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Optimal Sequence Estimation for 
Convolutionalfy Coded Signals with Binary Digital 
Modulation in lSI Channels 

by FUQIN XIONG 

Department ofElectrical Engineering, Cleveland State University, Cleveland, 
OH 44115, U.S.A. 

ABSTRACT: Decoding convolutional codes with binary digital modulation in intersymbol inter-
ference (lSI) channels is studied. The receiver structure is a whitened matched filter (WMF) 
whose transfer function is determined by the lSI channel. Decoding of the output sequence can 
be performed in two steps or one step. The two-step decoding first decodes the lSI corrupted 
coded sequence back to the lSI free coded sequence which is then decoded back to the uncoded 
message sequence. For one-step decoding, the entire encoder-channel-receiver system is mod-
eled as a new encoder with combined memory length of the memory lengths of the original 
encoder and the channel, and followed by a weighted summation mapping from the binary 
symbols to real number symbols. The weighting coefficients are determined by the channel 
characteristic. In both two-step and one-step decoding, the Viterbi algorithm (VA) is used to 
perform the maximum likelihood decoding. Decoding error probability and complexity ofboth 
methods are analyzed, simulated and compared. 

I. Introduction 

A maximum likelihood sequence estimator (MLSE) consisting of a whitened 
matched filter followed by a Viterbi decoder was developed by Forney (1) for PAM 
channels with lSI. Since then, many papers have proposed a variety of schemes to 
reduce the complexity of the Viterbi algorithm (2-5). But all the above schemes 
are for an uncoded input sequence. Unlike uncoded input symbols, the coded 
symbols are correlated. However, the derivation of the WMF does not require the 
independence of the input symbols (1). Therefore, WMF structure is also optimal 
to coded input sequence. This paper describes how to apply the MLSE to con
volutionally coded signals. 

Previously, two schemes of using the Viterbi algorithm (VA) to decode lSI 
channels with convolutionally coded input sequence have been proposed (6, pp. 
284-287) . One of them does not use a whitening filter, therefore the output noise 
samples are not statistically independent. This poses a great difficulty to the analysis 
of the receiver performance. As a result no bit error rate expression was presented. 
The other receiver which does use the WMF appeared as a problem in (6, p. 298). 
However, no analysis or simulation has been found in the literature. 

After Ungerboek invented the famous trellis coded modulation (TCM) (7), 



several authors applied the Viterbi algorithm to decode the lSI contaminated TCM 
signals (2, 8--10). Their receivers use a WMF. Therefore, the Viterbi algorithm is 
applied to the combined super trellis to decode the received signal sequence. To 
reduce the computational complexity of the Viterbi algorithm in the super trellis, 
the above papers explored a variety of reduced-state Viterbi algorithms. Duell
Hallen and Heegard (2) proposed a delayed decision feedback algorithm which is 
a reduced-state Viterbi algorithm with feedback incorporated into the structure of 
path metric computations. Chevillat and Eleftheriou (8) and Eyuboglu and Qureshi 
(9) used set partitioning to reduced the number of states of the super trellis. Zou 
and Weinrichter (10) simply truncated the lSI coefficients to reduce the number of 
states. All these algorithms can achieve a certain compromise between complexity 
and error performance. However, they all are dealing only with TCM signals in 
lSI channels. 

This paper deals with the situation of decoding convolutional codes in lSI 
channels. This situation arises in systems that use convolutional codes and binary 
modulation such as BPSK, DPSK and BFSK. In these cases, a transmitted symbol 
corresponds to one bit of the coded bit sequence. The finite state machine (FSM) 
representing the transmitter-{;hannel-WMF combination is a one-dimensional 
transversal filter. However, in the case of TCM, since a symbol is chosen from the 
two-dimensional signal constellation using Ungerboek's set partitioning method, 
the FSM is a complex (or two-dimensional) transversal filter. Therefore, despite 
the similarity between TCM and original convolutional codes, neither the methods 
nor the results in (2, 8--10) are applicable to the cases of convolutional codes with 
binary modulations. 

This paper is to fill this gap. A well-structured combined FSM will be derived. 
This combined FSM will be expressed by a generator matrix which is derived from 
the code generator and the channel FSM model. This allows the results to be 
applied to any combination of convolutional codes of any code rate and channel 
FSM model. Based on this combined FSM model the super trellis can be easily 
constructed and error performance and complexity of the Viterbi algorithm can be 
easily evaluated. Any reduced-state Viterbi algorithm can also be applied and their 
performance can be easily analyzed using previous results in the literature. 

