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Mechanical behavior of bio-inspired laminated composites 

Liang Cheng, Adam Thomas, James L. Glancey, Anette M . Karlsson * 
Do>p,mmenr oJ Ml'C'hankal Engineering. Univmiry of Dl'lawa,.... Nl'WOrk. Dr 19716. USA 

1. Int roduction 

The hard exoskeletons of many arthropods, such as Homarus 
americanus (American lobster). Callinecles sopidus (Atlantic blue 
crab) and Popillio japanico Uapanese beetle), often demonstrate 
outstanding structural properties with multi~functiona l capabili
ties, including supporting the body weight. filtering chemicals 
and resisting external loads 11.2). The primary components used 
by nature to build various exoskeletons include the chitin. proteins. 
water and{or minerals (3.41. 

Consequent ly, the intrinsic complex hierarchical structures of 
various exoskeletons have received significant attention recent ly. 
motivated by thei r potential to achieve excellent mechanical prop
erty and versatility for the exoskeletons ! 1- 91. A number of species. 
ranging from crustaceans (such as crabs. lobsters. and crayfish) to 
ancient species (such as "armored fish" ) have been investigated 
both theoretically and experimentally to explore the relationship 
between the microstructure and the mechanical behavior [1 - 10[ . 
Interestingly, some general similarities prevail in the structural 
morphology across a wide range of species. A typica l arthropod 
exoskeleton consists of several multi-layer regions (e.g .. exocuticle. 
mesocutide and endocuticle in the exoskeleton of a typical beetle) 
with load-bearing capability, see Fig. 1 jI-5,8. 11 - 13J. Those re
gions are primari ly built up with high stiffness chitin microfibers 
(Young's modu lus can be as high as 100 GPa. diameter 2-3 nm 
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[4,14- 16]) and associated proteins, as well as supplementary 
materials. Typically. bundles of chitin microfibers are assembled 
into macrofibrils with a surrounding protein matrix in crustaceans. 
This composite structure can be easily observed under an eleclron 
microscope [3.7.1 n The macro- and micro-fibrils usually align 
with each other to form parallel layers. which are furthe r organized 
as stacks wi th distinctive orientations and patterns to form the 
exoskeletons (Fig. 1) [1 - 1 1.18J. 

Even though many bio-inspired. man-made structures exist. a 
very limited amount of research has been conducted which at
tempts to apply the design principles in the arthropod exoskel 
etons into the deSign and manufacturing of practical materia ls 
and structures. Apichattrabru( 119J rep licated a limited set of heli
coidal laminated composite structures. The resulting structures 
were reported to demonstrate improved mechanica l performance 
over the conventional unidirectional and cross-ply composites. 
However. th is work only considered a limited set of geometries. 
Consequent ly. we here consider multiple structures along with 
investigating the residual strength after the onset of initial failure. 

Thus. with the ultimate purpose of exploring and designing ad 
vanced engineering materials and structures inspired by nature, 
the objectives of this study are: (1) adopt representative structural 
morphology observed in arthropod exoskeletons (the helicoidal 
structure in the exoskeletons from H. americanus. C. sapidus and 
P. japonica) [1.21 in the design of nature-i nspired composites; (2) 
manufacture the composites with common ly used engineering 
materials; (3) investigate the mechanical responses of the resulting 
bio-inspired structures from mu ltiple perspectives. through both 
experimental characterization and theoretical analysis; and (4 ) 
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Fig. 1. The hierarchical structures of the exoskeletons from Homarus americanus, Callinectes sapidus and Popillia japonica. Helicoidal structural pattern is observed in different 
regions of all the exoskeletons [1,2]. 

compare the results to identify and summarize advantageous de
sign strategies to formulate guidance for developing advanced syn
thetic materials. 

2. Materials and methods 

2.1. Helicoidal structure 

Helicoidal structure, also termed ‘‘Bouligand structure’’ after its 
discovery by Bouligan [17] is one of the unique and prevailing pat
terns observed in exoskeletons in a large number of species of the 
arthropod phylum [3,7,11,12,20–23], including crustaceans (e.g., C. 
sapidus and C. sapidus) and insects (e.g., P. japonica) [1,2]. The struc
ture is characterized by the parallel chitin–protein layers stacking 
successively on each other, with each uni-directional layer rotating 
by a small angle about its normal direction relative to the adjacent 
layer, as shown in Fig. 1. 

