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RESEARCH ARTICLE
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Abstract

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is

often associated with poor prognosis. There is a well-recognized link between coagulation

and inflammation, however, the extent of thrombotic events associated with COVID-19 war-

rants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cyste-

ine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase

Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been

shown to interact with SARS proteins. We computationally examined the interaction of

these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to

ORF7a in detail. We examined the occurrence of variants of each of these proteins across

populations and interrogated their potential contribution to COVID-19 severity. Potential

mechanisms, by which some of these variants may contribute to disease, are proposed.

Some of these variants are prevalent in minority groups that are disproportionally affected

by severe COVID-19. Therefore, we are proposing that further investigation around these

variants may lead to better understanding of disease pathogenesis in minority groups and

more informed therapeutic approaches.

Author summary

Increased blood clotting, especially in the lungs, is a common complication of COVID-19.

Infectious diseases cause inflammation, which in turn can contribute to increased blood

clotting. However, the extent of clot formation that is seen in the lungs of COVID-19

patients suggests that there may be a more direct link. We identified three human proteins

that are involved indirectly in the blood clotting cascade and have been shown to interact

with proteins of SARS virus, which is closely related to the novel coronavirus. We exam-

ined computationally the interaction of these human proteins with the viral proteins. We
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looked for genetic variants of these proteins and examined how they are distributed across

populations. We investigated whether variants of these genes could impact severity of

COVID-19. Further investigation around these variants may provide clues for the patho-

genesis of COVID-19, particularly in minority groups.

Introduction

The Coronavirus disease of 2019 (COVID-19) has been associated with coagulopathy, particu-

larly microclots in the lungs [1–5], that correlates with disease severity [6–9]. There is extensive

cross-talk between inflammation and coagulation, and inflammation is presumed to have a

role in the observed coagulation phenotype. However, the widespread thrombotic events that

are seen in severe COVID-19 patients suggest that there may be a more direct link.

In a study conducted before the onset of the COVID-19 pandemic, the severe acute respira-

tory syndrome (SARS) coronavirus (CoV)-host interactome was investigated. A few proteins

related to the coagulation cascade were experimentally identified to interact with viral proteins

(Fig 1). Poly(A) Binding Protein Cytoplasmic 4 (PABPC4) was shown to interact with the

nucleocapsid (N) protein. Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERP-

ING1 or C1 inhibitor) was shown to interact with nsp14, ORF14, ORF3b, ORF7b, nsp2, nsp8

and nsp13. In addition, Vitamin K epOxide Reductase Complex subunit 1 (VKORC1) was

shown to interact with the SARS protein ORF7a. The interactions were initially identified by a

high-throughput yeast two-hybrid system and confirmed with LUMIER assay [10].

Fig 1. Graphic summary of ORF7a-VKORC1 interaction and possible effects. The interaction between ORF7a and VKORC1 and possible effects of this interaction.

https://doi.org/10.1371/journal.pcbi.1008805.g001
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PABPC4 localizes primarily to the cytoplasm and binds to the poly(A) tail present at the

3-prime end of mRNA. However, it is also found in the surface of thrombin-activated platelets,

and therefore it is known as activated-platelet protein-1 (APP-1) [11,12]. PABPC4 may also be

involved in the regulation of protein translation in platelets and megakaryocytes may partici-

pate in the binding or stabilization of polyadenylates in platelet dense granules [13]. SERP-

ING1 is a plasma protease involved in the complement, intrinsic coagulation and fibrinolytic

pathways. In the coagulation cascade, SERPING1 inactivates plasma kallikrein, factor XIIa and

factor XIIf. The absence of sufficient levels of functional SERPING1 leads to hereditary angioe-

dema (HAE), which is mediated by sustained activation of kallikrein leading to cleavage of

high molecular weight kininogen (HMWK), producing bradykinin [14].

ORF7a is a viral protein that has not been well studied. While it counteracts the anti-viral

properties of tetherin (BST2) [15,16], allowing for easier dispersal of virions, this protein has

been found to be dispensable for viral replication in cell culture [17]. ORF7a may bind to

Integrin beta chain-2 (ITGB2), a protein which is necessary for movement and phagocytosis in

lymphocytes [18].

VKORC1 is an enzyme critical for coagulation due to its role in converting vitamin K epox-

ide into active vitamin K [19], the rate-limiting step in the physiological process of vitamin K

recycling. Importantly, vitamin K is necessary for the carboxylation of glutamic acid residues

to produce Gla residues. Several human proteins have domains with Gla residues, including

coagulation factors II, VII, IX, X, and anticoagulant proteins C, S, and Z. VKORC1 is

expressed in all tissues, but particularly in the liver, lungs, and female reproductive system. It is

generally embedded in the endoplasmic reticulum [20].

Dietary vitamin K deficiency is associated with coagulopathy, specifically bleeding. Vitamin

K antagonists are anticoagulant drugs that work by inhibiting the activity of VKORC1, reduc-

ing the levels of available active vitamin K and coagulation factors. Of the vitamin K antago-

nists, warfarin is most commonly used. Some variants in VKORC1, particularly those

common in African and African American populations, are reported to result in warfarin

resistance. Warfarin response is also dependent on dietary factors and liver function [21]. For

these reasons, dosing warfarin is complicated, and genotyping of VKORC1 to determine the

presence of known polymorphisms (such as c.1173C>T) is recommended before initiating

warfarin treatment.

The impact of viral protein interactions with VKORC1, SERPING1 and PABPC4 on patient

outcomes in COVID-19 infection is unknown. While comorbidities, age, and other factors

will impact the predisposition to thrombosis or coagulopathy, binding of viral proteins to

coagulation related proteins may be partially responsible for the prothrombotic phenotype

that is seen in COVID-19 patients.

Through computational modeling, we examined the binding of VKORC1, SERPING1 and

PABPC4 to SARS-CoV-2 proteins and generated additional evidence for the binding of

ORF7a to VKORC1. To further study the impact of these protein-protein interactions, we

analyzed the effect of variants on patient outcomes and on protein function. We analyzed

COVID-19 genome-wide association study (GWAS) results to find the most influential vari-

ants from these genes and characterize them to find potential causes of effect. Then, we inves-

tigated several VKORC1, SERPING1 and PABPC4 variants that may impact protein function

and coagulopathy, and we identified some VKORC1 variants that may result in warfarin

resistance. In particular, we highlight two variants, which are enriched in certain ethnic

groups. Better understanding of the contribution of these genes and their variants to

COVID-19 pathogenesis may lead to new therapeutic avenues and improved prognosis. This

may be of crucial importance for minority groups that are disproportionally affected by

severe COVID-19.
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Methods

Structural similarities and computational docking of proteins

To assess the binding of SARS-CoV-2 ORF7a and human VKORC1, we used I-TASSER [22–

24] to generate homology models for both proteins. However, all ORF7a models showed an

interaction between the luminal and transmembrane domains, which would cause clashing

between the plasma membrane and the ORF7a luminal domain. For this reason, we used only

the transmembrane domains of the models. Then, using the model with the best C-score, we

used Zdock [25] to find potential binding sites. From Zdock, we used the protein-protein com-

plex with the N-terminus of the ORF7a fragment closest to the luminal portion of VKORC1,

which would introduce the least amount of clashing between the ORF7a luminal domain and

the plasma membrane. This complex was used as input to Rosetta Prepack and Rosetta Dock

[26–29] to further refine the models by using rigid body perturbations. The top five models

were retained.