The paper is organized as follows. In Section II, the receiver structure is 
presented. Section III describes the combined FSM model and the combined trellis 
for one-step decoding. Section IV is the performance analysis and comparison. 
Section V concludes the paper. 

II. Receiver Structure 

The maximum likelihood receiver structure for an lSI channel with uncoded 
inputs consists of a WMF and a Viterbi decoder (1). With a convolutional encoder 
at the front end the cascade of the encoder, channel (baseband) and the WMF is 
shown in Fig. 1. 

The input and output symbols of the encoder are binary (0,1). In a practical 
system the (0,1) alphabet is converted to a (-1,1) alphabet since the latter needs 
3 dB less average bit energy for the same error probability. However, it can be 
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FIG. 1. Cascade of the encoder, the channel and the whitened matched filter. 

shown that the effect of the input level shifting on the output of the FSM is 
merely a level shifting/scaling of the output signals, which does not affect the error 
performance analysis. Therefore, the converter is omitted in the model of this 
paper. 

The channel is characterized by a square-integrable impulse response h(t) 
of length L symbol intervals, i.e. h(t) = 0 for t > LT and t < 0 and 
IIhl1 2 = J:!:~ h2 (t) dt < 00. A white Gaussian noise net) of zero mean and double
sided spectral density N o/2 represents noise entering at various points of the 
channel. The transfer function of the whitening filter is 1//(D- 1), where/(D-I) is 
one of two factors of the spectrum of the channel: 

reD) =/(D)/(D- 1
), (1) 

where 

reD) = I 
v 

rkDk (2) 
k = -v 

and v = L-l. We use reD) to denote the D-transform of the autocorrelation 
function of h(t), 

Ikl !( L-l "~ IF, h(tlh(t-kT) dt (3) 

Ikl ~ L. 

The cascade of the channel and the WMF can be lumped in a FSM model whose 
transfer function is/CD) of degree v, another factor of the reD) (1) : 

(4) 

Thus the entire system can be shown as in Fig. 2. 
The code is an (n, b, m) code of rate R = bin. The transfer function matrix G(D) 

of the encoder is defined as 

g\2) (D) ql.'(Dl][ gl"(D) 
(1) D glf)(D) g~nl(D)

G(D) = g2 ~ ) (5) 

gbll(D) 9b2) (D) gln) (D) 
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FIG. 2. Cascade of the encoder and the finite state machine model. 

in which gP)(D) is the generator polynomial relating input u(/) to output xV), and 
gP)(D) has a maximum degree of m. 

Corresponding to a b-dimensional input vector Uk> there is an n-dimensional 
vector Xk. Their relation, in D-transform, is 

xeD) = GT(D)u(D) (6) 

where all operations are in GF(2) field (moduI0-2), and the superscript T denotes 
transpose of the matrix. The components of Xk are shifted sequentially into the 
FSM. In other words, the input sequence to the FSM is a one-dimensional sequence 
xeD), thus the output sequences are 

y(D) = f(D)x(D) (7) 

and 

zeD) = y(D)+n(D) (8) 

where all operations are in real number field R. We use neD) to denote a white 
Gaussian noise sequence with zero mean and variance No/2. 

In time domain the relation is a convolution: 

v 

Yk = L ];Xk-i (9) 
i~ 0 

and 

(10) 

III. One-step Decoding 

Based on the diagram in Fig. 2, a straightforward decoding method would be a 
two-step decoding method. The two-step decoder decodes sequence zeD) back to 
xeD) which is then decoded back to u(D). For maximum likelihood decoding, the 
first decoder (VAl) is a soft-decision Viterbi decoder (1) and the second one (VA2) 
is a hard-decision Viterbi decoder. V A2 cannot make use of any signal amplitude 



information which has been lost after VAL However, if we combine the encoder 
and the FSM together and apply a one-step Viterbi decoding to the super FSM, 
the signal amplitude information would be fully utilized in the decoding process. 

In order to derive the one-step decoding algorithm, all inputs and outputs are 
grouped in vector forms. Corresponding to each b-dimensional input vector Uk> 

there are n-dimensional vectors Xb Yk and Zk at different stages' output. The 
relations between Uk and Xb Yk and Zk are straightforward (see Eqs (6), (8)). 

