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Far-field scattering of a non-Gaussian off-axis
axisymmetric laser beam by a spherical particle

James A. Lock and Joseph T. Hodges

Experimental laser beam profiles often deviate somewhat from the ideal Gaussian shape of the axisym-
metric TEM00 laser mode. To take these deviations into account when calculating light scattering of an
off-axis beam by a spherical particle, we use our phase-modeling method to approximate the beam-shape
coefficients in the partial wave expansion of an experimental laser beam. We then use these beam-shape
coefficients to compute the near-forward direction scattering of the off-axis beam by the particle. Our
results are compared with laboratory data, and we give a physical interpretation of the various features
observed in the angular scattering patterns. © 1996 Optical Society of America

1. Introduction

Among the topics that are currently of interest in
classical electromagnetic scattering are the exact an-
alytical solutions to three different extensions of the
Lorenz–Mie theory, which is the theory of the scat-
tering of a plane wave by a single spherical particle.
In each of these generalizations, a different assump-
tion required by the Lorenz–Mie scattering formal-
ism is relaxed, i.e., ~i! the plane wave is incident upon
a number of neighboring or touching spherical parti-
cles or on a single spherical particle containing a
number of spherical inclusions, ~ii! the plane wave is
incident upon a single spheroid rather than on a
sphere, and ~iii! the beam incident upon the spherical
particle is transversely localized rather than being a
plane wave. Most of the theoretical effort in the
scattering of a transversely localized beam by a single
spherical particle has been directed toward the scat-
tering of a Gaussian laser beam that has been focused
by a lens.1,2 This is because a usually rapidly con-
vergent infinite series representation of the electric
and magnetic fields of an axisymmetric TEM00 laser
beam has long been known,3,4 and because an accu-
rate approximation to the coefficients in the partial
wave expansion of these fields has recently been

developed.5–9 For the scattering of a transversely
localized off-axis beam, the plane-wave scattering so-
lution can be generalized by using the beam-shape
coefficients, Alm and Blm ~which occur in the partial
wave expansion of the off-axis beam and scattered
field!. Consequently, the solution of this problem
essentially consists of the determination of the beam-
shape coefficients for the beam of interest.
From an experimental point of view, Gaussian

beam scattering is in many cases overly restrictive.
The profile of an actual laser beam, though Gaussian
as a zeroth order approximation, often exhibits sig-
nificant deviations from the ideal Gaussian shape10
because of diffraction by dust particles on the laser
mirrors, spatial nonuniformity within the laser me-
dium, transverse mode mixing, and so on. As a re-
sult, scattering by such a beam exhibits significant
deviations from the predictions of Gaussian beam
scattering theory. These deviations are most appar-
ent in the near-forward direction, where the scat-
tered field substantially overlaps and interferes with
the unscattered portion of the incident beam.
In this paper and in a previous paper,11 hereafter

called paper I, we examine near-forward scattering
~i.e., uuu & 1°! of a non-Gaussian beam by a spherical
particle. In paper I we obtained the approximate
partial wave expansion of an experimental axisym-
metric laser beam that struck a spherical particle
head on, i.e., an on-axis scattering situation. This
was accomplished by measuring the far-zone beam
intensity in the absence of the particle and by mod-
eling the shape of its surfaces of constant phase.
The partial wave expansion was then used to calcu-
late scattering by the particle, and the predicted scat-
tered intensity was compared with experimental
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data. Here we extend our phase-modeling approach
to an axisymmetric off-axis beam, i.e., a beam that
strikes the target particle off center.
The off-axis scattering situation lacks the rota-

tional symmetry inherent to the on-axis case. As a
result, the partial wave expansion of the off-axis
beam is substantially more complicated. In paper I
the beam axis was coincident with an axis of symme-
try of the particle, i.e., the z axis in Fig. 1. As a
result, the partial wave expansion of the beam was
parameterized only by the partial wave number, l,
with 1 # l , `. For off-axis scattering, because the
beam axis and the particle symmetry axis, i.e., the z9
and z axes, respectively, in Fig. 1, are parallel rather
than coincident, the partial wave expansion of the
beam is parameterized both by l and by the azi-
muthal mode number, m, with 2l # m # l.
As in paper I, we find that measuring the far-zone

beam intensity and modeling the isophase surfaces of
the field provide enough information to determine
approximately the beam-shape coefficients in the par-
tial wave expansion of the off-axis beam. The deri-
vation of the beam-shape coefficients, however, is
complicated by the fact that we must transform the
surfaces of constant phase from one coordinate sys-
tem to another that is translated from it both longi-
tudinally and transversely. The details of this
coordinate transformation also provide a physical in-
terpretation of the beam-shape coefficients in the so-
called localized approximation to off-axis Gaussian
beam scattering.7
The body of this paper proceeds as follows. In

Section 2 we derive our approximation to beam-shape
coefficientsAlm andBlm in the partial wave expansion
of an experimental axisymmetric off-axis non-
Gaussian beam. This is accomplished in three
stages. In Subsection 2.A, we obtain and simplify
the partial wave expansion of an arbitrary laser beam
as far as we can without having to specify any de-
tailed information about the beam. In Subsection
2.B we model the surfaces of constant phase of the
axisymmetric off-axis beam and transform them from
a coordinate systemwhose origin is at the beamwaist
center to another coordinate system whose origin is

at the center of the target particle. In Subsection
2.C, we connect the results of Subsections 2.A and
2.B, thus obtaining our approximation to Alm and
Blm. As a test of this approximation, we apply it to
an off-axis Gaussian beam and obtain the localized
approximation beam-shape coefficients, with minor
differences. In Subsection 2.D we briefly review the
formulas for the scattering of the off-axis beam by the
target particle. In Section 3 we use these formulas
to compute the scattering of our experimental beam,
and we compare our results to laboratory data. Pre-
vious calculations of off-axis Gaussian beam scatter-
ing have been compared with laboratory data12,13 for
beams up to 20 mm off axis. Our data extend these
measurements to beyond 110 mm off axis, and a com-
parison of these data with the model predictions is
excellent. Finally, in Section 4 we discuss the phys-
ical interpretation of our results, and we present our
conclusions.