We examined known SARS-CoV-2 ORF7a variants [30,31]. However, all encountered vari-

ants were in the luminal domain and are unlikely to impact the interaction with VKORC1.

In addition, to verify the binding of PABPC4 and SERPING1 with SARS-CoV-2 proteins,

we created homology models for each using I-TASSER and Robetta [32,33]. Template struc-

tures for all models are given in S1 Table. However, because segments of PABPC4 and SERP-

ING1 have not been crystallized, these regions in the models were of low quality. For this

reason, we used Blast and Clustal Omega to create multiple sequence alignments (MSAs) of

proteins similar to interacting SARS proteins, and computed the percent of columns of the

homologous SARS-CoV-2 protein matching the SARS protein, as well as a loglikelihood score

to measure the probability that the SARS-CoV-2 homolog would be included in the MSA

(Table 1). In addition, the MSAs were filtered to remove duplicate sequences by performing

affinity propagation clustering with the Levenshtein distance matrix formed from the

sequences. Only the cluster centers, SARS, and SARS-CoV-2 sequences were used in the MSA.

This was done to account for the large number of very similar sequences, generally from differ-

ent strains of SARS-CoV-2.

Table 1. Sequence homology of selected SARS and SARS-CoV-2 proteins.

Protein Fraction Matching Loglikelihood

N 0.888626 -0.04824

ORF7a 0.827869 -0.05688

nsp14 0.884393 -0.19572

ORF7b 0.795455 -0.01103

nsp3 0.75078 -0.46736

nsp2 0.681818 -0.44764

nsp8 0.969697 -0.12897

nsp13 0.948767 -0.1215

MSA fraction matching is the fraction of positions in the SARS-CoV-2 protein matching the homologous SARS

protein, when both are aligned in an MSA. Higher number indicates more conserved position and the range is

between 0 and 1.

MSA likelihood is the fraction of sequences in an MSA matching SARS-CoV-2 for a given column. Assuming all

columns are independent, ∏iP(xi) gives the probability of finding the SARS-CoV-2 sequence in the MSA sequences,

which ranges between 0 and 1. Taking log of this value gives log(∏iP(xi)) = ∑i(log P(xi)), an additive loglikelihood

score which is nonpositive, with lower values indicating more positions in the SARS-CoV-2 sequence that differ from

the MSA sequences.

https://doi.org/10.1371/journal.pcbi.1008805.t001
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We used the ORF7a homology model to query Dali [34] for similar protein structures. The

top structures in sequence and structural similarity were the ORF7a proteins for SARS and

SARS-CoV-2 (PDBs 1YO4 and 6W37). All human proteins interacting with VKORC1 were

taken from BIOGRID, the Biological General Repository for Interaction Datasets [35,36]. In

addition, we queried Dali against all other viral protein structures, as modeled in I-TASSER.

Relevant variants from COVID19 HGI GWAS metastudies

All variants from the genomic region containing VKORC1, SERPING1, and PABPC4 ±6000 bp

were taken from the ANA2, ANA5, and ANA7 metastudies from COVID19 Host Genetics Ini-

tiative [37] and The Severe Covid-19 GWAS Group [38] (Tables 2 and S2). We filtered the

resulting variants to keep only those with metastudy p-value below 0.05. The resulting variants

were all in non-coding regions, therefore, amino acid and codon features do not apply.

We characterized these variants in terms of splicing, using hexamer scoring tools [39,40],

ESEfinder [41,42], ExonScan [43–45], and FAS-ESS [43]. Where ESEfinder, ExonScan, and

FAS-ESS found a change in splicing potential between the wild type (WT) and mutant, the

change was reported in Table 2 as “Change in splicing”. When the variant occurred in an

intron as opposed to a UTR, we further highlighted the value.

Then, we calculated mRNA mean free energy using Kinefold [46], mFold [47–49], and

remuRNA [50]. When all three tools were in agreement regarding the direction of the change,

the changes in mRNA MFE were converted into Z-scores using mean and standard deviation

values computed by randomly sampling WT and mutant sequences. The average of the three

Z-scores is reported in Table 2 as “Average change in mRNA MFE (Z-score)”.

We also analyzed miRNA binding changes using miRDB [51,52]. For any variant, there

may be multiple affected miRNA species. miRNA binding scores are provided for both the

WT and mutant flanking 501 nucleotides in S3 Table, and a summary of miRNA binding

changes is provided in Table 2. When all miRNA binding changes were in the same direction,

we summarized the effect.

We analyzed conservation using fraction matching in a nucleotide MSA, computed as the

fraction of sequences in the MSA matching the wild type sequence in the appropriate column.

This value is included in Table 2 as “Fraction matching in MSA”.

Finally, we collected population prevalence data from dbSNP (Tables 3 and S3).

Characterization of synonymous and missense variants of coagulation

genes of interest

We found all synonymous (S4 Table) and missense (S5 Table) variants of VKORC1, SERPING1
and PABPC4 genes [53] from NCBI’s Single Nucleotide Polymorphism Database (dbSNP)

[54] and characterized them in terms of (i) population prevalence in the Genome Aggregation

Database (gnomAD) [55,56], (ii) the percent of sequences matching the WT at that position in

a multiple sequence alignment (MSA) [57], (iii) likelihood of the variant in the column of an

MSA, (iv) mRNA MFE computed by both Kinefold and mFold, (v) relative synonymous

codon usage (RSCU) and (vi) relative synonymous codon pair usage (RSCPU) [58,59], (vii)

rare codon enrichment [60], (viii) and %MinMax codon usage [61]. For nonsynonymous vari-

ants, we additionally used amino acid fraction matching in an MSA, likelihood of the variant

amino acid in an amino acid MSA, SIFT [62,56], and Polyphen [63,56]. The fraction matching

and MSA likelihood measures use sequence homology and may imply selection against the

variant. SIFT uses sequence homology as well as physical properties of amino acids, while

Polyphen uses multiple sequence and structural features to predict the effect of amino acid

substitutions. MFE of mRNA may affect stability of mRNA transcripts, which will affect

PLOS COMPUTATIONAL BIOLOGY Gene variants of coagulation related proteins that interact with SARS-CoV-2
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Table 2. Possible predicted effect of variants in VKORC, SERPING1 and PABPC4.

