
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

Civil and Environmental Engineering Faculty 
Publications Civil and Environmental Engineering 

2011 

Liquid Radioactive Wastes Treatment: A Review Liquid Radioactive Wastes Treatment: A Review 

R.O. Abdel Rahman 
Atomic Energy Authority of Egypt 

H. A. Ibrahium 
Atomic Energy Authority of Egypt 

Yung Tse Hung 
Cleveland State University, y.hung@csuohio.edu 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/encee_facpub 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Rahman, R.O. Abdel; Ibrahium, H. A.; and Hung, Yung Tse, "Liquid Radioactive Wastes Treatment: A 
Review" (2011). Civil and Environmental Engineering Faculty Publications. 107. 
https://engagedscholarship.csuohio.edu/encee_facpub/107 

This Article is brought to you for free and open access by the Civil and Environmental Engineering at 
EngagedScholarship@CSU. It has been accepted for inclusion in Civil and Environmental Engineering Faculty 
Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact 
library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/encee_facpub
https://engagedscholarship.csuohio.edu/encee_facpub
https://engagedscholarship.csuohio.edu/encee
https://engagedscholarship.csuohio.edu/encee_facpub?utm_source=engagedscholarship.csuohio.edu%2Fencee_facpub%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/encee_facpub/107?utm_source=engagedscholarship.csuohio.edu%2Fencee_facpub%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


Water 2011, 3, 551-565; doi:10.3390/w3020551 

 

water
ISSN 2073-4441 

www.mdpi.com/journal/water 

Review 

Liquid Radioactive Wastes Treatment: A Review  

R. O. Abdel Rahman 
1,
*, H. A. Ibrahium 

1
 and Yung-Tse Hung 

2
 

1 
Hot Lab. & Waste Management Center, Atomic Energy Authority of Egypt, P.O. 13759, Inshas, 

Cairo, Egypt; E-Mail: haneenabi@yahoo.com 
2 

Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH 

44115 USA; E-Mail: yungtsehung@yahoo.com 

* Author to whom correspondence should be addressed; E-Mail: alaarehab@yahoo.com;  

Tel.: +20-0161404462. 

Received: 13 April 2011; in revised form: 4 May 2011 / Accepted: 5 May 2011 /  

Published: 12 May 2011 

 

Abstract: Radioactive wastes are generated during nuclear fuel cycle operation, production 

and application of radioisotope in medicine, industry, research, and agriculture, and as a 

byproduct of natural resource exploitation, which includes mining and processing of ores, 

combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of 

human health and the environment from the hazard of these wastes, a planned integrated 

radioactive waste management practice should be applied. This work is directed to review 

recent published researches that are concerned with testing and application of different 

treatment options as a part of the integrated radioactive waste management practice. The 

main aim from this work is to highlight the scientific community interest in important 

problems that affect different treatment processes. This review is divided into the following 

sections: advances in conventional treatment of aqueous radioactive wastes, advances in 

conventional treatment of organic liquid wastes, and emerged technological options. 

Keywords: radioactive waste; treatment; sorption; membrane 

 

1. Introduction  

The generation of radioactive wastes varies from country to country depending on the scale of 

applications and range of activity associated with nuclear and radioactive material utilization in that 
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country. These wastes can affect human health and the environment, so their safe management has 

received considerable attention worldwide. Classification of these wastes is very helpful through out 

their management phases from generation through collection, segregation, treatment, conditioning, 

storage, transportation to final disposal. Classifications are usually derived from different perspectives, 

i.e., safety perspective, the physical/chemical characteristics of the waste, process engineering 

demands or regulatory issues [1,2]. The radioactivity level in the waste affects the selection of its 

different management options owing to its shielding requirements, so the current internationally 

accepted classification system is based on the activity level and half life. This system classifies the 

radioactive wastes to exempt (EW), low- and intermediate-level wastes (LILW), which may be 

subdivided into short-lived (LILW-SL) and long-lived (LILW-LL) wastes, and high-level wastes 

(HLW). Table 1 lists the characteristics of these waste classes [2]. 

Table 1. Radioactive waste classification [2]. 