Our previous studies [1,2] have shown that a helicoidal struc
ture with a moderately large number of layers results in a high le
vel of in-plane isotropy, providing isotropic structural response in 
the loading plane. In addition, since the gradual rotation of succes
sively stacked layers effectively smoothens the stiffness transition 
cross each interface between adjacent layers compared to tradi

tional cross-ply laminated composites, the helicoidal structure ap
pears to possess relatively high interfacial strength [1,2]. 

All together, the helicoidal structure shows great potential for 
providing high stiffness, high strength and durable structures. 
Thus, this study is focused on investigating selected key features 
of helicoidal structures. 

2.2. Materials, design and manufacture 

2.2.1. Materials and processing 
A commonly used glass fiber reinforced composite was selected 

as the model material system for exploring the bio-inspired com
posite. The material used for all manufacturing and processing in 
this study is unidirectional S2-glass (Zentron High Strength fiber) 
epoxy prepreg, DA409U/S2-glass (APCM, Plainfield, CT, USA). The 
physical and mechanical properties of this material from a repre
sentative batch are summarized in Table 1, based on independent 
standard tests (ASTM D790 [24], ASTM D2344 [25]) under our lab 
conditions (described later). Throughout the development and test 
process, multiple batches of material were used. The same stan
dard test protocols were followed for each individual batch prior 
to use in order to extract relevant baseline material properties 
(as in Table 1), and to eliminate potential effects of cross-batch 



Table 1 
Mechanical properties of DA 409U/S2-glass 
from a source material batch (#2). Data pro
vided by original manufacturer are marked 
with an asterisk ('), others are from our 
independent standard test. E1 and E2 are 
Young’s moduli along the direction of the fiber 
and orthogonal to the fiber, respectively; G12 

and G23 are the shear moduli; v12 and v23 are 
Poisson’s ratios. r1 is the flexural strength 
(ASTM D790) and Fsbs is the short-beam shear 
strength (ASTM D2344). q is the material 
density. 

E1 (GPa) 47.7 
E2 (GPa) 4.77 
G12 (GPa) 7.55 
G23 (GPa) 5.06 
m12 0.28 
m23 0.45 
r1 (GPa) 0.89 
Fsbs (GPa) 0.57 
q' (kg/m2) 0.41 
Thickness per layer' (mm) 0.28 

material property variations. In addition, all the analysis and test 
results of each sample were consistently non-dimensionalized 
with respect to the material properties of its parent material batch 
before further presentation, analysis and comparison. 

The prepreg rolls were stored in a contamination free container 
under -18 °C (0  °F) before processing. Prior to manufacturing, each 
roll was removed from cold storage at least 20 h prior to use to al
low for stabilization at room temperature, and wrapped to prevent 
moisture from condensing on the prepreg. 

Prepreg rolls (0.3 x 110 m2 (12 in. x 120 yards)) were cut into 
square pieces (0.3 x 0.3 m2 (12 x 12 in.2)) before being laid up to 
construct laminated composite plates. All laminates were stacked 
with 24 plies using selected stacking sequences corresponding to 
the selected structural configurations (described below). The 
stacked prepreg laminates were then cured using the vacuum bag
ging method. The sequence for the vacuum bagging system is illus
trated in Fig. 2A. Peel plies (Bleeder lease BC, AIRTECH 
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Fig. 2. (A) Schematic diagram of the manufacturing of the composite structures; (B) 
typical cure cycle used in composite manufacturing. 
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International Inc., Huntington Beach, CA, USA) were attached on 
both sides of the stacked prepreg to render a smooth finish on 
the laminates and protect the laminates from potential contamina
tion. Breather cloth (Airweave N-10 breather cloth, AIRTECH Inter
national Inc., Huntington Beach, CA, USA) was put on top of the 
steel plate to prevent cutting or penetration by the steel plate on 
the outside bagging film (Wrightlon 7400 bagging film, AIRTECH 
International Inc., Huntington Beach, CA, USA). The bagging film 
was attached firmly to the tool plate using tacky tape (SM 5126 
Tacky tape, Schnee-Morehead Inc., Irving, Texas, USA). Vacuum 
was then supplied to the system in the oven before curing and 
maintained during the entire curing process. The oven was pro
grammed to implement the designed cure cycle for the prepreg, 
as shown in Fig. 2B. The whole lay-up system, including the lami
nate and all the other facilities described above, was finally re
trieved from the oven after the curing cycle was finished and 
cooled to room temperature. 