Transcript Location Fraction matching in MSA Change in splicing Average change in mRNA MFE (Z-score) miRNA summary

VKORC1

NM_024006.4:c.-4931C>T 5’ UTR 0.431818 2.20025

NM_024006.4:c.-4851C>T 5’ UTR 0.754967 1.06847

NM_024006.4:c.-2834C>A 5’ UTR 0.950943 miRNA gained

NM_024006.4:c.-1639G>A 5’ UTR 0.0625 Possible splicing change

NM_024006.4:c.174-136C>T Intron 0.020228 0.83549

NM_024006.4:c.283+124G>C Intron 0.133333 -1.44871

NM_024006.4:c.283+837T>C Intron 0.146727 1.35367

SERPING1

NM_000062.2:c.-3537C>G 5’ UTR 0.009615 miRNA decrease

NM_000062.2:c.-2415G>A 5’ UTR 0.033708 Possible splicing change 0.77565

NM_000062.2:c.-1675G>A 5’ UTR 0.426901 miRNA gained

NM_000062.2:c.52-696C>T Intron 0.068027 Likely splicing change 0.30003

NM_000062.2:c.52-130C>T Intron 0.833333

NM_000062.2:c.52-130C>T Intron 0.833333 -0.28155

NM_000062.2:c.550+794C>A Intron 0.693694 0.71906

NM_000062.2:c.685+88G>A Intron 0.769231 -0.75902

NM_000062.2:c.685+659C>T Intron 0.581818 -0.47852 miRNA decrease

NM_000062.2:c.685+659C>T Intron 0.679245 -0.68662

NM_000062.2:c.685+1100C>T Intron 0.772313 2.01226

NM__000062.2:c.685+1391C>T Intron 0.841912 Likely splicing change

NM_000062.2:c.685+1550G>T Intron 0.926641

NM_000062.2:c.685+1770C>T Intron 0.793594 0.84106

NM_000062.2:c.1029+926G>T Intron 0.015723 miRNA gained

NM_000062.2:c.1029+1443G>C Intron 0.595745 miRNA gained

NM_000062.2:c.1029+2110T>C Intron 0.393617 Likely splicing change

NM_000062.2:c.1029+2111G>A Intron 0.687117 miRNA gained

NM_000062.2:c.1030-2243T>G Intron 0.026616 -1.68665

NM_000062.2:c.1030-1975G>C Intron 0.02551 1.92651

NM_000062.2:c.1030-1436T>C Intron 0.823529

NM_000062.2:c.1030-20A>G Intron 0.25 -0.76751

NM_000062.2:c.1438G>A Exon 0.399177 Possible splicing change

NM_000062.2:c.�1323G>A 3’ UTR 0.878788 miRNA lost

NM_000062.2:c.�1521G>T 3’ UTR 0.65873

NM_000062.2:c.�2614A>T 3’ UTR 0.016129 miRNA gained

PABPC4

NM_003819.3:c.-5600T>C 5’ UTR 0.48 miRNA lost

NM_003819.3:c.-4432G>A 5’ UTR 0.009317 miRNA gained

NM_003819.3:c.-4428A>G 5’ UTR 0.221505

NM_003819.3:c.-3677T>G 5’ UTR 0.021645 Possible splicing change -0.59763

NM_003819.3:c.-3636G>A 5’ UTR 0.022378 2.31727

NM_003819.3:c.-3198T>C 5’ UTR 0.856079 Possible splicing change miRNA lost

NM_003819.3:c.-2286T>G 5’ UTR 0.210526

NM_003819.3:c.-650C>T 5’ UTR 0.829978 miRNA lost

NM_003819.3:c.193+796C>G Intron 0.666667

NM_003819.3:c.504-254C>A Intron 0.247191 0.26322

NM_003819.3:c.738+85T>C Intron 0.333333 miRNA lost

(Continued)
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transcript abundance and translation. Codon and codon pair usage have been shown to impact

translation kinetics [64,65], and their metrics may be useful in assessing the impact of synony-

mous mutations on protein conformation and function [58]. For all variants, we provide the

corresponding identifier in dbSNP (”rs” ID) [54].

We applied filters based on codon usage changes, mRNA MFE changes, and position con-

servation to identify variants that were potentially impactful on protein expression or confor-

mation, which may affect interactions with SARS-CoV-2 proteins. Then, based on population

frequencies, we computed the probability of the presence of at least one filtered variant in each

population, and compared with the overall probability.

For a summary of the meaning, use, and range of all scoring tools, see S6 Table.

Results

Computational verification of SARS-CoV-2 viral protein interactions

To study the role of coagulation in COVID-19 pathogenesis, we explored the interactions of

VKORC1, SERPING1 and PABPC4 with viral proteins through computational docking.

VKORC1 and ORF7a were confirmed to have strong binding affinity. Interactions are gener-

ally limited to transmembrane helices as opposed to intervening loops where warfarin is

known to bind [66]. The top scoring complexes are shown in Fig 2. Plots of interface energy in

Rosetta energy units against interface root mean square error for the RosettaDock results are

given in Fig 3. The plots show convergence toward the minimum energy state.

When modeling the entire ORF7a protein, the models showed the luminal and transmem-

brane domains bound to one another. Due to this interaction, any dockings of ORF7a and

VKORC1 implied the luminal domain of ORF7a would clash with the plasma membrane. We

believe this interaction between the ORF7a transmembrane and luminal domains is predicted

because the transmembrane domain has not been structurally characterized, and because the

protein structure prediction software will minimize the folding energy by creating this bond

between the two domains. To verify this, we used EVmutation [67] to compute the position

co-evolution parameters, which measure dependency between positions in the amino acid

sequence and are used to predict amino acid contacts and bonds. We found less coupling

between the transmembrane and luminal domains than within each domain, which indicates

lower likelihood of interaction between the domains.