Waste classes Typical characteristics 

EW 

 

Activity levels at or below clearance levels, which are based on an annual dose to 

members of the public of less than 0.01 mSv 

LILW Activity levels above clearance levels] and thermal power below about 2 kW/m3 

LILW-SL 

 

Restricted long lived radionuclide concentrations (limitation of long lived alpha 

emitting radionuclides to 4,000 Bq/g in individual waste packages and to an overall 

average of 400 Bq/g per waste package) 

LILW-LL Long lived radionuclide concentrations exceeding limitations for short lived waste 

HLW 

 

Thermal power above 2 kW/m3 and long lived radionuclide concentrations exceeding 

limitations for short lived waste  

Treatment is an important phase in the management of radioactive wastes, it aims to reduce the 

volume of generated wastes to enhance the safety and/or reduce the costs of further management 

phases. After the treatment phase, the wastes split to two portions, the first is a small volume of 

concentrate that contain the bulk of radionuclides that is kept in the management system and the 

second is a large volume portion that have low radioactivity that allow its discharge to the environment 

after meeting the regulatory requirements [3]. To facilitate the management of liquid radioactive 

wastes, they were categorized to aqueous and organic liquid wastes.  

Treatment of radioactive liquid wastes is receiving considerable attention worldwide due to the 

recognition of its importance for the protection of human health and the environment from the adverse 

effect of radiation associated with these wastes [4]. Conventional treatment options are usually used to 

treat liquid radioactive wastes after the consideration of their chemical and biological characteristics. 

Recently, some trends that influence the selection and application of radioactive waste management 

strategy and technology have emerged worldwide. These trends includes issue of new legislation and 

regulations, new waste minimization strategies, strengthen the quality assurance procedures, increased 

use of safety and risk assessment physical protection and safeguards measures in the design and 

operation of waste management facilities, and new technological options. The aim of this review is to 

present advances in the utilization of conventional treatment technology in the management of aqueous 

and organic liquid wastes and highlight the emerged technological options for the management of 

liquid wastes. This review will cover the literature published within the last three years on topics 
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related to liquid waste management to highlight the scientific community interest in important 

problems that affect the treatment process. Finally recommendations will be drawn that identify 

knowledge gaps and needed research area in this field.  

2. Advances in Conventional Treatment of Aqueous Radioactive Wastes 

Aqueous liquid radioactive waste is generated during nuclear reactor operations and during 

industrial and institutional application of radioisotopes. The chemical compositions and radioactivity 

levels of the generated wastes depend on the conducted operation. Table 2 lists the sources of aqueous 

radioactive waste and its characteristics [5]. Aqueous wastes containing short lived beta/gamma 

activity are kept in storage. After decay to exclusion limit, if these wastes met the regulatory 

requirements on chemical and biological hazards they can be safely discharged into the environment. 

Aqueous wastes that have higher radioactivity content and/or long lived radionuclides may be treated 

using ion exchange/sorption, chemical precipitation, and/or evaporation, reverses osmosis, filtration 

and solvent extraction. The Main features and limitation of these treatment processes are shown in 

Table 3 [6]. 

Table 2. Sources of aqueous liquid radioactive wastes [6]. 

Source Typical radioisotopes Characteristics 

Nuclear research 

centers 

Might include relatively long lived, 

mixed with short lived  

 Generally uniform batches with nearly neutral 

pH from regeneration of ion exchange resins 

Radioisotopes Lab. 

production  

Wide variety depending upon 

production and purity of targets.  

 Small volumes of high specific activity and 

high chemical concentrations 

 Larger volumes of low specific activity  

Radio-labeling and 

radiopharmaceuticals 

14C, 3H, 32P, 35S, 125I  Small volume of predictable chemical 

composition 

Medical diagnosis  and 

treatment 

99Tcm, 131I, 85Sr  Large volumes of urine from patients 

 Small volumes from preparation and 

treatment 

Scientific research Variable, with short and long lived 

radioisotopes 

 Extremely variable 

Industrial and pilot 

plants 

Depends upon application  Volumes could be large and chemical 

composition undefined 

Laundry and 

decontamination 

Wide variety likely  Large volumes with low specific activity but 

containing complexing agents 
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Table 3. Features and limitation of different aqueous liquid treatment options [5]. 

