtering mechanism should be used by a backend server even 
if it is not replicated.) For nested reply messages, the same client-
side voting mechanism as described in Section 3.3.1.5 is employed. 

4. Performance evaluation 

Our performance evaluation is carried out on a testbed consist­
ing of 20 Dell SC440 servers connected by a 100 Mbps Ethernet. 
Each server is equipped with a single Pentium D 2.8 GHz proces­
sors and 1GB memory running SuSE 10.2 Linux. In this section, 
we first present the experimental results to characterize runtime 
overhead of BFT-WS during normal operation, and then report 
the evaluation of checkpointing and recovery. 

4.1. Runtime overhead characterization 

An echo test application is used to characterize the runtime 
overhead. The client sends a request to the replicated Web service 
and waits for the corresponding reply within a loop without any 
‘‘think” time between two consecutive calls. The request messages 
contains an XML document with varying number of elements, en­
coded using AXIOM (AXis Object Model).4 At the replicated Web 
service, the request is parsed and a nearly identical reply XML doc­
ument is returned to the client. For the multi-tier experiments, the 
echo test application is chained to the desirable number of tiers 
(i.e., in response to an echo request, the server invokes another 
echo server before sending out a reply). For the multi-tier experi­
ment, the echo test application is modified such that an intermedi­
ate echo server relays the echo request to a backend echo server, 
and it would not respond to the request until it has received the re­
sponse to the nested echo request. 

In each run, 1000 samples are obtained. The end-to-end latency 
for the echo operation is measured at the client. The throughput 
are measured at the replicated Web service. In our experiment, 
we keep the number of replicas to 4 (for Configuration III, 4 repli­
cas are used for agreement nodes and 3 replicas are used for Web 
services) to tolerate a single Byzantine faulty replica, and vary the 

4 Information regarding the Apache Axion can be found at http://ws.apache.org/ 
commons/axion/. 

http://www.ws.apache.org/commons/axion
http://www.ws.apache.org/commons/axion


request sizes in terms of the number of elements in each request, 
and the number of concurrent clients. 

4.1.1. Client–server interactions 
Fig. 7 shows the latency and throughput measurement results. 

In Fig. 7a, The end-to-end latency of the echo operation is reported 
for BFT replication with 4 replicas and a single client, for all three 
configurations (referred in the figure as C-I for Configuration I, C-II 
for Configuration II, and C-III for Configuration III). For comparison, 
the latency for two other configurations are also included. The first 
configuration involves no replication and no digital signing of mes­
sages. The second configuration involves no replication, but with 
all messages digitally signed. The measurements for these configu­
rations reveal the cost of digital signing and verification. As can be 
seen, such cost ranges from 90 ms for short messages to 130 ms for 
longer messages. The latency overhead of running BFT replication 
is significant. However, the overhead is very reasonable consider­
ing the complexity of the BFT algorithm. Comparing with the la­
tency for the no replication-with-signing configuration, the 
overhead for Configuration I ranges from 150 ms for short mes­
sages to over 310 ms for longer messages. The increased overhead 
for larger messages is likely due to the CPU contention for process­
ing of the application requests (by the Web service) and the BFT 
replication mechanisms (by our framework). In Configuration II, 
the end-to-latency is slightly smaller than that in Configuration I 
because the primary is fully dedicated to message ordering and 
its operations are not subject to the CPU contention from the appli­
cation processing. This effect is more prominent when the message 
complexity is higher. In Configuration III, the end-to-end latency is 
noticeably larger than Configurations I and II because the addi­

tional communication step introduced (i.e., the request and reply 
must be relayed between the agreement nodes and the execution 
nodes). 