Table 2. (Continued)

Transcript Location Fraction matching in MSA Change in splicing Average change in mRNA MFE (Z-score) miRNA summary

NM_003819.3:c.877-387C>T Intron 1 miRNA lost

NM_003819.3:c.972+53A>T Intron 1

NM_003819.3:c.972+704C>G Intron 0.5

NM_003819.3:c.1333+26C>G Intron 0.3125 Likely splicing change

NM_003819.3:c.1621-348C>G Intron 1

NM_003819.3:c.�765C>A 3’ UTR 1 1.96974

NM_003819.3:c.�1261C>T 3’ UTR 0.771242 -0.91257 miRNA decrease

NM_003819.3:c.�4685A>G 3’ UTR 0.054945 -3.4524 miRNA decrease

NM_003819.3:c.�5316C>T 3’ UTR 0.696181 Possible splicing change miRNA lost

Change in splicing is presented when all tools find a change in splicing and all hexamer scores are greater than one standard deviation from the mean, and is marked in

red when the variant appears in an intron. mRNA MFE changes are normalized (converted into a Z-score) for KineFold, remuRNA, and mFold, then averaged. When

all three mRNA MFE changes are above one standard deviation, we mark the value in underline. miRNA summaries are presented when all miRNA changes agree in

direction, and the total change is at least 5. miRNA changes are underlined when the variant appears upstream.

https://doi.org/10.1371/journal.pcbi.1008805.t002
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Table 3. Population frequencies (gnomAD) of GWAS variants of VKORC1, SERPING1, and PABPC4.

Transcript Global African American Ashkenazi Jewish East Asian European Other

VKORC1

NM_024006.4:c.-4931C>T 0.5758 0.5408 0.542 0.514 0.1007 0.63146 0.619

NM_024006.4:c.-4851C>T

NM_024006.4:c.-2834C>A 0.0049 0.0001 0.001 0 0 0.00762 0.007

NM_024006.4:c.-1639G>A 0.326 0.1009 0.444 0.476 0.8996 0.37236 0.369

NM_024006.4:c.174-136C>T 0.3261 0.1009 0.443 0.476 0.8995 0.37264 0.37

NM_024006.4:c.283+124G>C 0.4163 0.2564 0.442 0.8849

NM_024006.4:c.283+837T>C 0.6431 0.7907 0.546 0.517 0.1017 0.62682 0.628

NM_014699.3:c.�2082G>C 0.0049 0.0001 0.001 0 0 0.00763 0.007

NM_014699.3:c.�2737G>T 0.0048 0.017 0.002 0 0 0.00005 0

SERPING1

NM_000062.2:c.-3537C>G 0.0275 0.0078 0.021 0.017 0 0.03846 0.041

NM_000062.2:c.-2415G>A 0.0939 0.0866 0.059 0.141 0.1113 0.09708 0.087

NM_000062.2:c.-1675G>A 0.0937 0.0862 0.059 0.141 0.1105 0.09697 0.087

NM_000062.2:c.52-696C>T 0.3927 0.4767 0.529 0.452 0.7655 0.31673 0.386

NM_000062.2:c.52-130C>T 0.385 0.448 0.525 0.455 0.7668 0.31739 0.385

NM_000062.2:c.52-130C>T 0.385 0.448 0.525 0.455 0.7668 0.31739 0.385

NM_000062.2:c.550+794C>A 0.3936 0.4761 0.531 0.451 0.7697 0.31779 0.388

NM_000062.2:c.685+88G>A 0.2225 0.1006 0.15 0.262 0.1157 0.28733 0.273

NM_000062.2:c.685+1391C>T 0.0248 0.0059 0.022 0.035 0 0.03499 0.038

NM_000062.2:c.685+659C>T 0.3901 0.4743 0.541 0.455 0.769 0.31084 0.381

NM_000062.2:c.685+659C>T 0.3901 0.4743 0.541 0.455 0.769 0.31084 0.381

NM_000062.2:c.685+1100C>T 0.2253 0.1124 0.147 0.262 0.1208 0.28765 0.274

NM_000062.2:c.685+1550G>T 0.2251 0.1127 0.152 0.264 0.1207 0.28734 0.269

NM_000062.2:c.685+1770C>T 0.2216 0.0992 0.15 0.262 0.1184 0.28696 0.27

NM_000062.2:c.1029+926G>T 0.2279 0.1 0.15 0.264 0.1224 0.29523 0.284

NM_000062.2:c.1029+1443G>C 0.2282 0.1004 0.15 0.269 0.1198 0.29577 0.284

NM_000062.2:c.1029+2110T>C 0.612 0.5191 0.469 0.538 0.2347 0.69271 0.624

NM_000062.2:c.1029+2111G>A 0.227 0.1003 0.15 0.264 0.1183 0.29407 0.283

NM_000062.2:c.1030-2243T>G 0.6129 0.5195 0.47 0.541 0.2387 0.69335 0.626

NM_000062.2:c.1030-1975G>C 0.0113 0.0022 0.008 0.024 0 0.01647 0.008

NM_000062.2:c.1030-1436T>C 0.0045 0.0014 0.001 0.003 0 0.00645 0.004

NM_000062.2:c.1030-20A>G 0.6134 0.5197 0.472 0.541 0.2461 0.69353 0.623

NM_000062.2:c.1438G>A 0.2282 0.1007 0.15 0.269 0.1202 0.29561 0.285

NM_000062.2:c.�1323G>A 0.2283 0.1009 0.151 0.269 0.1175 0.29578 0.285

NM_000062.2:c.�1521G>T 0.1496 0.0855 0.166 0.0942

NM_000062.2:c.�2614A>T 0.6058 0.4936 0.463 0.538 0.2277 0.69504 0.626

PABPC4

NM_003819.3:c.-5600T>C 0.8127 0.5571 0.918 0.945 0.9909 0.90666 0.891

NM_003819.3:c.-4432G>A 0.0403 0.0093 0.095 0.024 0.3712 0.02506 0.047

NM_003819.3:c.-4428A>G 0.0432 0.0096 0.1 0.024 0.3712 0.02918 0.052

NM_003819.3:c.-3677T>G 0.1792 0.0535 0.122 0.247 0.1111 0.24258 0.219

NM_003819.3:c.-3636G>A 0.0052 0.0027 0.004 0.007 0 0.0068 0.007

NM_003819.3:c.-3198T>C 0.0025 0.001 0.002 0 0 0.00329 0.004

NM_003819.3:c.-2286T>G 0.0136 0.0031 0.014 0.01 0 0.01952 0.015

NM_003819.3:c.-650C>T 0.0079 0.0027 0.002 0 0 0.01172 0.008

NM_003819.3:c.193+796C>G 0.8013 0.509 0.913 0.945 0.9904 0.90714 0.895

(Continued)
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For these reasons, and because the luminal and transmembrane domains of ORF7a are con-

nected by a flexible loop region, we repeated the docking, excluding the ORF7a luminal

domain. Docking showed strong interaction with the minimum energy -36.078 Rosetta energy

units at the interface between ORF7a and VKORC1. The Rosetta energy in this case measures

the impact of interactions and bonds at the interface between ORF7a and VKORC1.