However, the relation between Yk and Xk is not simple due to the sequential 
feeding of the x"s components into the FSM. In fact, each Yk involves current Xk 

and at least one previous input, namely, Xk _ l . In general, Yk is determined by Xk, 

Xk _ I, .. . , Xk ~/' as follows: 

0 0 fo  
yi2) 0 fo Iv [yf"I 

[J.yi") Iv 0 0 11 

x~') 

X~I) 

X(II)
k- I 

(11) 

xii)- I 

X(n)
k - J. 

Xiq~A 

where A= Iv/nl and '1 = ).n-v+l. Here, Iv/nl denotes the smallest integer 
not less than v/n. In vector form the above equation can be written as 

(12) 

in obvious notation. 
Measured in number of input vectors, the memory length of the FSM is A. . The 

total memory length of the encoder- FSM cascade is therefore 

m' = m+A. (13) 

The dimension of the output vector x" is 

n' = n+v. (14) 

Thus the system can be equivalently thought of as a new encoder G'(D) with a 
longer memory m' and a larger dimensional (n') output. The number of states of 
the encoder is S ' = 2bm

' = S2b\ where S = 2bm is the number of states of the original 
encoder. The new encoder generates Xb Xk- I , ... ,Xk_ .I. simultaneously. They com
pose x". The new generator matrix is 

G' (D) = [Gr(D),DGr(D), ... ,D.l.Cr(D)], (15) 

where Gr(D) is obtained by reversing the order of G(D)'s columns: 



G(D) 

FiG. 3. Combined finite state machine model of the system of Fig. 2. 

g\n - ')(D) 
[ g\"' (D) g\"(D)I(n ) D g~n-')(D) g~' ) (D)

Gr(D) = g2 ~ ) (16) 

91") (D) gln- ' )(D) g11)(D) 

Then Gr(D) is formed from Gr(D) by dropping gY)(D) for i = I , ... ,b andj < 1]. 

The new encoder can be represented by 

x'(D) = G'T(D)u(D) . (17) 

Then xi.: is mapped into Yk through a weighted summation operation with the 
weighting coefficients fO'/" . . . ,j. (Fig. 3). Clearly this equivalent model is an FSM. 
The output vector Yk is determined by the state of the encoder G'(D) and the input 
vector Uk' The sufficient statistic is Zk = Yk +Ok> where Ok is the white Gaussian noise 
vector. Its components are independent and one noise vector is independent from 
another. 

Example I 
A simple lSI channel and a simple code are chosen in this example for the 

purpose of illustration. The channel is the one-pole channel 

p -~I (~ 0 
h(t) = 0 e (18){ «0 

where ex > 0, P> O. It is a slowly decaying low-pass channel when ex is small. By 
choosing appropriate parameters and truncation (4), one possible transfer function 
F(D) of the FSM model could be 

feD) =fo+f,D+f2D2 

= 1+0.607D+0.368D 2. (19) 

Now consider a maximum dfree (3 ,2, I) code with 

[ 
I+D 

G(D) = D 
D 

1 
(20) 
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FIG. 4. Figures for Example I: (a) Cascade of the encoder and the FSM; (b) Combined 
FSM. 

and the encoder is cascaded with this channel as shown in Fig. 4(a), from which it 
is seen that 

(21) 

The equivalent system model is shown in Fig. 4(b). The new encoder grows out of 



the original encoder by adding one more memory element (A = 1) and repeating 
the connections for the xi2) and x f ) one stage later to form the connections for 
xf~ I and xP~ I' The generator of the new encoder is therefore 

1+D D l+D 
G'(D) = I (22)

[ 1 D 

The code rate reduces to R ' = 2/5. However, it is not the real rate in the system. 
The real rate is still 2/3. 

Given the equivalent finite state machine, maximum likelihood (ML) estimation 
can be applied to the output sequence zeD) to estimate the input sequence u(D) . 
Extending the one-dimensional case in (1) to the multiple-dimensional case, it is 
easy to show that maximizing the likelihood is equivalent to minimizing the fol
lowing quantity, 

N 

M p(u(D» = L Mb(UbZk), (23) 
k = I 

which is the path metric, where 

2M b(uk> zd = L
n 

(zt) - yt) (24) 
i= 1 

is the branch metric. The path metric is the squared Euclidean distance between 
sequences y(D) and zeD). The branch metric is the squared Euclidean distance 
between vectors Yk and Zk ' 

The Viterbi algorithm is an efficient means of implementing the strict ML 
estimation (6). It will use the above metrics. For the equivalent (n', b, m' ) FSM, 
the m' most recent inputs determine a state of the FSM. Denote a state at any time 
k as Sk; then 

(25) 

The trellis of the Viterbi algorithm has 2bm' states. There are 2 b transitions stemming 
from each state. Each transition is associated with an input vector Uk and an output 
vector yk as denoted by 

(26) 

To calculate Yk one must first calculate x~ from (Uk> Uk_ ." " , Uk-m') using (17) 
(modulo-2 arithmetic) , then calculate Yk from x" using (12) (real number arith
metic) . 