2. Phase-Modeling Approximation to the Beam-Shape
Coefficients

A. Partial Wave Expansion of an Off-Axis Focused Laser
Beam

Consider a monochromatic laser beam of wavelength
l, wave number k 5 2pyl, and time dependence
exp~2ivt!, which is propagating parallel to but not
coincident with the z axis of a laboratory coordinate
system. The beam is focused by a lens, and the focal
waist center is at the coordinate ~x0, y0, z0! with
respect to the lab coordinate system. The beam is
assumed to be polarized in the x direction in its focal
plane. Because the radiation potentials of the beam
satisfy the scalar Helmholtz equation, the partial
wave expansion of the beam’s electric field expressed
in spherical coordinates with respect to the lab coor-
dinate system is1,2

Ebeam~r, u, f! 5
2iE0ûr
~kr!2 (

l51

`

(
m52l

l

ilSl 1
1
2D

3 Alm)l~kr!Pl
m~cos u!exp~imf!

2
iE0ûu

kr (
l51

`

(
m52l

l il~2l 1 1!

2l~l 1 1!

3 @Alm)l9~kr!tlm~u!exp~imf!

2 Blm)l~kr!mplm~u!exp~imf!#

1
E0ûf

kr (
l51

`

(
m52l

l il~2l 1 1!

2l~l 1 1!

3 @Alm)l9~kr!mplm~u!exp~imf!

2 Blm)l~kr!tlm~u!exp~imf!#. (1)

The partial wave expansion of the beam’s magnetic
field is similar. In Eq. ~1!, )l~kr! are Riccati–Bessel
functions and Pl

m~cos u! are associated Legendre
polynomials, as was the case in paper I for an on-axis
beam. Angular functions plm~u! and tlm~u! are de-

Fig. 1. Focused laser beam incident upon a spherical particle
whose center is at the origin of the laboratory coordinate system.
The center of the beam focal waist is at ~x0, y0, z0! with respect to
the particle, and the detector is located at ~xd, yd, zd!. The vector
from the particle to the detector is r, and the vector from the center
of the focal waist to the detector is r*.
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fined by

plm~u! 5
1

sin u
Pl

m@cos~u!#

tlm~u! 5
d
du

Pl
m@cos~u!#, (2)

and coefficients Alm and Blm are the beam-shape co-
efficients of the partial wave expansion.
Eventually, we will place a spherical particle of

radius a and refractive index n so that its center is at
the origin of the laboratory coordinate system. The
waves scattered by this particle are then outgoing
spherical waves centered on the origin of coordinates.
In light of this, the partial wave expansion of the
incident beam in Eq. ~1! is appropriate because it also
describes the incident beam as a collection of spher-
ical waves centered on the origin.
As in Refs. 14 and 15, we find it convenient for

computational purposes to interchange the order of
the l and m sums in Eq. ~1!. We also make the
following notational change:

Alm 5 HAl0

Alm
1

Alm
2

for
for
for

m 5 0
m $ 1
m # 21,

Blm 5 HBl0

Blm
1

Blm
2

for
for
for

m 5 0
m $ 1
m # 21. (3)

Our major interest in the incident beam is in the far
zone ~kr .. 1! and in the near-forward direction ~u ,,
1!, where the scattered wave and the unscattered
portion of the incident beam substantially overlap
and interfere. In this region, the Riccati–Bessel
functions become

lim
kr3`

)l~kr! 5 sinSkr2
lp
2 D5

1
2i

@~2i!l exp~ikr!

2 ~i!l exp~2ikr!#, (4)

and the angular functions of Eq. ~2! become

lim
u,,1

mplm~u! 5
~l 1 m!!

2~l 2 m!!~l 1 1y2!m21

3 @Jm21~u! 1 Jm11~u!#,

lim
u,,1

tlm~u! 5
~l 1 m!!

2~l 2 m!!~l 1 1y2!m21

3 @Jm21~u! 2 Jm11~u!#, (5)

where Jm61~u! are Bessel functions and

u ; ~l 1 1y2!u. (6)

Substituting Eqs. ~3!–~6! into Eq. ~1! and neglecting
the radial component of the field and the incoming
wave terms, i.e., those proportional to exp~2ikr!, in
the near-forward direction as was explained in paper

I, we obtain

Ebeam~r, u, f! 5
E0ûu

kr
exp~ikr!Si2(l51

` ~l1 1y2!2

l~l1 1!
Al0J1~u!

2
i
2 (

m51

`

(
l5m

` ~l1 1y2!2

l~l1 1!

~l1m!!
~l2m!!

1
~l1 1y2!m

3 $@Rlm
1Jm21~u! 2Slm

1Jm11~u!#exp~imf!

1 @Rlm
2Jm21~u! 2Slm

2Jm11~u!#

3 exp~2imf!%D1
E0ûf

kr
exp~ikr!

3 S2i2 (
l51

` ~l1 1y2!2

l~l1 1!
Bl0J1~u! 1

1
2 (

m51

`

(
l5m

`

3
~l1 1y2!2

l~l1 1!

~l1m!!
~l2m!!

1
~l1 1y2!m

1 $@Rlm
1Jm21~u! 1Slm

1Jm11~u!#exp~imf!

2 @Rlm
2Jm21~u! 1Slm

2Jm11~u!#

3 exp~2imf!%D; (7)

where Rlm
6 and Slm

6 are defined by

Rlm
6 ; 1y2~Alm

6 6 iBlm
6!, Slm

6 ; 1y2~Alm
6 7 iBlm

6!.