Technology Features Limitations 

Precipitation   Suitable for large volumes and high salt 

content waste 

 Easy non-expensive operations 

 Low DF  

 Efficiency depends on solid-liquid 

separation step 

Ion –Exchange  Good chemical, thermal and radiation 

stability  

 Large choice of products ensuring high 

selectivity 

 Affected by high salt content 

 Blockage problems 

 Regeneration and recycling often 

difficult employed 

Evaporation 

 

 *DF > 104 to 106 

 Well established technology 

 High volume reduction factor 

 Suitable for a variety of radionuclides 

 Process limitations (scaling, 

foaming, corrosion, volatility of certain 

radionuclides) 

 High operation and capital costs 

Reverse osmoses 

 

 Removes dissolved salts  

 DF 102–103 

 Economical 

 Established for large scale operations 

 High pressure system, limited by 

osmotic pressure 

 Non-back washable, subject to 

fouling  

Ultrafiltration 

 

 Separation of dissolved salts from 

particulate and colloidal materials 

 Good chemical and radiation stability  

for inorganic membranes 

 Fouling 

 Organic membranes subject to 

radiation damage 

Microfiltration 

 

 High recovery (99%) 

 Low fouling when air backwash 

 Sensitive to impurities in waste 

stream 

Solvant extraction  Selectivity enables removal, recovery  

or recycle of actinides 

 Generates aqueous and organic 

secondary waste 

* DF is the decontamination factor. 

2.1. Ion Exchange/Sorption 

By the beginning of the nuclear industry, the utilization of ion exchange procedures in water and 

wastewater treatments was well developed. Various recent studies were devoted to prepare and 

examine new ion-exchangers that can challenge some difficulties accompanied the industrial 

application of this treatment option and to improve its performance. Composite materials are an 

example of these tested new ion-exchangers, they consist of one or more sorbents combined with 

another material. Composite can be inorganic or organic and may be a sorbent. The produced material 

is granular with sufficient strength for column use from sorbents that do not form or only form weak, 

granules. This section will summarize recent researches devoted to prepare, characterize and test new 

sorbent materials. 

The selection of ion exchanger is strongly affected by the chemical composition of the waste water. 

This effect was studied by conducting combined static and dynamic adsorption experiments for the 

removal of uranium from aqueous waste [7]. These experimental results showed that the efficiency of 

the studied resin was reduced in the presence of anions, triethanolamine and oil in the waste stream. 

The study suggested that the maximal allowable concentration of triethanolamine through the resin 

should not exceed 250 mg/L. Also, it was found that when oil content in the resin exceeded 11%, the 

breakthrough volume almost lost at all. 
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Removal studies to assess cobalt, cesium, and strontium radionuclides uptake have received 

continued attention. Removal of Co, Sr and Cs from radioactive laundry wastewater generated from 

Nuclear Power Plants (NPP) was investigated using ammonium molybdophosphate-polyacrylonitrile 

(AMP-PAN) by studying single- and bi-solute competitive adsorptions [8]. The results of single 

adsorption model analyses showed that AMP-PAN has high selectivity for Cs and its maximum 

adsorption capacity was calculated. The results of bi-solute competitive adsorptions indicated that the 

adsorption suppressed by the presence of competing metal ions and the presence of cationic (OTMA 

and HDTMA) and anionic surfactants (SDBS and SOBS) for all studied radionuclides. In another 

study, the uptakes of Cs, Co and Sr ions onto nano-crystalline silicotitanate (IONSIV
™

 IE-91 1, UOP) 

were investigated using batch technique [9]. The analysis of the equilibrium sorption characteristics 

was performed and sorption capacity for the studied radionuclides onto the silicotitanate was calculated 

using Langmuir model at different pH. The results indicated that silicotitanate was highly selective  

for Cs. 

Ion exchange properties of zeolites have received great attention, especially for application in 

radioactive liquid waste treatment. The cationic radioisotopes, present in the liquid effluents of low 

and intermediate level liquid wastes, can be removed by the ion exchange with the Na
+
 ions of the 

zeolites. These inorganic materials possess high exchange capacity, possible selectivity and specificity, 

good resistant to radiation [10-23]. Recently, Zeolite A was synthesized and evaluated, as inorganic 

ion exchange material, for the removal of Cs and Sr ions from aqueous solutions in both batch and 

fixed bed column operations [24]. The results showed that the total metal ion uptake and the overall 

bed capacity decreased by increasing the flow rate and increased by increasing initial ion 

concentrations and bed depth. The sorption rate constants were found to increase with the increase in 

flow rate indicating that the overall system kinetics was dominated by external mass transfer in the 

initial part of the sorption process in the column. In another study, the removal of Cs ions for aqueous 

solution by synthetic Na A-X zeolite was tested [25]. The zeolite blend was synthesized from fly ash 

using two-step method. Then the sorption potential of prepared material for the removal of Cs ions has 

been investigated. The results showed that synthetic zeolite blend has a promising sorption behavior. 