Regarding SERPING1 and PABPC4, due to the lack of structural data for some segments,

portions of the models for PABPC4 and SERPING1 were of low quality. Therefore, we contin-

ued our analysis by examining sequence homology of SARS-CoV-2 proteins to SARS proteins.

Predictably, the homology was high (Table 1), suggesting that homologous SARS-CoV-2 pro-

teins maintain interactions with human proteins as observed for SARS proteins. Specifically,

several SARS proteins were found to interact with SERPING1, so it is likely that SARS-CoV-2

proteins interact with SERPING1 too. In addition, PABPC4 was found experimentally to bind

to SARS-CoV-2 N protein [68].

Variants that may impact COVID-19 severity

GWAS metastudies on COVID-19 outcomes recently became available [37,38]. We focused

on the impact of VKORC1, SERPING1, and PABPC4 gene variants on COVID-19 severity.

While over 700 variants from these genes were found in the studies, only 55 variants had a p-

value less than 0.05; these are listed in Tables 2 and 3. However, none of them are significantly

impactful when controlling for multiple hypothesis testing. Only one variant is a coding vari-

ant and may affect protein-protein interactions. However, the non-coding variants may affect

translation or splicing, leading to lower availability of protein. We characterized the 55 variants

in terms of miRNA binding, splicing, mRNA minimum free energy, and sequence conserva-

tion, to understand how they may affect disease outcomes. miRNAs are involved in post-tran-

scriptional regulation by binding to mRNA transcripts, resulting in degradation of the mRNA

or less efficient translation. Therefore, higher binding will most likely result in lower express-

ing protein. Summaries of miRNA changes are given in Tables 2 and S2, and full data is given

in S3 Table. Interestingly, for variants which effected a change in miRNA binding potential,

most caused a reduction in miRNA binding potential, which may increase protein expression.

The mean change between variant and wild type miRNA affinity predictions is -11.72414, and

the median is -1.

Table 3. (Continued)

Transcript Global African American Ashkenazi Jewish East Asian European Other

NM_003819.3:c.504-254C>A 0.1438 0.0321 0.079 0.2 0.1093 0.19797 0.183

NM_003819.3:c.738+85T>C 0.0573 0.1955 0.012 0.01 0.0013 0.00354 0.014

NM_003819.3:c.877-387C>T 0.113 0.0243 0.065 0.131 0.1086 0.15452 0.146

NM_003819.3:c.972+53A>T 0.0018 0.0065 0 0 0 0 0

NM_003819.3:c.972+704C>G 0.0025 0.001 0.002 0 0 0.00328 0.004

NM_003819.3:c.1333+26C>G 0.0006 0.0001 0 0 0 0.00095 0

NM_003819.3:c.1621-348C>G 0.0003 0.0001 0 0 0 0.00042 0

NM_003819.3:c.�765C>A 0.0403 0.0086 0.096 0.024 0.3656 0.02561 0.049

NM_003819.3:c.�1261C>T 0.0073 0.0256 0 0 0.0006 0.00005 0.003

NM_003819.3:c.�4685A>G 0.7986 0.4999 0.911 0.945 0.991 0.90696 0.894

NM_003819.3:c.�5316C>T 0.007 0.0028 0.008 0 0 0.00955 0.008

Population frequencies are taken from dbSNP. Populations with greater distance from global distribution are underlined.

https://doi.org/10.1371/journal.pcbi.1008805.t003
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Splicing is involved in the production of mature mRNAs for many genes. Changes in splic-

ing may produce alternative mature mRNAs, preventing accurate translation, and thus result-

ing in a protein with altered potency or affinity to the virus. While we consider splicing

dysregulation as potentially impacting gene expression and disease outcome, it has rarely been

shown experimentally. In vitro testing of some of these variants did not reveal differences

between the splice forms and WT or substantial differences in expression. For example, Wang

et al [69] examined the VKORC1 polymorphisms -1639G>A (rs9923231), 1173C>T

(rs9934438), and c.-4931C>T (rs7196161) in various cell lines and did not detect any differ-

ences in expression levels. We found several intronic variants in all three genes which resulted

in large changes in predicted splicing potential (Table 2). Of these, NM_000062.2:c.52-

Fig 2. Predicted dock of VKORC1 and ORF7a transmembrane domain. A. Five protein-protein docks depict one main binding site (teal, grey, yellow, green, blue).

B. The lowest interface-energy model is shown as a surface representation. C. The lowest interface-energy model, with side chains shown in wheat for amino acids at

the interface. D. Another view of the lowest interface-energy model, with side chains shown in wheat at the interface and hydrophobics shown in blue. Amino acids of

VKORC1 necessary for vitamin K binding (83F, 80N, 135C, 55F) or warfarin binding (134V, 133I) are given in green.

https://doi.org/10.1371/journal.pcbi.1008805.g002
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696C>T is more common in East Asian populations, NM_000062.2:c.1029+2110T>C is more

common in European populations, and NM_000062.2:c.685+1391C>T and NM_003819.3:

c.1333+26C>G are comparatively rare globally.

Finally, sequence conservation gives an evolutionary view of the significance of any position

in a sequence, but it is dependent on the conservation model and the quality of sequence and

structural data. Several PABPC4 variants show perfect conservation at the variant position.

The full data are given in S2 Table.

We found several upstream variants in VKORC1 that resulted in higher predicted miRNA

binding affinity, suggesting lower expression of the protein. Of these, NM_000062.2:c.-

1675G>A is relatively common in all populations (9.37% MAF). We also found several

upstream variants in PABPC4 that resulted in lower predicted miRNA binding affinity sug-

gesting higher expression of the protein.

mRNA molecules will form secondary structures based on nucleotide arrangement and

affinity, which impact their structural stability. We found several variants resulting in large

changes in mRNA stability. For example, NM_000062.2:c.685+1100C>T, NM_000062.2:

c.1030-1975G>C, and NM_003819.3:c.�765C>A are all strongly predicted to destabilize their

respective mRNA transcripts. Higher MFE may suggest higher possibility for mRNA degrada-

tion, which leads to decreased availability of transcripts and lower expression. These variants

may increase mRNA degradation, reducing protein expression.

In addition, known clinical consequences of these variants are summarized in Table 4.

Prevalence of VKORC1 variants across populations

COVID-19 has spread to the entire world, affecting people with variable genetic and racial

backgrounds. Therefore, we explored ORF7a interactions with variants of VKORC1 found

across races. There are 160 missense VKORC1 variants in dbSNP and at least 27 which affect

warfarin sensitivity [91]. The most common variants are shown in Table 5. The locations of

the warfarin sensitive variants are shown in Fig 4. However, many warfarin resistance-causing

variants are not listed in dbSNP, and some do not include population frequency information.