The throughput measurement results for different request sizes 
are shown in Fig. 7b–d. Note that the results for the no replication 
configurations include digital signing and verification of all mes­
sages for fair comparison. It can be seen from Fig. 7b that the 
throughput degradation is about 50% when BFT replication (Con­
figuration I) is enabled for short request sizes. Again, this is antic­
ipated. In Configuration I, even with optimal batching for 8 
concurrent clients, the primary must multicast 2 control messages 
(pre-prepare and commit) and receive 6 control messages (3 pre­
pare and 3 commit messages from backups) to order the 8 applica­
tion requests (recall that our measurements are carried out for 
normal operation with no replica failure). The approximately 50% 
reduction in throughput for short messages is nearly optimal. 
When the application request length and complexity is increased, 
the throughput reduction becomes far less, as shown in Fig. 7c 
and d. In Configuration II, the throughput is slightly higher than 
that for Configuration I, again likely due to the less CPU contention. 
In Configuration III, the throughput is lower than that for Configu­
ration I because of two reasons: (1) the extra communication step 
incurs additional CPU cycles for sending/receiving, and for digital 
signature verification, and (2) due to the larger end-to-end latency 
in Configuration III, the request arrival rate under the same number 
of concurrent clients is lower than that in Configurations I and II. 

4.1.2. Multi-tier interactions 
The results of the performance measurements for a three-tier 

interaction between a set of clients (up to eight) and two Web ser­
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Fig. 8. BFT-WS performance for a three-tier echo application. (a) The end-to-end latency. (b) Throughput vs. number of concurrent clients with a request size of 100 elements.

vices under different configurations are shown in Fig. 8. As can be 
seen in Fig. 8a, the end-to-end latency virtually doubled that of the 
client–server experiment. This is expected due to the extra com­
munication steps as illustrated in Fig. 6. Correspondingly, the 
throughput observed in Fig. 8b is much smaller than that of the cli­
ent–server experiment, under the same number of concurrent cli­
ents because the request arrival rate is virtually half of the value in 
the client–server experiment. 

4.2. Evaluation of checkpointing and recovery 

For all the experiments in this section, only Configuration I is 
used, and the number replicas is kept at 4. 

4.2.1. Checkpointing 
For the purpose of garbage collection and recovery, each replica 

periodically performs checkpointing of its state. The cost of taking 
a checkpointing is application-dependent because it is dominated 
by the size and complexity of the application state. In our experi­
ment, the application state consists of multiple XML elements, 
and its size (in terms of the number of XML elements) is provided 
via command-line argument when the replicas are started (i.e., the 
state size is fixed during the life-cycle of each replica for the sake of 
our measurements). The measurements are carried out in the pres­
ence of a single client that continuously issues requests to the rep­
licas. A checkpoint is taken for every 10 requests ordered and 
executed. During these measurements, no fault is introduced. 

The checkpointing latency, i.e., the time it takes for a replica to 
obtain a checkpoint, for different state sizes (in terms of the num­
ber of elements) is shown in Fig. 9a. Also shown in Fig. 9b is the 
measured average time for a checkpoint to become stable (i.e., 
when 2f þ 1 ¼ 3 checkpoint messages for the same sequence has 
been received) since a replica multicasts a checkpoint message. 

70

4.2.2. State transfer 
Because it rarely happens for the replica to run so slowly that it 

requires a state transfer to catch up with other replicas, we mea­
sure the state transfer time by restarting a replica with the pres­
ence of a single client (that continuous issues requests to the 
replicas). When the replica restarts, it would send a fetch-state re­
quest to the primary, wait for the latest stable checkpoint with 
proof, and restore its state accordingly. The state transfer latency 
is the time from the sending of the fetch-state request until the 
replica restores its state. The measurement results are summarized 
in Fig. 10. The state transfer latency is dominated by the time it 
takes for the primary to transmit its latest stable checkpoint with 
proof to the recovering replica, and the time it takes for the recov­
ering replica to restore its state, both exhibiting strong dependency 
on the checkpoint size. 