Insoluble transition metal hexacyanoferrates have been known for decades as effective agents for 

the removal of radionuclides from waste solution [26]. A two-step method for the preparation of 

porous composite beads composed of potassium titanium hexacynoferrate (PTH) and silica was 

proposed by Liu et al. [27]. At the first step, amorphous titania was grafting onto the wall of pores in 

silica bead support, then the tinania inside the pores was converting into PTH. The prepared material 

was characterized and the results showed that the PTH layer is coated successfully onto the wall of 

pores in silica bead. Finally the sorption behavior of Cs onto the prepared material was tested, it was 

found that the material exhibit high Cs removal ability and high distribution coefficient under high 

acidity and salinity conditions. Also, the feasibility of using potassium cobalt hexacyanoferrate 

(PCH)/SiO2 composite as a granulated inorganic adsorbent to remove Cs from the radioactive waste 

solution was recently studied [28]. The PCH particles were prepared then they were stabilized into in 

situ-generated porous silica with aqueous silica sol used as SiO2 source. The prepared material was 

analyzed and the results indicated that the PCH particles and porous silica were mixed with each other 

homogeneously in the composite. Competitive adsorption behaviors for Cs in the presences of H, Na, 

and K were studied in batch experiments to determine the distribution coefficient. It was found that the 
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prepared composite exhibited high Cs adsorbing capacity and good Cs selectivity from the mixture of 

competing ions. 

Composite ferrocyanide sorbents were prepared by precipitating nickel potassium ferrocyanide in 

the presence of various mineral supports, which included chalk, wollastonite, bentonite, clinoptilolite, 

diatomite, biosilica [29]. Sorption of microamounts of Cs on the finely dispersed prepared material 

was studied. It was found that the distribution coefficient of Cs on composite ferrocyanide sorbents 

was considerably higher than on nickel potassium ferrocyanide without support. The composite 

ferrocyanide sorbents were tested for Cs recovery from a simulated NPP bottom residue in pH range 

(8.5–12.0), it was found that the distribution coefficient of Cs is 2.5–3.0 times higher than on the 

nickel ferrocyanide precipitate throughout the examined pH range. The composite sorbent supported 

on biosilica was tested for treatment of real liquid radioactive waste with a total salt content of  

22.0 g/dm
3
 to remove Cs. Another study was devoted to prepare composite ion-exchange resins by 

coating copper-ferrocyanide (CFC) and hydrous manganese oxide (HMO) powders on polyurethane 

(PU) foam [30]. Polyvinyl acetate/Acetone was used as a binder. The foam was loaded with about five 

times its weight with CFC and HMO powders. Then the distribution coefficients of CFC-PU foam and 

HMO-PU foam for Cs and Sr were estimated. Under similar conditions the HMO-PU foam showed 

higher capacity as well as better kinetics for removal of Sr than CFC-PU foam for Cs. A pilot plant 

scale study was conducted using a mixed composite ion-exchange resin bed. This study showed that 

about 1,000 bed volumes could be passed before attaining a decontamination factor of 10 from an 

initial value of 60–80. Composite ion exchange material consisting of hydrous manganese oxide and 

poly methyl methacrylate (PMMA) was developed for removal of Sr from aqueous radioactive  

waste [31]. The prepared composite material showed very good Sr adsorption properties in aqueous 

solutions. Lab-scale column performance study of the developed material revealed that this material 

could be effectively used in column operations to remove Sr from low level radioactive waste solutions. 

Many natural mineral compounds, such as clays (e.g., bentonite, kaolinite and illite), vermiculite 

and zeolites (e.g., analcite, chabazite, sodalite and clinoptilolite), exhibit ion exchange properties. 

Natural zeolites were the first materials to be used in ion exchange processes. Clay materials are often 

employed as backfill or buffer materials for radioactive waste disposal sites because of their ion 

exchange properties, low permeability and easy workability. Clays can also be used in batch ion 

exchange processes but are not generally suited to column operation because their physical properties 

restrict the flow through the bed [26]. In this respect, treatment of real salt-containing low level 

radioactive waste from the Leipunskii Institute of Energy Physics, State Scientific Center of the Russian 

Federation, using natural clinoptilolite and tripoli minerals, was studied by Bogdanovich et al. [32]. The 

efficiency of sorption recovery of Cs and Sr radionuclides with finely dispersed mineral sorbents under 

static conditions was investigated in relation to the sorption time, pH, size of mineral granules, sorbent 

amount, salt content and chemical composition of solutions, and number of successive sorption steps. 