Figure 5 shows trellises of the FSMs of Example 1. The Viterbi algorithm 
searches through the trellis for the ML path. For details of the well known Viterbi 
algorithm the readers are referred to (11) or other books on coding. 



States Uk_! Uk_2 T 2T 3T 

So 0 0 

SI 1 0 

S2 2 0 

S3 3 0 
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S6 2 1  

S7 3 1  

S8 0 2 


S9 2 


SlO 2 2 


Sl1 3 2 


S12 0 3 


S13 1 3 
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(a) Trellis for one-step decoding 

States xk_l Xk_2 T 2T 3T 


So 0 


SI :~..~..~~ 
S2 0 

1 ~S3 

(b) Trellis for V Al in two-step decoding 

(c) Trellis for V A2 in two-step decoding 

FIG. 5. Trellises for Example I. 
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IV. Performance Analysis 

4.1. Error probability 
The analysis for the one-step decoding is basically an extension from the one

dimensional uncoded case in (1 , 12) to the coded b-dimensional input n-dimensional 
output FSM case. 

Following a derivation procedure similar to that in (1, 12), the upper bound of 
the bit error probability is found as 

[ 
d Jl [H b 2- le;:) IJPb ~ L Q - - - L WHee) n n ' (27) 

d e D J 2N b ,e Ed ; = Oj~ 1 2o 

where e denotes an error event. Here, Ed is the set of error events which cause all 
incorrect paths at distance d, D is the set of all possible paths which are of distance 
d away from the correct path, WH(e) is the Hamming weight of the input error 
sequence eiD) which has a degree of H, and e~) is thejth component of the ith 
term in the error sequence ell(D) . The QO function is the error function defined 
as 

Q(x) = f~ ~exp [ - ~JdX. 
A distance d is associated with an error event and is evaluated by using error 

sequence eyeD) in the following expression: 

K 

d 2 2(s) = Il eyl1 = L Iley,f 
i = 0 

K II 

= L I (ey/ )2 = [e;(D-1)ey(D)] D=O' (28) 
; = O j ~ I 

To evaluate the bound in (27) , a simple but lengthy method is to perform a 
quasi-exhaustive search over main incorrect paths whose distances are close to the 
minimum distance drnin - u ' This is usually done by a computer. If the distance 
spectrum of the FSM is such that the dmin - u is much smaller than other distances, 
then an approximation of Eq. (27) is given by 

(29) 

where 

(30) 

This expression is obtained by simply ignoring all the terms in Eq. (27) except 
those involving the minimum distance dmin - u of dee). This approximation is called 
an upper estimate. It was shown that the upper bound asymptoticaIly tends to 



upper estimate when No goes to zero (1). When dmin - u is much smaller than other 
dee), Eq. (27) is accurate. However when dmin - u is not much smaller than other 
dee), the estimate can be quite poor. Then a larger section of the distance spectrum 
needs to be included in the error probability calculation. 

In two-step decoding, the BER expression for VAl is simply a special case of 
Eqs (29) and (30). In this case, b = I and the input sequence is xeD). Denoting the 
BER of the VAl as Pb - VAI, then 

(31) 

where 

(32) 

The minimum Euclidean distance dmin - x is different from dmin - u in one-step 
decoding. The one-step decoding is conducted in the composite trellis which relates 
u(D) to y(D) directly. All the possible u(D)'s, but not all the possible x(D)'s, are 
tested. Thus dmin - u is the minimum distance in the composite trellis. Here, dmin - u 

corresponds to error events in u(D) that produce the minimum distance between 
y(D)'s. In two-step decoding VAl and VA2 are conducted in two different trellises. 
The VAl is conducted in the trellis relating xeD) to y(D). All the possible x(D)'s 
are tested, in other words, there is no constraint on x(D)'s. The error probability 
is determined by the dmin - x in the trellis. Also, dmin - x corresponds to error events 
in xeD) that produce the minimum distance: dmin - x is the minimum distance purely 
due to the lSI channel and uncoded input sequences. Due to encoding those dmin - u 
error events in u(D) do not necessarily generate those dmin - x error events in xeD). 