(8)

Again, the partial wave expansion of the beam’s mag-
netic field in the far zone and in the near-forward
direction is similar.
Because we expect that many partial waves are

required to reconstruct the beam’s electric field using
Eq. ~7!, we may approximately replace the sum over
partial waves by an integral over an effective impact
parameter. Because large m azimuthal modes are
not expected to contribute substantially to the scat-
tered electric field in the far zone for this off-axis
situation,15 we take the lower limit of the effective
impact parameter integrals to be zero rather thanm.
We also make the approximation

~l 1 1y2!2

l~l 1 1!

~l 1 m!!
~l 2 m!!

1
~l 1 1y2!m

< lm, (9)

which is not very accurate for low partial waves but
which is quite good for the higher partial waves that
we expect to provide important contributions to off-
axis scattering. With these admittedly severe ap-
proximations, Eq. ~7! becomes

Ebeam~r, u, f! <
E0ûu

kr
exp~ikr!Hi2 *

0

`

dlA0~l !J1~lu!

2
i
2 (

m51

`

*
0

`

lmdl@Rm
1~l !Jm21~lu!

2 Sm
1~l !Jm11~lu!#exp~imf!
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2
i
2 (

m51

`

*
0

`

lmdl@Rm
2~l !Jm21~lu!

2 Sm
2~l !Jm11~lu!#exp~2imf!J

1
E0ûf

kr H2i
2 *

0

`

dlB0~l !J1~lu!

1
1
2 (

m51

`

*
0

`

lmdl@Rm
1~l !Jm21~lu!

1 Sm
1~l !Jm11~lu!#exp~imf!

2
1
2 (

m51

`

*
0

`

lmdl@Rm
2~l !Jm21~lu!

1 Sm
2~l !Jm11~lu!#exp~2imf!J . (10)

This is as far as we can simplify the partial wave
expansion of the incident beam’s electric field without
knowing any particular details of the beam. In Sub-
section 2.B we examine the geometry of the beam,
target particle, and detector and demonstrate that
this geometry, along with measurement of the far-
zone beam intensity and modeling of the far-zone
beam phase, provides enough information to approx-
imate beam-shape coefficient functions Am~l ! and
Bm~l ! of relation ~10! for an experimental beam.

B. Beam–Particle–Detector Geometry

The beam–particle–detector geometry is illustrated
in Fig. 1. The particle is placed at the origin of co-
ordinates, and the spherical coordinates with respect
to this origin are r, u, f. The center of the beam focal
waist is at the coordinate ~x0, y0, z0! with respect to
the particle, and the spherical coordinates with re-
spect to the beam focal waist center are r9, u9, f9. An
element of the detector array is at the coordinate ~xd,
yd, zd! with respect to the particle.
As we described in paper I, each partial wave in the

expansion of the incident beam is a spherical wave
centered on the particle at the origin of the laboratory
coordinate system. However, as seen from the far
zone, the beam as a whole appears to be an outgoing
spherical wave centered on beam focal waist at ~x0,
y0, z0!. Assuming that the beam is axisymmetric
about the z9 axis, its far-zone electric field is a func-
tion of r9 and u9 alone, i.e.,

Ebeam~r9, u9, f9! 5
2iE0

kr9
M~u9!exp~ikr9!ûx, (11)

where E0 is a measure of the peak field strength and
the angular amplitude profile of the beam is M~u9!.

The far-zone intensity of the beam is then

Ibeam~r9, u9, f9! 5
E0

2

2m0c
M2~u9!

k2r92
, (12)

where m0 is the permeability of free space and c is the
speed of light.
To make contact between Eq. ~11! and the partial

wave expansion of the beam in approximation ~10!,
we must convert Eq. ~11! from the r9, u9, f9 coordi-
nates defined in Fig. 1 by

r9 5 @~x 2 x0!
2 1 ~y 2 y0!

2 1 ~z 2 z0!
2#1y2,

tan u9 5
@~x 2 x0!

2 1 ~y 2 y0!
2#1y2

~z 2 z0!
,

tan f9 5
~y 2 y0!
~x 2 x0!

(13)

to the r, u, f laboratory coordinates defined by

r5 (x2 1 y2 1 z2!1y2, tan u 5
~x2 1 y2!1y2

z
, tan f 5

y
x
.

(14)

In the near-forward direction and in the far zone
where x .. x0, y .. y0, and z .. z0, we have

r9 < r2 z0 2
xx0
z

2
yy0
z

1
x2z0
2z2

1
y2z0
2z2

1 · · · . (15)

Equation ~11! then becomes

Ebeam~r, u, f! <
2iE0

kr
M~xd, yd!exp~2ikz0!ûx

3 exp~ikr!exp@~ikz0y2!sin2 u#

3 exp@ik sin u~x0 cos f 1 y0 sin f!#.

(16)

Two features of approximation ~16! warrant fur-
ther comment. First, in the r9, u9, f9 coordinate sys-
tem, the surfaces of constant phase in Eq. ~11! are
represented by the exp~ikr9! factor. In paper I where
the beam was translated only longitudinally along
the z axis, they were represented by the exp@ikr 1
~ikz0y2!sin2 u# factor in the r, u, f coordinate system.
The u dependence presented no substantial compli-
cation in determining the on-axis beam-shape coeffi-
cients. Now, because the beam is translated both
longitudinally and transversely, the surfaces of con-
stant phase are represented by the exp@ikr 1 ~ikz0y
2!sin2 u 1 ik sin u~x0 cos f 1 y0 sin f!# factor in the
r, u, f coordinate system. The f dependence of these
surfaces substantially complicates the determination
of the off-axis beam-shape coefficients. Second, we
have chosen to express M as a function of xd, yd in
approximation ~16! in order to emphasize that the
angular amplitude profile of the beam is measured by
the detector array, and that it may be expressed ei-
ther in terms of u9, f9 or in terms of u, f with equal
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ease by using Eqs. ~13! and ~14!. For the geometry of
the experiment described in Section 3, we have x0 5
0 and xd 5 0 so that

f 5 f9 5 6 py2. (17)

The relation between u9 and u is then

u9 < Su2 2 2u
y0
z D

1y2S1 1
z0
z D . (18)

In order to put approximation ~16! into a form com-
patible with approximation ~10! in the near-forward
direction, we follow the procedure of Ref. 7 and ~i!
write

ûx 5 cos fûu 2 sin fûf 5 1y2 exp~if!~ûu 2 iûf!