It was found that the studied natural sorbents can decrease the activity of treatment of the real  

salt-containing waste by 2–3 orders of magnitude owing to recovery of Cs and Sr. In another study, the 

utilization of Romanian modified clays for the treatment of radioactive liquid waste containing UO2 ions 

was assessed [33]. The results indicated that the adsorption of UO2 ions from aqueous solution 

depended on the concentration of uranium in simulated wastewater, on contact time and on the ratio of 

sorbent/solution value and that the sorption process was spontaneous and endothermic. The study 
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concluded that Romanian modified clays can be used for the treatment of radioactive liquid waste 

containing UO2. Also, the adsorption parameters of Egyptian yellow sand and clay towards Co and Cs 

were investigated by El-Sofany et al. [34]. The influences of changing equilibration time, initial metal 

concentration, solution pH, volume of aqueous solution to weight of adsorbent ratio and temperature 

on the removal process have been studied. The study concluded that the maximum removal capacity of 

clay is greater than that of yellow sand for both ions and the mean free energy in all cases in the range 

corresponding to ion exchange mechanism.  

In Hungarian NPP, waste streams contain radioactive isotopes in ultralow concentration and inactive 

compounds as major components (borate 1.7 g/dm
3
, sodium-nitrate 0.4 g/dm

3
, sodium-hydroxide  

0.16 g/dm
3
, and oxalate 0.25 g/dm

3
). These wastes are evaporated by adding sodium-hydroxide, until 

400 g/dm
3
 salt content is reached. A new technology for the selective separation of the long-live 

radionuclides and for the partial recycle of boric acid from the evaporator bottom residue was 

developed [35]. The developed waste treatment system showed good selective separation of Cs from 

high salt concentration and strongly alkaline evaporator bottom residue. 

Intermediate-level aqueous radioactive waste stream was generated during reprocessing of spent 

fuel, and then they were neutralized with alkali to store them in carbon steel tank. The waste was 

treated for 
137

Cs recovery using specific resorcinol formaldehyde (RF) ion exchange resin. The effluent 

stream from the ion exchange treatment process had significant activity due to 
106

Ru. A study was 

directed to investigate the possibility of using cobalt and nickel sulfides for the removal of 
106

Ru [36]. 

It was found that the decontamination factor obtained when using nickel sulfides is much higher than that  

of cobalt. 

Pb-Fe based adsorbents were synthesized to remove Mo from the high-level radioactive liquid 

waste by Dodbiba et al. [37]. The preparation was conducted by adding sodium hydroxide in mixture 

of 1 mol/L lead nitrate and 1 mol/L ferric nitrate aqueous solutions. The precipitate was then filtered, 

dried and ground to obtain a fine powder. The effect of changing the precipitation pH and calcination 

temperature on the final sorbent properties was studied. The experimental results indicated that the 

calcination temperature of the Pb-Fe based adsorbent had great influence on sorption capacity of the 

sorbent for Mo. It was found that when the Pb-Fe based sorbent was calcinated at 500 °C, the sorbed 

concentration of Mo was the highest. 

The treatment efficiency of 
134

Cs, 
65

Zn, 
60

Co and 
152-154

Eu was tested based on the sorption capacity 

of cationic exchanger (KY-2) functionalized with polystyrene sulfonic group [38]. It was found that 

the enhancement in decontamination factor of each radionuclide was attributed to the high sorption 

capacity of the cationic resin in addition to the complexation capability of the radionuclide with the 

different complexant existed in the waste solution. The removal percentages were around 50% for the 

studied radionuclides, without complexant compound. Significant enhancements of the removal 

percentages were obtained for 
65

Zn, 
60

Co and 
152-154

Eu on addition of manganese sulfate.  
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2.2. Miscellaneous Methods 

Treatment of high salinity low-level aqueous waste containing Pu and U by flocculation was studied 

by Ren et al. [39]. The results showed that Pu can be removed effectively in alkaline condition, and that 

flocculation of U can be improved by decreasing the pH. The removal efficiency of U was found to 

exceed 95.5% by adjusting the pH to 6 and adding Fe at a dosage of 100 mg/L. In a two-step 

flocculation experiment, it was shown that the concentration of U after the second flocculation is lower 

than 10 µg/L by adjusting the pH at 7.0 and adding Fe at a dosage of about 80 mg/L.  