Fig 3. Plots of interface energy (I_sc) against interface root mean square error (I_rms). Each point represents a

complex formed from one of the top 5 ZDock outputs of VKORC1 and ORF7a proteins, using 10,000 decoys. All plots

form energy funnels.

https://doi.org/10.1371/journal.pcbi.1008805.g003
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Table 4. Variations’ clinical impact.

Variation Clinical Impact based on Literature

VKORC1

NM_024006.4: c.283

+837T>C

South Indians carrying the C nucleotide require lower warfarin dosages relative to WT

(T) [70].

NM_024006.4: c.283

+124G>C

European Americans carrying the G nucleotide require lower warfarin dosages

relative to WT (C) [71].

NM_024006.4: c.174-

136C>T

Turkish carrying the T nucleotide require lower warfarin dosages [72]; African

Americans and European Americans carrying T nucleotide require lower warfarin

dosages relative to WT (C) [73].

NM_024006.4: c.-

1639G>A

Chinese carrying the A nucleotide require lower warfarin dosages relative to WT (G)

[74].

NM_024006.4: c.-4931C>T South Indians carrying the T nucleotide require increased warfarin dosages relative to

WT (C) [75].

SERPING1

NM_000062.2: c.52-

130C>T

Patients carrying the T nucleotide depicted worsened progression for age-related

macular degeneration relative to WT (C) [76]; Chinese and Japanese carrying the T

nucleotide lack an association with age-related macular degeneration, seen in

Caucasian population studies, although was predicted as pathogenic [77].

NM_000062.2: c.1029

+2110T>C

European and Mediterranean patients carrying the C nucleotide did not depict a

higher association with hereditary angioedema relative to WT [78].

NM_000062.2: c.1030-

1975G>C

The intronic polymorphism 1030 +1975G>C has no pathogenic influence on

hereditary angioedema although predicted as pathogenic [78].

NM_000062.2: c.1030-

20A>G

Association of the G allele with age-related macular degeneration was predicted to

decrease the variant splicing form SERPING1, decrease protein expression and

potentially limit the regulation of the compliment system [79]. No association was

observed for Chinese Han carrying the G nucleotide with age-related macular

degeneration [80].

NM_000062.2: c.-

2415G>A

Chinese Han patients carrying the A nucleotide did not demonstrate an increased risk

of polypoidal choroidal vasculopathy relative to WT (G) [81]. South Korean patients

carrying the A nucleotide did not show association with an increased risk of leukemia

relative to WT (G) [82]. Caucasians carrying the A nucleotide did not exhibit an

increased risk of age-related macular degeneration relative to WT (G) [83].

NM_000062.2: c.52-

696C>T

Patients carrying the T nucleotide did not display an increased risk for anterior uveitis

relative to WT (C) [84]. Chinese Han carrying the T nucleotide did not display an

increased risk for polypoidal choroidal vasculopathy relative to WT (C) [81].

Caucasians carrying the T nucleotide did not display an increased risk for age-related

macular degeneration relative to WT (C) [83]. Chinese carrying the T nucleotide did

not display an increased risk for diabetic retinopathy relative to WT (C) [85].

European and Mediterranean’s carrying the T nucleotide did not display an increased

risk for hereditary angioedema relative to WT (C) [78].

NM_000062.2: c.52-

130C>T

Chinese carrying the T nucleotide did not display a different association with age-

related macular degeneration relative to WT (C) [80]. Caucasians carrying the T

nucleotide displayed worsened progression of age-related macular degeneration

relative to WT (C) [86]. Patients carrying the T nucleotide depicted worsened

symptoms of age-related macular degeneration relative to WT (C) [76]. Chinese

carrying the T nucleotide responded poorer to anti-VEGF treatment relative to WT

(C) [87].

NM_000062.2: c.685

+659C>T

Caucasians carrying the A nucleotide failed to depict a greater association with AMD

relative to WT (G) [83]. South Korean patients carrying the A nucleotide did not

depict a greater association with leukemia relative to WT (G) [88]. Han Chinese

carrying the A nucleotide did not depict a significantly greater association with age-

related macular degeneration relative to WT (G) [81].

NM_000062.2: c.685

+1100C>T

European and Mediterranean patients carrying the T nucleotide failed to show a

greater association with hereditary angioedema relative to WT (C) [78].

(Continued)
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In addition, there are several intronic, upstream and downstream variants which impact war-

farin dosage [92]. For example, rs9923231 (c.-1639G>A, NG_011564.1:g.3588G>A), which

causes warfarin sensitivity, is very common in East Asian populations (89.95%) and compara-

tively less common in African populations (10.09%), with intermediate frequency for other

populations.

Table 4. (Continued)

Variation Clinical Impact based on Literature

NM_000062.2: c.1029

+926G>T

European and Mediterranean patients carrying the T nucleotide failed to show a

greater association with hereditary angioedema relative to WT (G) [78]. Chinese Han

carrying the T nucleotide did not depict a greater association with polypoidal

choroidal vasculopathy relative to WT (G) [81].

NM_000062.2: c.1029

+1443G>C

European and Mediterranean patients carrying the C nucleotide failed to show a

greater association with hereditary angioedema relative to WT (G) [78].

NM_000062.2: c.1029

+2111G>A

European and Mediterranean patients carrying the A nucleotide failed to show a

greater association with hereditary angioedema relative to WT (G) [78].

NM_000062.2: c.1438G>A Patients carrying the A nucleotide did not depict a change in Tacrolimus dosage

requirements for transplant operations relative to WT (G) [89]. Chinese Han patients

carrying the A nucleotide did not show a higher association with age-related macular

degeneration or polypoidal choroidal vasculopathy relative to WT (G) [80].

PABPC4

NM_003819.3: c.504-

254C>A

Increased risk for type 2 diabetes with the 40035928G>T polymorphism based on

GWAS studies [90].

https://doi.org/10.1371/journal.pcbi.1008805.t004

Table 5. Population frequencies of missense and synonymous VKORC1 variants.