1 1y2 exp~2if!~ûu 1 iûf!,
(19)

~ii! Taylor series expand the exp@ik sin u~x0 cos f 1 y0
sin f!# factor and use sin u ' u, ~iii! binomial expand
the resulting powers of ~x0 cos f 1 y0 sin f!, ~iv!
collect together all the terms proportional to various
powers of exp~6if!, and ~v! recognize the resulting
infinite series as a Bessel function.
Approximation ~16! then becomes

Ebeam~r, u, f! 5
2iE0

kr
exp~ikr!M~xd, yd!exp~2ikz0!

3 exp@~ikz0y2!u2#ûuH2i cos f0J1~Q!

1
1
2 (

m51

`

~2i!m21 exp@2i~m2 1!f0#

3 exp~imf!@Jm21~Q! 2 exp~22if0!

3 Jm11~Q!# 1
1
2 (

m51

`

~2i!m21 exp@i~m2 1!f0#

3 exp~2imf!@Jm21~Q! 2 exp~2if0!

3 Jm11~Q!#J 2
iE0

kr
exp~ikr!

3 M~xd, yd!exp~2ikz0!exp@~ikz0y2!u2#ûf

3 Hi sin f0J1~Q! 1
i
2 (

m51

`

exp@2i~m 2 1!f0#

3 exp~imf!@Jm21~Q!1exp~22if0!

3 Jm11~Q!# 2
i
2 (

m51

`

exp@1i~m 2 1!f0#

3 exp~2imf!@Jm21~Q! 1 exp~2if0!

3 Jm11~Q!#J , (20)

where

exp~6if0! 5
x0 6 iy0

~x0
2 1 y0

2!1y2 , (21)

Q ; ku~x0
2 1 y0

2!1y2. (22)

The complexity of Eq. ~20! is due solely to expressing
in terms of r, u, f the surfaces of constant phase that
were so simply expressed in terms of r9, u9, f9.

C. Evaluation of the Beam-Shape Coefficients

Approximation ~10! and Eq. ~20! each express the
incident beam as a collection of outgoing spherical
waves centered on the origin of the laboratory co-
ordinate system. Consequently, we can equate the
various powers of exp~6if! in both the ûu and ûf

directions in these two relations. Furthermore, we
recognize that each integral term in approximation
~10! is a Hankel transform.16 Thus, by taking the
inverse Hankel transforms of corresponding terms
in approximation ~10! and Eq. ~20!, we obtain

A0~l ! 5 2il cos f0 exp~2ikz0!H1~l !,

Am
6~l ! 5 exp~2ikz0!F2i exp~ 7 if0!

l Gm21

3 @Hm21~l ! 1 exp~ 7 2if0!Hm11~l !#,

B0~l ! 5 2il sin f0 exp~2ikz0!H1~l !,

Bm
6~l! 5 exp~2ikz0!S61i DF2i exp~ 7 if0!

l Gm21

3 @Hm21~l! 2 exp~72if0!Hm11~l!#, (23)

where

Hp~l! ; *
0

`

uduM~xd, yd!exp~ikz0u
2y2!Jp~Q!Jp~lu!. (24)

Equations ~23! and ~24! are the main result of our
study. They are our approximation to the beam-
shape coefficients of an off-axis axisymmetric laser
beam with the far-zone intensity profile given by Eq.
~12!.
To test the accuracy of Eqs. ~23! and ~24!, we apply

them to an off-axis Gaussian laser beam. In the far
zone ~i.e., z .. z0! in this case we have u9 ' u and

M~u! 5
1
2s2

exp~2u2y4s2!, (25)

where w0 is the 1ye half-width of the electric field of
the beam in its focal plane, and beam confinement
parameter s is

s 5 1ykw0. (26)

For this Gaussian profile, the integral in Eq. ~24! can
be evaluated analytically,17 giving

Hm~l ! 5
1
2s2 *

0

`

udu expF2u2

4s2 S1 2 2is
z0
w0

DG
3 Jm@k~x0

2 1 y0
2!1y2u#Jm~lu! 5 S1 2 2is

z0
w0

D21
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3 exp3 2~x0
2 1 y0

2!

w0
2S1 2 2is

z0
w0

D4
3 Im12sl~x0

2 1 y0
2!

w0
2

1

S1 2 2is
z0
w0

D2 , (27)

where Im are modified Bessel functions. Insertion of
this result into Eq. ~23! exactly matches the localized
beam-shape coefficients for an off-axis Gaussian beam
found in Ref. 15, except for the replacement of l 1 1y2
by l. Because lmax ' 340 partial waves contribute to
the scattered intensity for the experiment described
in Section 3, the slight mismatch between l and l 1
1y2 is of no practical consequence in our case.
This derivation also sheds light on the off-axis lo-

calized approximation for a Gaussian beam. When
Gouesbet et al.7 first derived the localized version of
the beam-shape coefficients for an axisymmetric off-
axis Gaussian beam, they were not able to use van de
Hulst’s localization principle,18 as was done for the
on-axis case19; instead they used the Taylor series
expansion-binomial expansion procedure, as was
done here in Subsection 2.B. Physically, the reason
for doing so is now apparent. They had to express
outgoing spherical waves centered on the beam waist
in terms of outgoing spherical waves centered on the
particle. This precluded the use of van de Hulst’s
localization principle, because it is a stationary phase
argument requiring rotational symmetry, and thus it
is valid only for outgoing spherical waves centered at
some point along the z axis.