Ultrafiltration and reverse osmosis combined methods were employed for the treatment of low-level 

radioactive water containing Pu [40]. The system consisted of ultrafiltration module with hollow fiber 

membrane and reverse osmosis module with spiral membrane. The decontamination efficiency and 

volume concentration ratio affected by technical parameters were explored in the experiment. The 

results showed that the decontamination efficiency achieves 99.94% and the volume concentration ratio 

achieves 12.5 at pH = 10 for solution fed into the membrane separation system.  

Some experiments were performed using simulated waste solutions for CANDEREM (Canadian 

Decontamination and Remediation Process) and CANDECON (Canadian Decontamination Process). 

To improve efficiency and economics of the treatment process it was proposed to treat the waste by 

combining the sorption of radionuclides on natural zeolites with membrane filtration. The performance 

of different sorbents was compared by determining the ion exchange capacity, distribution coefficients, 

and evaluating the sorption characteristics. The obtained results showed that the distribution coefficients 

of Cs on the Na-form converted materials are higher than for that of NH
4
- and H-forms [41,42].  

The biosorption of U by seaweed Sargassum filipendula was investigated under dynamic conditions 

at various bed heights [43]. The results indicated that the bed height of 40.0 cm (111.9 g biomass) was 

the most efficient for long-term operation of the continuous system and that the effluent solutions 

produced were in accordance with Brazilian legislation for safe discharge of U in aqueous streams. 

The study concluded that the efficiency of the process increased by increasing the bed height to  

40.0 cm due to changes in the transfer zone. In treatment of a real effluent, 64% of the U was 

biosorbed, as well as the stable heavy metals chromium, lead and barium. The essential metals calcium, 

magnesium, iron and manganese were not biosorbed by the seaweed, in fact, their concentrations in the 

solution increased due to ion-exchange mechanisms with the constituent polysaccharides of the 

biomass. This work illustrated that the reduction in total mass of the loaded biomass was considerable, 

thus facilitating storage of the contaminated seaweed. 

Treatment of simulated secondary wastes from the decontamination process by semi-permeable 

membrane techniques were investigated by Dulama et al. [44]. The study showed that increased 

efficiencies for Cs removal were obtained by using natural zeolite in pretreatment stage and this was 

attributed to the special affinity of this material for Cs. The addition of powdered active charcoal was 

found to serve as an advanced purifying method to remove organic compounds and residual 

radionuclides. The analysis of the experimental data showed a decreasing of about 50% for Co 

isotopes subsequently to the active charcoal adsorption.  

The extraction of Co(II) from thiocyanate medium by CYANEX 923 (mixture of straight chain 

alkylated phosphine oxides) in cyclohexane was studied [45]. It was found that the stripping 

percentage of Co(II) with sulfuric acid from the loaded CYANEX 923 increased with the increase in 
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acid concentration. The extraction of Co(II) from aqueous thiocyanate medium into emulsion liquid 

membrane using CYANEX 923 extractant was also studied. The influence of different parameters such 

as stirring speed, surfactant concentration, pH of the extractant phase, carrier concentration, internal 

phase stripping acid concentration, initial Co(II) concentration as well as temperature on the emulsion 

stability were investigated. The applicability of the emulsion liquid membrane (ELM) process using 

CYANEX 923 as extractant and SPAN 80 as surfactant for the removal and the concentration of Co(II) 

from thiocyanate solution was investigated. The results showed that it is possible to recover 95% of Co 

in the inner phase after 10 min of contacting time with a concentration factor of 5. 

3. Advances in Conventional TREATMENT of Organic Liquid Wastes 

Nuclear energy generation and some medical research facilities produce effluents containing 

radioactive heavy metals and complex mixtures of hazardous organic compounds and irradiated 

surfactants. The volume of generated organic liquid radioactive wastes is small compared to other 

classes of radioactive waste. Typical types of organic wastes, sources, and their characteristics are 

listed in Table 4 [46]. The features and limitations of different methods that are utilized in the 

treatment of organic liquid wastes are illustrated in Table 5 [3].  

Table 4. Sources of aqueous liquid radioactive wastes [31]. 