2.2.2. Mid-plane symmetry 
Mid-plane symmetry is generally preferred in practical design 

and manufacturing of laminated composites, since it simplifies 
the design and manufacturing process, and eliminates warping in
duced during cure (e.g., causes the B matrix defined in Appendix A 
to vanish). 

However, the nature designed helicoidal structure, as in the 
exoskeletons from H. americanus and C. sapidus, has an anti-sym
metrical stacking sequence, resulting in a laminate with coupled 
in-plane and out-of-plane behavior [1]. Thus, when this structure 
is replicated using conventional composite materials and manufac
turing processes, residual stresses induced during the laminate 
curing process result in warping of the manufactured laminate. 
The resulting curvature is determined by the component’s lamina 
material properties, including stiffness, thermal expansion coeffi
cient and Poisson’s ratio, as well as the laminate stacking sequence 
[26]. Further, the anti-symmetrical structure causes unbalanced 
and coupled stress and strain distribution, contributing to a com
plex and mostly undesired structural behavior, which may com
promise the structural integrity and stability. As a result, 
although the bio-inspired composites inherit potential mechanical 
benefit from the exoskeleton, the anti-symmetry limits their prac
tical usefulness. (In nature, these issues are not of concerns, since 
‘‘manufacturing’’ occur at ambient conditions.) 

Consequently, in addition to a direct replication of the natural 
helicoidal structure in the bio-composite design, two variations 
were designed (Table 2) as described in the following section. Both 
designs intend to solve the unsymmetrical problem by enforcing a 
mid-plane symmetry while maintaining the gradual ply rotation 
pattern in the laminate stacking sequence. The resulting laminates 
remained flat after manufacturing. 

2.2.3. Bio-composite design schemes 
In this study, four lay-up sequences were designed and manu

factured; each with 24 plies (Table 2). The four designs included 
one baseline structure and three bio-inspired structures: 

(1) a ‘‘baseline’’ structure (BL), with mid-plane symmetry com
monly used in industry as a quasi-isotropic structure, with 
stacking sequence [0/-45°/45°/90]3s; 

(2) a ‘‘single helicoidal’’ structure (SH), with a stacking sequence 
directly replicated from the nature designed helicoidal 
structure described earlier. A representative ‘‘180° stack’’ 
with 24 plies completes an accumulative rotation of 180° 
about the normal direction of the uni-directional layers, thus 
a 7.8° rotation per ply is needed. The stacking sequence is [0/ 
7.8°/. . ./180°] thus mid-plane symmetry is not satisfied (in 
fact, the structure is anti-symmetric); 



Table 2 
Investigated laminate structures and their stacking sequences. 

Structure 
designation 

Specification Number of 
lamina 

Stacking 
sequence 

BL 
SH 
DH 
SHMS 

Baseline 
Single helicoidal 
Double helicoidal 
Single helicoidal 
mid-plane symmetric 

24 
24 
24 
24 

[0/-45°/45°/90°]3s 

[0/7.8°/. . ./180°] 
[0/16.4°/. . ./180°]s 

[0/7.8°/. . ./85.8°]s 

(3) a ‘‘double helicoidal’’ laminate (DH), with both the upper 
and lower halves (12 plies each) completing an entire 180° 
accumulative rotation individually, and stacked together 
symmetrically about their mid-plane. It enforces the mid-
plane symmetry design but results in a larger ply rotation 
across the thickness, compared to Scheme 2. Its stacking 
sequence is [0/16.4°/. . ./180°]s; 

(4) a ‘‘single helicoidal mid-plane symmetric’’ laminate (SHMS), 
with its upper half (12 plies) following the same pattern as 
that of the single helicoidal laminate, but its lower counter
part is mirrored with respect to the mid-plane of the lami
nate. Therefore SHMS enforces mid-plane symmetry while 
retaining the smaller ply rotation as in the SH laminate. Its 
stacking sequence is [0/7.8°/. . ./85.8°]s. 