D. Scattering of an Off-Axis Beam by a Spherical Particle

The beam-shape coefficients of Eqs. ~23! and ~24! ap-
pear prominently in the expression for the far-zone
scattered electric field produced by the interaction of
an off-axis incident beam with a spherical particle
whose center is at the origin of the laboratory coor-
dinate system. The scattered electric field in the far
zone is

Escattered~r, u, f! 5
i exp~ikr!

kr
@S2~u, f!ûu 2 S1~u, f!ûf#,

(28)

where the scattering amplitudes S1~u, f! and S2~u, f!
are14,15
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l51
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1 (
m51
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1 (
m51
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1 (
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1 (
m51

`
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l5m
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1 exp~imf! 2Blm

2 exp~2imf!#, (29)

and al and bl are the partial wave scattering ampli-
tudes of plane-wave Lorenz–Mie theory. In the
near-forward direction where overlap between the
beam and scattered fields is substantial, the total
field measured by the detector array is

Etotal~r, u, f! 5Ebeam~r, u, f! 1Escattered~r, u, f!. (30)

3. Experimental Validation of the Beam-Shape
Coefficient Approximation

The experimental apparatus has been described in
detail both in paper I and in Ref. 10. A spatially
unfiltered Ar1 laser is operated at a wavelength of l
5 0.5145 mm and is focused by a single f 5 100-mm
lens. At a distance of zd9 5 146.2 6 1.5 mm down-
beam from the focal waist, the far-zone intensity pro-
file of the beam was recorded by a CCD array having
12 mm 3 10 mm pixels, and it was normalized with
respect to the peak beam intensity I0 on the array.
The normalized beam is shown in Fig. 2. Although
the beam appears to be approximately Gaussian, a
number of deviations from the ideal Gaussian shape
are apparent. These deviations are quantified in
Figs. 3~a! and 3~b!, where the experimental profile is
fit with a Gaussian function. For 0.25 & IyI0 # 1.0,
the beam is fit well by a Gaussian having w0 5 22.4

Fig. 2. Intensity as a function of angle u9 for a focused Ar1 laser
beam a distance of zd9 5 146.2 6 1.5 mm beyond the beam focal
waist. The detector is in the far zone of the beam.
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mm, whereas for 0.02 & IyI0 & 0.1, it is fit well by a
Gaussian having w0 5 18.5 mm. For 0.01 & IyI0 &
0.02, the beam appears not to be axisymmetric be-
cause of the presence of the shoulder labeled S in Fig.
2. Thus to adapt our axisymmetric formalism of
Section 2 to this beam, we consider only the intensity
range IyI0 $ 0.02.
A single droplet of dioctyl phthalate with a radius

of a 5 25.6 mm 6 0.05 mm and a refractive index of
n 5 1.4845 was positioned ;18 mm downbeam from
the focal waist at various positions from nominally on
axis to over 110 mm off axis. The beam-plus-
scattered light intensity was recorded on the CCD
array in the near-forward direction, i.e., uuu & 1°, and
it was normalized with respect to I0. The experi-
mental beam-plus-scattered intensity is shown in
Figs. 4~a!–4~i! for nine different particle off-axis po-
sitions with x0 5 0, y0 Þ 0. The particle was moved

nominally Dy0 ' 20 mm between measurements, ex-
cept between Figs. 4~a! and 4~b!, where it was moved
nominally Dy0 ' 40 mm.
Before computing the approximate beam-shape co-

efficients of the experimental beam of Fig. 2 and using
them to compute the scattered electric field, we pre-
processed the incident beam in the manner described
in paper I. We determined the best-fit beam sym-
metry axis, averaged the intensity values of the pix-
els at equal distances to either side of the symmetry
axis, and cut off the resulting symmetrized beam at
IyI0 5 0.02 in order to avoid the nonaxisymmetric
feature labeled S in Fig. 2. We then continued the
symmetrized beam to IyI0 5 1028 by using the
Gaussian function of Fig. 3~b! with w0 5 18.5 mm.
This continuation procedure was employed in order
to remove the artifacts in Hp~l ! of Eq. ~24! caused by
the experimental cutoff of the upper limit of the u
integral at the end of the detector array as described
in paper I.
The sums over m in Eqs. ~29! must also be trun-

cated at some value mmax. This cutoff value was
determined in the following way. For small off-axis
distances y0, the dominant Hp~l ! function is H0~l !,
because Jp~Q!3 0 for Q ,, 1 and p $ 1. For larger
values of y0, we found that many Hp~l ! functions are
of roughly equal magnitude. For example, when y0
5 100 mm, functionsHp~l ! were calculated for a num-
ber of values of p for 1 # l # lmax 5 343, which is the
largest partial wave that contributes more than ap-
proximately 1 part in 108 to the plane-wave Lorenz–
Mie scattering amplitudes. It was found that as a
function of l for fixed p,Hp~l ! slowly oscillated, but as
a function of p for fixed l, it slowly decreased, reach-
ing 1028 of its p 5 0 value at p 5 18. As a result, in
Eq. ~29! we took mmax 5 19. The relative smallness
of the largem terms in Eq. ~29! is consistent with the
convergence rate of the m sums that was found for
off-axis Gaussian beam scattering in Ref. 15. As a
further stability test, we also computed the scattered
intensity for y0 5 100 mm and mmax 5 30 and found
no difference to 1 part in 108 from the results with
mmax 5 19. The valuemmax 5 19 was used in all the
far-zone intensity calculations in Figs. 4~a!–4~i!.
The Bessel functions in Eq. ~24! were calculated by
the method used in Ref. 15.
Having obtained the beam-shape coefficients of our