4.2.3. View change 
In this experiment, we introduce view changes by shutting 

down the primary of the current view and then measure the view 
change latency at the new primary for the next view in the pres­
ence of a single client. The view change latency is the time between 
the sending of a view-change request and the installation of the 
new view (i.e., the sending of the new-view message after the 
new primary has collected 2f þ 1 ¼ 3 view-change requests and 
completed the calculation for the new view). 

Since the replicas are running on identical hardware, we do not 
observe message losses and no state-transfer is triggered in this 
experiment. Furthermore, the view change induced by shutting 
down the primary always succeeds, i.e., the primary in the new view 
is non-faulty and our testbed offers sufficient synchrony for the view 
change to complete within the preset view change timeout of 2 s. 

As shown in Fig. 11, the view change latency has strong depen­
dency on the checkpoint interval. This is because a large check­
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Fig. 9. (a) Checkpointing latency with respect to the size of the state. (b) The average time for a checkpoint to become stable. 
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Fig. 11. View change latency. 

point interval often leads to the inclusion of the pre-prepare and 
prepare records for many requests (the view change request must 
contain records for each request ordered after the latest stable 
checkpoint). This observation reveals that in practical deployments 
of BFT frameworks, we must select an appropriate checkpoint 
interval so that a good balance can be struck between achieving 
good normal operation performance and ensuring relatively short 
fail-over latencies. 

5. Related work 

A large number of high availability solutions for Web services 
have been proposed in the last several years (Birman, 2004; Chan 
et al., 2006; Dialani et al., 2002; Dobson, 2006; Erradi and Mahesh­
wari, 2005; Fang et al., 2007; Looker et al., 2005; Merideth et al., 
2005; Moser et al., 2006; Pallemulle et al., 2008). Most of them 
are designed to cope with crash faults only and very few offered 
Byzantine fault tolerance capability (Merideth et al., 2005, 2008, 
2005). While SWS (Li et al., 2005) proposed a few protocols to 
achieve Byzantine fault tolerance for Web services, no prototype 
system is implemented and only simulation results are reported. 

Similar to our work, Thema (Merideth et al., 2005) also relies on 
the BFT algorithm to ensure total ordering of application messages. 
However, a wrapper is used to interface with an existing imple­
mentation of the BFT algorithm (Castro and Liskov, 1999), which 
is based on IP multicast, rather than the standard SOAP/HTTP 
transport, as such, it suffers from the interoperability problem 
we mentioned in the beginning of this paper. This approach limits 
its practicality. 

Very recently, we became aware of Perpetual-WS (Pallemulle 
et al., 2008), which is another BFT framework for Web services. It 
is also implemented on top of Axis2 by exploiting Axis2’s plugga­
bility. Therefore, similar to our BFT-WS framework, it can be cate­
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gorized as the integrated approach. (Perpetual-WS offers a set of 
proprietary APIs for Axis2 clients to enable asynchronous commu­
nication. Presumably, such APIs could be dropped when Axis2 adds 
such feature in the future.) Furthermore, Perpetual-WS supports 
asynchronous communication for multi-tiered applications, which 
could offer much better throughput than BFT-WS. However, Per­
petual-WS does not support WS-RM, which may limit its adoption 
for practical systems. 

6. Conclusion 

In this paper, we presented the design and implementation of 
BFT-WS, a Byzantine fault tolerance middleware framework for 
Web services. It uses standard Web services technology to build 
the Byzantine fault tolerance service, and hence, it is more suitable 
to achieve interoperability. Furthermore, BFT-WS is backward 
compatible with WS-RM. BFT-WS is carefully designed and imple­
mented so that when there is no need to replicate a Web service, a 
single instance of the Web service can run with the default WS-RM 
implementation instead of our BFT mechanisms. We also docu­
mented in detail the architecture and the major components of 
our framework. We anticipate that such descriptions are useful 
to practitioners as well as researchers working in the field of highly 
dependable Web services. Finally, our framework has been care­
fully tuned to exhibit optimal performance, as shown in our perfor­
mance evaluation results. 
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