The error probability expression for a hard decision Viterbi decoder is well 
known (11): 

(33) 

where drree is the minimum distance between any two code words in the code 
generated by G(D). Since convolutional code is linear, drre• is also the minimum 
weight of the nonzero code words in the code. Here, Ed" ", is the total number of 
nonzero message bits on all weight drree paths, and p is the channel transition error 
probability. However, this expression is only valid for an input sequence with 
random errors. The input sequence to the VA2 is the sequence xeD) which is the 
output sequence of VA1. The errors in the input sequence of VAI, z(D), are 
random. But the errors in xeD) are not completely random. As a matter of fact, 
the errors most likely occur as bursts of the length of the error events which cause 
dmin - x . As a result, Eq. (33) is not accurate for VA2. Thus P b - VA2 will be less than 
P b - VAI and greater than that expressed by (33). The actual P b - V A2 depends upon 
the randomness of the errors in sequence xeD) and the error correcting capability 
of the code. Due to the vast difference in values predicted by (31) and (33), these 



two bounds are so loose that they are not useful. The evaluation of Ph - VA2 thus is 
better done by simulation. 

4.2. Coding gains 
To find coding gain (or loss) one needs to write all BER expressions in terms of 

the average bit energy to noise spectral density ratio Eb/NO' The Eb = 0.5 in our 
model since the input alphabet is (0, 1) where both symbols are equally likely. The 
bit-by-bit detection of a uncoded binary lSI-free PAM sequence has a BER of 

The MLSE of an uncoded lSI sequence has a BER of 

(34) 

For the coded sequence the Es = REb, where R is the code rate and Es is the 
average symbol energy. Thus the BER of the one-step decoding is 

(35) 

Thus, by comparing (34) and (35), the asymptotical coding gain for one-step 
decoding is approximately (K] and K2 are ignored) 

(36) 

where R accounts for the transmission energy reduction due to coding for a fixed 
energy per information bit. 

For two-step decoding, analytical coding gain cannot be obtained due to the 
lack of error probability expression. 

In the following analytical and numerical simulation results of the Pb of two 
examples are given. 

4.3. Error probability of examples 

Example 2 
This example assumes the same one-pole lowpass channel as in Example 1. The 

code has a generator 

This is the popular (2, 1, 6) code which has been implemented as a VLSI chip by 
several manufacturers. This code has an dfree = 10 and an asymptotical hard 
decision coding gain of 3.97 dB and an asymptotical soft decision coding gain of 
6.97 dB. 

Example 3 
This example assumes the same code as in Example 2, but the channel is a 

magnetic recording channel or Lorentzian channel given by 
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FIG. 6. Bit error probability of Example 2. 

[ (t)2J-' [ (t T )2J-'h(t) = 1+ ~ - 1+ ~ b (38) 

where Tb is the bit period. Assuming Tb = r then the truncated FSM transfer 
function (2 lSI terms kept) is (4) 

feD) = 1+0.260D-0.368D2. (39) 

To determine the performance, the most important thing to do is to find all dmiO' 

The d min - x is determined by the channel. By computer search using (28), ~in-x of 
Example 2 is found to be 1.161, which corresponds to two error events: 
ex(D) = ± (1- D). Here, K2 = 1.0 according to (32). The d min - u of Example 2 is 
found to be 2.335, which corresponds to two error events: euCD) = ± (I-D). 
Here, K, = 1. The d min - x of Example 3 is found to be 1.097, which corresponds to 
two error events: ex(D) = ± 1. Here, K2 = 1.0. The d min - of Example 3 is foundu 
to be 2.094, which corresponds to one error event: eu(D) = 1. Here, K, = 0.5. 
Using these parameters the BERs and the coding gains can be determined. The 
estimated coding gains for Examples 2 and 3 are 3.06 (dB) and 2.61 (dB), respec
tively, using one-step decoding. They are slightly poorer than that ofISI-free, hard 
decision decoding. But it is about 3 to 4 (dB) poorer than that of lSI-free soft 
decision decoding. This means that the lSI causes degradation in coding gain. 

Figures 6 and 7 show the analytical and simulation results of Examples 2 and 3. 
From the figures it is seen that the simulated Pb of the one-step decoding is quite 
close to the prediction. Since the prediction is an upper estimate, the simulated Ph 
being slightly smaller is reasonable. 