Type Sources Characteristics 

Oils Lubricating oils,  

Hydraulic fluids 

Vacuum pump oils 

These wastes contain relatively small 

quantities of -emitting radionuclides 

Scintillation liquids Non-aqueous solvents such as steroids, 

lipids; and  

Non-polar solvents such as toluene, 

xylene, and hexane  

The level of radioactivity for this type of waste 

is typically about 350 MBq/m3. 

Solvent extraction 

liquids 

Tri-butyl phosphate, 

Tri- and tertiary amino-compounds. 

 

Miscellaneous solvents Toluene, carbon tetrachloride, acetone, 

alcohols and trichloroethane. 

Aqueous solutions of organic acids, 

such as citric acid, picolinic acid, 

ethylene-diamine tetra-acetic acid  

Dry cleaning produces small quantities of 

perchloroethylene and Freonwastes.  

The gross  activity of this waste is usually 

less than about 200 MBq/m3. 

Table 5. Organic liquid treatment options [3]. 

Methods Features Limitation 

Incineration • Decomposes organic nature of Waste 

• High volume reduction 

• Combined use for other waste 

• Eliminates infectious hazard 

• Secondary waste must be treated 

• High temperatures are required to ensure 

complete decomposition 

• Off-gas filtration and monitoring are required 

Emulsification • Allows embedding of liquid organic 

waste into cement matrixes 

• Low limitations for content of emulsified 

liquids in the cement matrix 

Absorption • Solidifies and immobilizes organic 

liquids 

• Simple and cheap 

• Suitable only for small amounts of waste 
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Table 5. Cont. 

Methods Features Limitation 

Distillation • Removes water and detoxifies the 

waste for direct disposal 

• Non-universal application 

• Technology is relatively expensive for this 

type of waste 

Wet oxidation • Produce clean solvent 

• Low temperature process 

• Simpler than incineration 

• Suitable for biological waste 

• Requires storage of oxidizing agent 

• Residue requires immobilization 

Microbial treatment represents an environmental friendly approach to achieve mineralization. 

Characterization of liquid radioactive waste collected from a sump at a radioisotope processing facility in 

Cape Town, South Africa, was performed [47]. The waste sample was extracted by solid phase 

extraction. Samples were analyzed for the presence of polycyclic aromatic hydrocarbons (PAHs) by 

using High Performance Liquid Chromatography (HPLC). The results showed that there are high levels 

of PAHs in the wastewater exceeding the World Health Organization (WHO) recommendation for 

maximum values. Then biodegradation studies were conducted in batch reactors using synthetic waste 

containing the controlled amounts of irradiated organics in order to determine degradation rate 

parameters. An indigenous culture of aromatic compound degrading bacteria obtained from a landfill 

site was used in the batch studies. The study concluded that the degradation kinetics for PAH 

(polycyclic aromatic hydrocarbons) were affected by the rate of solubility of the solid phase. 

Ethylenediaminetetracetic acid (EDTA) is widely used as a decontaminating agent in nuclear 

industry. Photocatalytic degradation of EDTA had been investigated using Degussa P-25 titanium 

dioxide TiO2 as the semiconductor photocatalyst in presence of UV light [48]. The degradation of 

EDTA was monitored by titrimetric method using magnesium sulfate as the titrant and Erichrome 

black-T as indicator. The effects of various parameters such as pH, quantity of the catalyst loading, 

effect of H2O2 were studied. The presence of amides was detected in the degraded waste, and then 

these wastes were subjected to precipitation. Results have shown that the degradation products of 

EDTA did not interfere in the chemical precipitation step and gave a good decontamination factor for 

the treatment process compared to the radioactive liquid waste where EDTA degradation has not been 

carried out. 

The implementation of continuous-flow hydrothermal technology for the treatment of concentrated 

liquid radioactive wastes was tested by Avramenko et al. [49]. It had been shown that hydrothermal 

oxidation could solve the problem of the selective extraction of transition metals radionuclides such as 

Co and Mn with a minimum volume of solid radioactive wastes being formed. 