VKORC1

variant

Warfarin

Sensitivity

Prevalence

Overall African Latino Ashkenazi

Jewish

East

Asian

Finnish Non-Finnish

European

Other

groups

South

Asian

Missense 106GT Resistance 0.00241 0 0.00166 0.03857 0 5.6E-05 0.00069 0.00460 0.00091

203AG 0.00044 0 0 0 0.00571 0 8.8E-06 0.00016 9.8E-05

352GC 0.00036 0 0 0 0.00359 0 0 0.00016 0.00078

202CT 0.00036 6.2E-05 0 0 0 0.00083 0.00059 0.00065 0

79CG 0.00031 0 0 0 0 0 6.8E-05 0 0.00217

196GA 0.00020 0.00265 0.00014 0 0 0 0 0 3.3E-05

427GA 0.00017 0 0.00116 0 0 0 8.8E-06 0.00016 0

390TG 0.00012 0 0 0 0.00169 0 0 0 0

157CA 0.00011 0 0 0 0.00139 0 0 0.00017 0

163TC 1.0E-04 0 0.00067 0 0 0 0 0.00017 0

Synonymous 358CT Resistance 0.01558 0.19520 0.01186 0.00626 0.00011 0 0.00170 0.01044 0.00065

36GA Resistance� 0.01511 0.00210 0.01583 0.02262 5.6E-05 0.07348 0.01171 0.02296 0.00200

129CT 0.003643 0.00115 0.00093 0.00115 0 0.00504 0.00567 0.00415 0.00282

54GT 7.7E-05 0 0.00030 0 0.00023 0 2.9E-05 0 3.3E-05

234AG 3.6E-05 0 0.00012 0 0 0 3.5E-05 0.00016 0

54GC 2.6E-05 7.1E-05 3.0E-05 0 0 0 2.9E-05 0 3.3E-05

18GA 1.7E-05 0 9.0E-05 0 0 0 9.8E-06 0 0

111GA 1.7E-05 0 3.0E-05 0 0.00011 0 9.8E-06 0 0

72CT 1.7E-05 0 0 0 0 0 3.9E-05 0 0

186TG 1.6E-05 0 0 0 0 0 3.5E-05 0 0

Warfarin sensitivity is determined by literature review.

https://doi.org/10.1371/journal.pcbi.1008805.t005
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In the United States, COVID-19 has disproportionally affected African American popula-

tions. We sought to investigate whether VKORC1 variants could be implicated in the suscepti-

bility of this population. We found that African and African American populations were much

more likely to have at least one synonymous variant that significantly changes codon and

codon pair usage in a relatively conserved position. Upon further investigation, we find that

this is due to a single synonymous variant, VKORC1:c.358C>T, which is very common in

African and African American populations (19.52%) while comparatively rare elsewhere

(maximum 1.19% among other populations). This variant is in a relatively conserved position

enriched in common codons, with negative changes in relative synonymous codon and codon

Fig 4. Locations of warfarin dosage affecting nonsynonymous variants in VKORC1. VKORC1 is shown in salmon,

while ORF7a is shown in grey. Warfarin dosage affecting nonsynonymous variants are shown in blue. Active site

amino acids are shown in green.

https://doi.org/10.1371/journal.pcbi.1008805.g004
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pair usage (RSCU, RSCPU). This variant was not predicted to change mRNA MFE, while it

showed mixed results for splicing effects: while hexamer splicing scoring tools and ESEfinder

showed changes in splicing near the variant, FAS ESS and Exonscan found no changes. Fur-

thermore, this variant is associated with warfarin resistance [93–95], and in linkage disequilib-

rium with another variant upstream of the coding sequence (CDS), NG_011564.1:g.3350A>G,

which is also common in African and African American populations (36.40%) and associated

with warfarin resistance.

In addition, we identified one nonsynonymous variant, VKORC1:c.106G>T, which is rela-

tively common in Ashkenazi Jewish populations (3.857%) and rare in other populations (max

0.4599% among other populations). This variant is predicted to be deleterious by both SIFT and

Polyphen and associated with warfarin resistance. This variant appears at the end of a transmem-

brane helix near a loop, and likely impacts loop conformation near the warfarin binding site.

These two variants were interesting, primarily due to their significant population skew.

There are many other variants with different prevalence in different populations, but all others

are much rarer or much more common across all populations.

We additionally characterized the population prevalence of the variants identified from the

GWAS studies, finding great variance in prevalence for some. For example, NM_024006.4:

c.283+837T>C is very common in all populations (64.3% MAF globally), but less common in

East Asian populations (10.17%).

Furthermore, some nonsynonymous variants were identified from literature to impact

drug response or disease status. Associated nucleotide changes are not always given for these

variants, so characterizing them has not been possible.

Of the 129 and 127 synonymous and missense VKORC1 variants, respectively, that we con-

sidered, 17 synonymous and 29 missense variants were in the VKORC1-ORF7a interface in at

least one of our final models. Of these missense variants, only c.355T>A is predicted to be del-

eterious in both SIFT and Polyphen-2, and is likely to impact protein structure and binding to

ORF7a. However, c.157C>T, c.157C>A, c.184G>A, c.229A>T, c.261C>A, c.277T>C,

c.280T>C, c.280T>A, c.326G>A, c.344C>G, c.355T>A, c.378C>A, and c.379G>A are pre-

dicted to be deleterious by SIFT only, and may also affect binding.

VKORC1 paralog and variants that are impactful on warfarin dosage

VKORC1L1 is a VKORC1 paralog with similar function but reduced warfarin sensitivity

[96,97]. We aligned VKORC1 with VKORC1L1 and analyzed the differences between them in

the positions of variants, for additional insight into their impact on warfarin sensitivity and

possible binding to ORF7a.

In the alignment of VKORC1 and VKORC1L1, seven out of twenty positions for the nonsy-

nonymous variants impacting warfarin dosage are not conserved. This is unsurprising because

the non-conserved variants are localized to the loop between transmembrane helices one and

two, which is near the warfarin binding site (Fig 4). Swapping this region between VKORC1

and VKORC1L1 causes warfarin resistance in VKORC1 and warfarin sensitivity in

VKORC1L1 [96].

In addition, we examined similarities of ORF7a with VKORC1 interacting proteins. Two

human proteins are structurally similar to ORF7a and interact with VKORC1: CXADR, a Cox-

sackievirus and Adenovirus receptor [98], and PCDH1, a Hantavirus receptor [99]. Both pro-

teins are involved in cell-cell adhesion. The structural similarity of ORF7a protein, CXADR,

and PCDH1 additionally supports the interaction of ORF7a and VKORC1. The structurally

aligned regions are shown in Fig 5. Structural overlap is limited to the beta sheets, with small

potential for biomimicry.
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Discussion

COVID-19 illness is characterized by a prothrombotic phenotype that is incompletely under-

stood [1,2,3,4,6]. Developing more effective treatments will require a thorough understanding

of the root causes of COVID-19 associated coagulopathy. Although several possible mecha-

nisms have been proposed [100–102] to explain pathologic thrombosis in COVID-19, many

aspects remain unexplored. Three proteins, VKORC1, SERPING1 and PABPC4, which influ-

ence coagulation have been shown to interact with SARS proteins. We investigated computa-

tionally the binding of these proteins to SARS-CoV-2 proteins. Additionally, we identified

genetic variants of these proteins and examined their prevalence across populations. We

Fig 5. Structural alignment of ORF7a, CXADR, and PCDH1 proteins. The alignment is largely confined to the beta

sheets.

https://doi.org/10.1371/journal.pcbi.1008805.g005

PLOS COMPUTATIONAL BIOLOGY Gene variants of coagulation related proteins that interact with SARS-CoV-2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008805 March 17, 2021 16 / 25

https://doi.org/10.1371/journal.pcbi.1008805.g005
https://doi.org/10.1371/journal.pcbi.1008805


explored mechanisms by which these variants may impact COVID-19, specifically as it relates

to COVID-19 associated coagulopathy. We conclude that each of these proteins may provide a

potential link between COVID-19 and coagulation.