Figure 6 shows that the simulated asymptotical one-step coding gain for Example 
2 is about 4 dB which is slightly larger than the prediction (3.06 dB). It also shows 
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FiG. 7. Bit error probability of Example 3. 

that the simulated two-step coding gain is about 0.2 dB at Eb/NO over 10 dB. The 
V A2 improves the BER of the VAl by 2 dB, but it still can not compensate for the 
loss of magnitude information after VAL As a result, the one-step decoding is 
about 3.8 dB better than the two-step decoding in this example. However, when 
compared with lSI-free channel, soft decision case, the one-step decoding is still 
about 3 dB poorer. This 3 dB loss is caused by the lSI. 

Figure 7 shows that the simulated asymptotical one-step coding gain for Example 
3 is about 2.5 dB which is close to the prediction (2.61 dB). It also shows that the 
simulated two-step coding gain is about I dB at Eb/NO over 10 dB. The VA2 
improves the BER of the VAl by about 3 dB. The one-step decoding is about 2 
dB better than the two-step decoding in this example. However, when compared 
with lSI-free channel, soft decision case, the one-step decoding is still about 4.5 dB 
poorer. This 4.5 dB loss is caused by the lSI. 

From above results it is seen that different code-lSI channel combinations entail 
different losses compared with lSI-free, soft-decision decoding case whether one
step decoding or two-step decoding is used. More loss is seen when two-step 
decoding is used. The coding gain difference between one-step and two-step decod
ings varies widely (3.8 dB for Example 2 and 2 dB for Example 3). Therefore not 
much can be said about the difference in generaL However, it is evident that 
the one-step decoding is better than the two-step decoding in terms of error 
performance. 

4.4. Complexity 
The complexity of a Viterbi decoder is basically determined by its number of 

states. 
The two-step decoding needs two Viterbi decoders operating in a pipeline style. 

The number of states is 2' for VAl and 2bm for V A2. In VAl, decoding must be 



performed on 2' states for every symbol which represents R = bin information bits. 
In V A2, decoding on 2bm states is performed for every b information bits. Thus the 
number of states for each information bit is 

(40) 

If decoding is implemented by hardware, VAl and VA2 are operating in a pipeline 
style, the decoding speed is dictated by the slower one of the two. If decoding is 
implemented by software, VAl and VA2 are operating serially, the decoding time 
is the sum of the time used by them. 

The one-step decoding needs only one Viterbi decoder. The number of states in 
the trellis is at most 2bm'. Decoding must be performed on 2bm' states for every b 
information bits. Thus the number of states for each information bit is 

(41) 

One-step Viterbi decoder has more states than V A2 since its memory length 
m' = m +A > m. It also usually has more states than VAl (2bm' vs. 2'). Consequently 
its speed usually is slower than the two-step decoding for software implementation. 
But for hardware implementation, its speed is not necessarily slower if parallel 
processing is used. 

The ratio of S[/S2 for Examples 2 and 3 is 128/72 = 1.778 which is consistent 
with the recorded CPU time ratio of 1.771 in the simulation. 

V. Conclusion and Discussion 

The WMF receiver structure is adopted to detect convolutionally coded signals 
with lSI so that an ML decoder using the Viterbi algorithm can be applied. The 
decoder can be a two-step decoder or a one-step decoder. The two-step decoder 
consists ofa soft-decision Viterbi decoder VAl and a hard-decision Viterbi decoder 
VA2. The VAl decodes the lSI and noise contaminated signal sequence into a ISI
free and noise-free sequence. The V A2 further corrects the errors in the sequence. 
The one-step decoder consists only one Viterbi decoder. In order to apply the one
step decoding, an equivalent composite finite state machine model is derived. The 
bit error probability of the decoders is derived. Two code-channel combinations 
are evaluated and simulated. The analysis and simulation show that the one-step 
decoding has better BER than the two-step decoding due to its soft-decision nature. 
However, the lSI entails loss to the coding gain, so that the coding gain is smaller 
than that for an lSI-free channel. As to complexity, the onestep decoder is either 
slower or needs more hardware because it has more states. 

Even though the examples studied are in favor of the one-step decoding, the 
choice between the one-step and two-step decoding need be carefully examined by 
balancing the error performance and complexity. Also it is seen that the con



volutional code must be powerful enough to retain some coding gain in lSI chan
nels. In other words, codes with short constraint length are not suitable for lSI 
channels. 
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