Ramanjaneyulu et al. [50] fabricated polyvinylchloride (PVC) based liquid membrane ion selective 

electrode (ISE) for Cs removal. Different membrane constituents were investigated to realize optimum 

performance of the developed ISE. It was found that the best response was observed for the membrane 

having 2-nitro phenyl octyl ether (oNPOE) as plasticizer and potassium tetrakis (perchloro phenyl) 

borate (KTpClPB) as ion additive. Linear response over concentration range from 10
−5

–10
−1

 M CsCl 

was obtained. The Nernstian slope of the response for this membrane was 56 mV per decade for Cs 

with a response time less than 20 s with fairly constant response over the pH range of 3–11. The lifetime 

of the electrode was found to be 9 months. Finally, the concentration of Cs in two simulated high level 
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active waste streams was determined and results agreed well with those obtained independently 

employing atomic absorption spectrometry.  

The Savannah River Site (SRS) is currently removing liquid radioactive waste from its Tank Farm. 

Integrated Salt Disposition Process (ISDP) was developed to treat waste streams that are high in Cs, Sr, 

and/or actinides [51]. This process is made up of two processes: actinide removal process (ARP) and 

modular caustic side solvent extraction (CSSX). The ARP part was responsible for the removal of Sr 

and actinides by using monosodium titanate (MST). The resulting slurry was filtered to remove MST 

loaded by sorbed Sr and actinides and entrained sludge. The filtrate was transferred CSSX process, 

where Cs was extracted from the radioactive waste using a customized solvent to produce a 

Decontaminated Salt Solution (DSS), then stripped and concentrated the Cs from the solvent with 

dilute nitric acid. The DSS was incorporated in grout while the strip acid solution was transferred for 

vitrification. In order to predict waste behavior, MST sorption to remove Sr and actinides followed by 

CSSX batch contact tests to verify expected Cs mass removal and concentration were tested. The 

results indicated that the bench scale tests were a conservative predictor of actual waste performance. 

4. Emerged Technological Options  

The continuous electrodeionization (CEDI) technology was used in low-level radioactive 

wastewater treatment to minimize radioactive wastes and energy consumptions, with Cs, Co, and Sr 

chosen as the typical fission products of pressurized water reactor [52]. The results showed that the 

CEDI has better continuous and effective operation performance compared with conventional ion 

exchange processes, with a removal efficiency of Sr of more than 95%. The nuclide removal efficiency 

decreased with increasing ratio of influent to effluent. The CEDI technology exhibited nuclide removal 

efficiencies from high to low in the order of Cs, Sr, and Co which was different from the conventional 

ion exchange. 

A novel technology was developed to treat evaporator concentrates, it included a hydrothermal  

(T = 250–300 °C and P = 80–120 bar) processing of the concentrates in oxidation medium in order to 

destruct stable organic complexes of Co radionuclides and remove these radionuclides by oxide 

materials formed during such processing [53]. This method implied that Cs radionuclides contained in 

evaporator concentrates were removed by a conventional method through the application of one of the 

developed composite sorbents with ferrocyanides of transition metals used as active agents. The study 

showed that hydrothermal oxidation of evaporator concentrates had a number of advantages as 

compared to traditional oxidation methods (ozonation, photocatalytic, electrochemical and plasma 

oxidation). A laboratory installation was built for the flow-type hydrothermal oxidation of NPP 

evaporator concentrates. The obtained experimental results showed good prospects for the developed 

method application. On the basis of the results obtained, a pilot installation of productivity up to  

15 L/hour was developed and built. The pilot tests were performed for 6 months in 2006 at first reactor 

unit of the Novovoronezhskaya NPP (Voronezh Region, Russia). Optimal technological regimes were 

determined, and estimations of the economic soundness of the technology were made. The study 

concluded that the application of the developed technology in the treatment system of NPP enabled to 

reduce substantially the volume of solid radioactive waste sent for final disposal. 
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5. Conclusions and Recommendations 

This work aimed to highlight the scientific community interest in important problems that affect 

different treatment process. From this review the following conclusions could be drawn: 

(1) Most of the published work focused on studying Cs, Co, Sr, and U uptake from different real 

and simulated waste streams due to the high environmental impact of these radionuclides; to a 

lesser extent the researches studied the uptake of Zn, Eu and Pu. 

(2) Despite real radioactive wastes containing different isotopes of varying concentrations, the 

majority of the tested sorbent materials were conducted by using single and bi-solute 

competitive adsorption. There is a need to study the behavior of these sorbents for removing 

the potential radionuclides as a multicomponent system. 

(3) Emerged technologies studies such as continuous electrodeionization were tested on soluble 

alkali radionuclides; there is a need to find their economical feasibility.  
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