experimental beam by using Eqs. ~23! and ~24!, the
scattered electric field was computed by using Eqs.
~28! and ~29!. The result was added to the incident
electric field of Eqs. ~11!, ~12!, and ~19! to produce the
total electric field of Eq. ~30!. The exp~2ikz0! factor
is common to approximation ~16! and Eqs. ~23! and
therefore does not influence the far-zone results.
The total intensity was then obtained and compared
with the laboratory data. The comparison is shown
in Figs. 4~a!–4~i!. The only free parameters in our
model are the downbeam distance, z0, and the trans-
verse off-axis distance, y0. We found that as z0 was
increased, the separation between the interference
maxima labeled a through e in the theoretical graphs
in Figs. 4~a!–4~i! decreased. We also found that as

Fig. 3. Laser beam far-zone intensity profile compared with the
intensity profile of a focused Gaussian beam with a focal plane
electric field half-width w0 of ~a! 22.4 and ~b! 18.5 mm.
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y0 was made more negative, the theoretical intensity
for u , 0 increased and the theoretical intensity for u
. 0 decreased. Thus by varying z0 and y0, we could
adjust our theoretical intensity to match the experi-
mental intensity.
To evaluate downbeam distance z0, we used the

on-axis fitting procedure of paper I first with the nom-
inally on-axis data of Fig. 4~e!. This case, which
gave a good comparison for z0 5 214.5 mm as shown
in Fig. 5, is consistent with Fig. 3~b! of paper I.
Though the fit in Fig. 5 is good, the theoretical peaks
labeled a and e are too low and too high, respectively,
indicating that the particle was slightly off axis. The
intensity for off-axis scattering was then computed
and a good comparison was obtained for z0 5 214.5

mm and y0 5 27 mm, as is shown in Fig. 4~e!. The
value of x0 was also varied, and a good comparison
was obtained for x0 5 0. The comparison deterio-
rated as ux0u was increased.
At this point, fits for the other eightmeasured spec-

tra of Fig. 4 were performed. Fixing the downbeam
distance of the particle from the focal waist at z0 5
214.5 mm, and with x0 5 0, we found a good com-
parison with the experimental data for y0 5 2114 mm
for Fig. 4~a!, y0 5 274 mm for Fig. 4~b!, y0 5 252 mm
for Fig. 4~c!, y0 5 227 mm for Fig. 4~d!, y0 5 27 mm
for Fig. 4~e!, y0 5 11 mm for Fig. 4~f !, y0 5 31 mm for
Fig. 4~g!, y0 5 48 mm for Fig. 4~h!, and y0 5 66 mm for
Fig. 4~i!. Figures 4~a!–4~i!, mirroring the placement
of the CCD array, are centered with respect to the

Fig. 4. Beam-plus-scattered intensity as a function of scattering angle u for a beam waist-particle spacing of z0 5 214.5 mm, a beam
off-axis position of x0 5 0, and ~a! y0 5 2114 mm, ~b! y0 5 274 mm, ~c! y0 5 252 mm, ~d! y0 5 227 mm, ~e! y0 5 27 mm, ~f ! y0 5 11 mm,
~g! y0 5 31 mm, ~h! y0 5 48 mm, ~i! y0 5 66 mm.

6612 APPLIED OPTICS y Vol. 35, No. 33 y 20 November 1996



incident beam. Thus the horizontal axis of the
graphs would be symmetric with respect to u9. The
graphs here are plotted with respect to scattering
angle u, however, resulting in the horizontal axis be-
ing asymmetric. The fitted transverse distances be-
tween measurements compare favorably with the
nominal 20-mm experimental distance. A least-
squares calculation of the fitted Dy values to the ex-
perimental ~i.e., micrometer based! Dy values gave a
slope within 1% of unity. For each of the theoretical
comparisons in Figs. 4~a!–4~i!, x0 and y0 could each be
varied by 62 mm and z0 could be varied by 60.5 mm
from the above results and still give a good compar-
ison to the experimental data. We consider the
agreement between the predictions of our model and
the off-axis laboratory data to be excellent. The
greatest difference between the theoretical fits and
the experimental data is that the contrast between
the interference maxima and minima in the data is
smaller than that predicted by our model. This was
also noticed in paper I, and its origin is uncertain.
The occasional appearance of small amplitude high-
frequency oscillations in our theoretical fits is due to
a small discontinuity in M~xd, yd! at IyI0 5 0.02,
inadvertently produced by the continuation proce-
dure in the preprocessing of the beam.
A trade-off has been made in this experiment with

respect to previous far-zone near-forward-direction
scattering experiments that were then compared
with either the Gaussian beam scattering theory13 or
the diffraction theory.12 Our off-axis range of y0 is
substantially larger than that of previous experi-
ments. With y0 normalized with respect to the local
beam half-width at the position of the particle, we
have y0

maxyw~z0! 5 1.05, whereas Ref. 13 had y0
maxy

w~z0! 5 0.34 and Ref. 12 had y0
maxyw~z0! 5 0.47.