VKORC1 is crucial for maintaining active vitamin K levels and hence for the function of

several essential coagulation factors. We computationally characterized the interaction

between VKORC1 and SARS-CoV-2 ORF7a, guided by previous experimental data showing

an interaction between VKORC1 and SARS-CoV ORF7a. Whether the ORF7a-VKORC1

interaction would be inhibitory, neutral or possibly potentiate VKORC1 function is difficult to

determine in the absence of experimental testing. However, the importance of this interaction

should be considered. Indeed, SARS-CoV-2 interaction with the host vitamin K cycle has

again been demonstrated in more recent experimental work. Gordon and colleagues expressed

SARS-CoV-2 proteins in HEK cells and found gamma-glutamyl carboxylase to interact with

the SARS-CoV-2 M protein, which could similarly impact vitamin K-dependent proteins

[103].

The ORF7a-VKORC1 interaction theoretically could lead to insufficient carboxylation of

vitamin K dependent coagulation factors. However, COVID-19 associated coagulopathy is not

typified by coagulation factor deficiencies as measured using common clinical coagulation lab-

oratory assays [104]. Vitamin K dependent proteins outside of the coagulation cascade also

contribute to platelet activation and thrombosis. An example is Gas6, which contributes to

platelet activation through tyrosine kinase receptors. However, loss of Gas6 signaling is protec-

tive against thrombosis in mice [105]. Clearly therefore other mechanisms linking the

VKORC1- ORF7a interaction to COVID-19 pathogenesis and coagulopathy warrant

consideration.

Interestingly, reduced vitamin K levels are associated with worse prognosis in COVID-19

[106]. A deficiency of Vitamin K dependent proteins that protect against pulmonary and vas-

cular elastic damage has been postulated to underlie this relationship. There is also a recog-

nized inverse relationship of vitamin K and the inflammatory response [107,108] and

interleukin-6 (IL-6) levels [109]. Inflammation and the immune response are thought to con-

tribute significantly to the pathogenesis of COVID-19 illness [110]. Inflammation is also

directly linked to coagulation activation [111]. Inflammation resulting from COVID-19 infec-

tion is not unique to adults, as children have also been found to suffer from Kawasaki disease-

like symptoms [112].

Finally, the VKROC1—ORF7a interaction may also have an impact on tetherin function.

SARS ORF7a is known to inhibit tetherin [113,15], also known as BST-2. Tetherin inhibits

virion dispersal [114], and several viruses, including HIV, have auxiliary proteins to counter

this effect. The structures of tetherin and VKORC1 are noticeably similar, sharing a coiled-coil

architecture: VKORC1 has four consecutive alpha helices [66], while tetherin exists as a homo-

mer of four alpha helices [16,115]. Of note, ORF7a has the highest RSCU of any SARS-CoV-2

protein [116], which may result in more efficient translation and high expression levels com-

pared to other viral proteins, to more effectively counter the effect of tetherin.

While many extrinsic factors can influence the presentation of COVID-19, the impact of

host genetic variants on viral protein interaction has not received much attention to date.

Modulating the strength of these interactions or the availability of host proteins may reduce

the effectiveness of viral protein function, viral replication and ultimately the severity of

infection.

It is interesting to consider the impact of genetic variants in VKORC1. Individuals carrying

VKORC1 variants may lead to altered protein conformation and differential binding to either

warfarin or ORF7a. For instance, the synonymous variant 358C>T is characterized by a large

change both in RSCPU and RSCU suggesting that it may be associated with altered
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cotranslational folding. Reduced VKORC1 expression or binding to ORF7a, as it may occur in

individuals with VKORC1 gene variants, may increase the availability of ORF7a to bind and

inhibit tetherin increasing the severity of SARS-CoV-2 infection.

Due to the lack of structural data for some segments, homology models of PABPC4 and

SERPING1 could not be constructed with high confidence, precluding the ability to create

complexes to model and analyze the interactions between these proteins and viral proteins.

While PABPC4 has been found to interact with SARS-CoV-2 N protein experimentally [68],

interactions between SERPING1 and SARS-CoV-2 proteins have yet to be directly tested.

SERPING1 encodes C1 esterase inhibitor, a plasma protein that inhibits the C1 complex

of classical pathway of complement. C1 esterase inhibitor also is the primary inhibitor of

plasma kallikrein, which produces bradykinin from high-molecular-weight kininogens.

Viral interactions with SERPING1 may therefore result in excessive levels of complement acti-

vation, bradykinin production and angioedema. This impact could be more pronounced in

individuals with genetic variants that result in lower expression of SERPING1 or SERPING1

activity. The relationship between the ACE2 (primary receptor for SARS-CoV-2) and the

kinin system could exacerbate this impact. ACE2 inactivates des-Arg9 bradykinin (DABK)

[117,118], an active bradykinin metabolite. Reduced ACE2 activity is associated with enhanced

signaling of DABK, angioedema, and neutrophil infiltration in the lungs [119,117]. The com-

bined effect of viral suppression of ACE2 expression and function [120] concurrent with

SERPING1 inhibition may result in excessively high levels of bradykinin and pulmonary fluid

accumulation.

Altogether, the interaction of VKORC1, SERPING1 and PABPC4 with viral proteins may

result in dysregulated coagulation and immune response. Genetic variants in these genes may

impact the host-viral protein interaction by altering protein conformation or expression.

Because these genetic variants appear at different frequencies in different populations, this

may contribute to differential outcomes for COVID-19 patients from various ethnic groups.

Indeed, COVID-19 has had an unequal impact on populations across the globe [121,122]. In

the United States, as elsewhere, it is clear that demographic subgroups are more susceptible to

severe COVID-19 disease. Certainly a large number of non-genetic factors influence clinical

outcomes within populations, including age, access to health care, and presence of comorbidi-

ties [123,124]. The genetic underpinnings of host-viral protein interaction may also play an

underappreciated role in determining the course of COVID-19 illness and COVID-19 associ-

ated coagulopathy.
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