However, as the dynamic range of our CCD array was
limited, we were confined to IscatteredyI0 * 2 3 1022,
whereas previous experiments reported measure-
ments for IscatteredyI0 * 1025 and IscatteredyI0 * 1023.
As a result, we must exercise some caution when
comparing our results with those of previous experi-
ments, because previous authors may have sacrificed

some quality of the fits for IscatteredyI0 * 0.02 in order
to obtain better fits for IscatteredyI0 & 0.02.
With this qualification in mind, we see that the

Gaussian beam diffraction theory works well in Ref.
12 largely because the spatially filtered beam in that
experiment had almost an exact Gaussian profile.
In contrast, we believe that the quality of our fits for
IscatteredyI0 $ 0.02 is superior to that reported by
Guilloteau et al.,13 who employed Gaussian beam
scattering theory to fit the data generated by the
spatially unfiltered incident beam in that experi-
ment. They claimed that their fit was
“always quite satisfactory in the inner zone. The
amplitudes and locations of the inner lobes @our max-
ima b, c, and d in Figs. 4~a!–4~i!# and the modifica-
tions of the patterns with respect to the control
parameter x0 @we used y0# are remarkably well pre-
dicted by the theory. Deterioration of the agree-
ment occurs when we approach the frontier of the
inner zone ~where the unscattered portion of the in-
cident beam ceases overlapping with the scattered
wave! for uuu . 2° ~where IscatteredyI0 ' 1021! as ex-
pected and previously discussed.”
These expected differences are attributed by Guil-

loteau et al.13 to “imperfections in the Gaussian char-
acter of the beam . . . because of the finiteness of the
laser source.” An examination of Figs. 4~a!–4~i!
shows that the fit between our model and our off-axis
data is somewhat superior to the fit of Ref. 13 for
IscatteredyI0 * 0.1, and it is markedly superior for 0.02
& IscatteredyI0 , 0.1. Thus we believe that our
phase-modeling approximation of non-Gaussian
beam scattering remedies the difficulties that were
encountered by Guilloteau et al.13 in fitting the finer
features of their off-axis scattering data for
IscatteredyI0 & 0.1.
We did not attempt to fit our experimental data by

using the Gaussian beam scattering theory. As was
seen in Figs. 3~a! and 3~b!, the central portion of our
beam, 0.25 & IyI0 & 1.0, is fit well by a Gaussian of
one width while the outer portions of the beam, 0.02
& IyI0 & 0.1, are fit well by a Gaussian of another
width. Correspondingly, it was shown in Ref. 10
that the Gaussian beam scattering theory would ei-
ther fit the central portion of our experimental data
well while underestimating the outer portions of the
data, or it would fit the outer portions of our data well
while overestimating the central portion of the data.

4. Discussion

In recent years, three theories have been employed by
various authors to fit far-zone near-forward direction
scattering in the angular region where the unscat-
tered portion of the incident beam overlaps the scat-
tered wave and interferes with it. These theories
are ~i! the diffraction theory,12 ~ii! the Gaussian beam
scattering theory,13 and ~iii! the non-Gaussian beam
scattering theory, which we employ here and in paper
I. The diffraction theory is both the simplest and
most approximate of the theories. The Gaussian
beam scattering theory is a generalization of it, and
the non-Gaussian scattering theory constitutes a fur-

Fig. 5. Beam-plus-scattered intensity as a function of scattering
angle u for the experimental data of Fig. 4~e! and our on-axis model
with z0 5 214.5 mm and x0 5 y0 5 0.
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ther generalization. The generalization is related to
the fact that the dominant physical processes for the
scattering of a transversely localized beam in the
near-forward direction by a large spherical particle,
but with the particle radius smaller than the local
beam radius at the position of the particle, are dif-
fraction, reflection of near-grazing rays, and transmis-
sion of near-axial rays.14 Further, diffraction
dominates for u in the range of the first few oscillations
of the diffracted field.20 For our case with a 5 25.6
mmand l 5 0.5145 mm, the first diffraction zero occurs
at u 5 60.70°. Diffraction is thus dominant over the
entire angular interval of Figs. 4~a!–4~i!, making the-
ory ~i! a good zeroth order approximation in describing
the scattering. In theories ~ii! and ~iii!, all of the other
weaker scattering mechanisms such as reflection and
transmission are also included. In ~ii! the strengths
of these mechanisms are modulated by the Gaussian
profile of the beam,6 and in ~iii! they are modulated by
the arbitrary profile of the axisymmetric beam.
When examining the laboratory scattering data of

Figs. 4~a!–4~i!, we see that a prominent feature is the
sequence of interference peaks labeled a through e.
These peaks have the following physical interpreta-
tion. Because the first diffraction zero occurs at u 5
60.70°, the oscillations of the diffracted field cannot
be responsible for the peaks. As described in paper
I, the peaks are caused by the interference of the
forward lobe of the diffracted wave, whose surfaces of
constant phase have the radius of curvature r at the
detector plane, with the unscattered portion of the
incident beam, whose surfaces of constant phase have
the radius of curvature r9 there. Any model for the
incident beam, either Gaussian or non-Gaussian, will
fit the experimental positions of the peaks accurately,
as long as it includes both diffraction and the inter-
ference of the incident beam with the scattered or
diffracted wave. This was seen both in Refs. 12 and
13 and in Figs. 4~a!–4~i! here.
For our experiment, the beam is sufficiently wide

with respect to the target particle that the intensity
of the scattered wave is more than an order of mag-
nitude weaker than the intensity of the incident
beam. This disparity is shown in Fig. 6~b! for y0 5 0.
Thus the interference of the beam and the scattered
wave oscillates rather closely about the incident
beam profile. As a result, if one were to model in-
accurately the angular dependence of the incident
beam profile, i.e., M~u9! in Eq. ~11!, the interference
maxima and minima would be in the right places.
However, the baseline curve upon which they are
superposed would be incorrect @See, e.g., the Gauss-
ian beam model for Figs. 3~b! and 3~c! of paper I#.
The fits to both the positions of the interference max-
ima and minima, as well as the shape of the overall
intensity curve, are accurate only when the incident
beam amplitude profile is modeled accurately, as we
have done here in Section 2.
A second noticeable feature in Figs. 4~a!–4~i! is the

variable peak-to-valley contrast of the interference
structure. For y0 , 0, the contrast of the oscillations
for u . 0 is increased while the contrast for u , 0 is

decreased. Similarly, for y0 . 0 the contrast for u ,
0 is increased while the contrast for u . 0 is de-
creased. As shown in Figs. 6~a! and 6~c! for y0 5
250 mm and y0 5 50 mm, respectively, this is a con-
sequence of the off-axis geometry of the beam and
particle. For y0 , 0 in Fig. 6~a! the incident beam
shifts to negative u so that the forward diffraction lobe

Fig. 6. Scattered intensity and beam intensity as a function of
scattering angle u for z0 5 214.5 mm, x0 5 0, and ~a! y0 5 250 mm,
~b! y0 5 0, ~c! y0 5 50 mm.
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is more comparable in amplitude to the u . 0 portion
of the incident beam, leading to a larger-contrast in-
terference structure. The forward diffraction lobe is
also less comparable in amplitude with the u , 0
portion of the incident beam, leading to a smaller-
contrast interference structure. In Fig. 6~c! for y0 .
0 where the incident beam shifts to positive u, the
behavior of the contrast of the interference structure
is reversed. Lastly, it should also be noticed that in
Figs. 4~a! and 4~b! the peak value of the beam-plus-
scattered intensity is larger than the intensity of the
beam alone in the absence of the particle. This is
due to constructive interference of the diffracted wave
and the incident beam at the center of the beamwhen
uy0u is larger than approximately 70 mm.
Our final observation is that there are many ap-

proximations that one must consider when imple-
menting a particular version of the scattering theory.
These approximations are not immediately apparent
when one is examining the formal exact equations of
the theory. In recent years this has been seen to be
the case for the Gaussian beam scattering theory.
One can evaluate beam-shape coefficients Alm and
Blm exactly by performing either a two-dimensional2
or a three-dimensional integral1 over the radial com-
ponent of the beam’s electric and magnetic fields, but
only if those field components are known exactly.
The exact fields for a Gaussian beam, unfortunately,
are not known, although a complicated but usually
rapidly convergent infinite series representation for
them is available.3,4 However, upon truncating the
infinite series at some point, one finds that the value
of the two-dimensional integral for Alm and Blm
weakly depends on the choice of the radial evaluation
point, and various contributions to the three-
dimensional integral for Alm and Blm diverge.8
As an alternative, a localized approximation for

Alm and Blm for both on-axis5,6 and off-axis7 Gaussian
beam scattering was developed. The approximation
is usually quite accurate, and in retrospect21 it was
found that the localized approximation anticipates
many of the higher-order terms in the infinite series
expansion of the beam fields. From a different point
of view, an arbitrary specification of a set of Alm and
Blm coefficients describes a beam that is an exact
solution of Maxwell’s equations.8,21 Such a set of
coefficients has been constructed so as to approximate
accurately a Gaussian beam near its focal waist.
However, the behavior of the resulting beam far from
the focal waist has yet to be studied.
Similar difficulties also occur in the formal equa-

tions for non-Gaussian beam scattering. The theory
can be exactly written down, as was done in Eqs. ~1!,
~28!, and ~29!. However, when one wishes to evalu-
ate beam-shape coefficients Alm and Blm, a number of
approximations of one sort or another must be made.
Without knowing the exact functional form of the
radial component of the electric and magnetic fields
of an experimental beam, we cannot evaluate Alm and
Blm by direct integration. The localized on-axis
beam-shape coefficients are generalizable for an axi-
symmetric beam because of their derivation by

means of stationary phase arguments, but again the
exact beam profile must be known. And, even if it
were, the generation of the off-axis coefficients from
the on-axis coefficients by means of translation theo-
rems for vector spherical harmonics is not yet well
developed.22 Furthermore, to our knowledge no the-
ory has yet been devised to approximate Alm and Blm
for a nonaxisymmetric beam either, on axis or off axis.
Again as an alternative, our approximation based on

measuring the beam’s far-zone intensity profile and
modeling its far-zone phase behavior is given by Eqs.
~23! and ~24!. In this paper we have shown that this
approximation is physically motivated, and that it is
an axisymmetric non-Gaussian beam generalization of
the localized approximation. By comparison with
laboratory data in Figs. 4~a!–4~i! we have shown that,
at least in this case, it is also quite accurate. It is of
interest to compare ourmodel to experimental data for
a more severely non-Gaussian beam, such as an axi-
symmetric higher-order laser mode. We anticipate
that our model would produce an accurate approxima-
tion for scattering by such a beam, provided that the
phase modeling of the beam fields is still described by
the spherical wave fronts of Eq. ~11!.

We thank Gérard Gouesbet of l’Institut National
des Sciences Appliquées de Rouen, France, for bring-
ing the problem of obtaining the beam-shape coeffi-
cients of an actual laser beam to our attention.

References
1. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from
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13. F. Guilloteau, G. Gréhan, and G. Gouesbet, “Optical levitation
experiments to assess the validity of the generalized Lorenz–
Mie theory,” Appl. Opt. 31, 2942–2951 ~1992!.

14. J. A. Lock, “Contribution of high-order rainbows to the scat-
tering of a Gaussian laser beam by a spherical particle,” J. Opt.
Soc. Am. A 10, 693–706 ~1993!.

15. J. A. Lock, “Improved Gaussian beam scattering algorithm,”
Appl. Opt. 34, 559–570 ~1995!.

16. G. Arfken, Mathematical Methods for Physicists, 3rd ed. ~Ac-
ademic, New York, 1985!, pp. 795–797.

17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products ~Academic, New York, 1965!, p. 718, no. 6.633.2.

18. H. C. van de Hulst, Light Scattering by Small Particles ~Dover,
New York, 1981!, pp. 208–209, 210–214.

19. Ref. 14, Appendix A.
20. H. M. Nussenzveig and W. J. Wiscombe, “Complex angular

momentum approximation to hard-core scattering,” Phys. Rev.
A 43, 2093–2112 ~1991!.

21. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial-wave repre-
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