2.3. Experimental investigations 

The mechanical properties of the four laminates were investi
gated via ASTM test protocols, including flexural stiffness and max
imum flexural stress [‘‘long beam test’’ (ASTM D790)], [24] and 
short-beam shear strength [‘‘short beam test’’ (ASTM D2344)] 
[25]. Both tests are based on three-point bending with characteris
tic dimensions shown in Fig. 3. 

Laminated beam samples were cut (using ACER AGS-1020-AH 
Hydraulic Surface Grinder, Klim Industrial, Inc., Piscataway, NJ, 
USA) from the manufactured laminate plates with compatible sizes 
in accordance with corresponding test protocols: 

(1) for ASTM D790, ‘‘the specimen support span-to-thickness 
ratio (L/h) shall be 16 (tolerance ±1) with overhanging length 
on each end at least 10% of the support span; specimen 
width (b) shall not exceed 1/4 of the support span;’’ [24]. 

(2) for ASME D2344, ‘‘specimen support span-to-thickness ratio 
(L/h) is 4 and specimen width-to-thickness ratio (b/h) is 2.  
The overhang on each end of the support is controlled to 
approximately one thickness value.’’ [25]. 

Samples were cut from the center of the laminate plate, to en
sure a complete lay-up and consistent thickness. Care was taken 
in the sample cutting process to ensure the reinforcing glass fibers 
on the beam outer surfaces (top and bottom) were aligned with the 
beam length direction. 

placement d are normalized according to: 

bP ¼ P 

2Ebh3 
=3L 

d̂ ¼ d 
h 
; 

where bP and ^

tively. The normalized force, b
h 

P 

L 

Fig. 3. Illustration of the test configuration (both ASTM D790 and ASTM D2344). L is 
the beam supporting span, h is the beam thickness and P is the applied force. 

Relevant geometric parameters and physical properties of the 
beam specimen were measured after sample preparation. The 
specimen size was measured at five locations along each dimen
sion, and averaged values were used for analysis. 

Composite void content for each configuration was also mea
sured following the corresponding ASTM procedure (ASTM 
D2734) [27]. Representative materials were harvested from the 
source laminates and in the immediate proximity of the corre
sponding beam specimens. The void contents are presented along 
with the corresponding test results in the following section. 

For both standard tests, an Instron 5567 Tester Frame (Nor
wood, MA, USA) was used. The beam specimens were loaded to 
failure in a three-point-bending system, with simply supported 
boundary conditions, Fig. 3. All the other test-related parameters 
(e.g., the loading rate, the loader-nose size) were chosen in accor
dance with the corresponding test standard. 

Concurrent to the manufacturing and processing described 
above, a 24-ply unidirectional laminate was produced for each 
individual parent material batch. The unidirectional laminate was 
manufactured and corresponding samples were processed and 
tested according to the same protocols described above, and ana
lyzed in according to methods in the following section. The mate
rial data obtained were used as the true reference material 
properties for each material batch (Table 1). Due to the nature of 
the unidirectional fiber reinforced composites, only the material 
properties along the principal direction (fiber direction) were 
investigated. The material properties in the directions orthogonal 
to the fiber orientation have limited influence of the overall struc
ture behavior, thus general empirical value from engineering expe
rience and the handbook ‘‘MIL-HDBK-17-1F: Composite Materials 
Handbook’’ [28] were used (e.g., Young’s modulus in the directions 
orthogonal to the fiber can be assumed being only 1% of that along 
the fiber direction: E2 = E3 = 0.01E1; and the relationship between 
the shear modulus for general glass fiber/epoxy composites is: 
G23 = 0.67G12), and are summarized in Table 1. 

3. Results 

3.1. Long beam test results (ASTM D790) 

The material properties quantified from the ‘‘long beam test’’ 
(ASTM D790) are the flexural modulus (EB) and flexural strength 
(rfM) [24]: 

EB ¼ 
mL3 

4bh3 
; ð1Þ 

rfM ¼ 
3Pm L 

2bh2 
; ð2Þ 

where h, b are the thickness and width of the beam respectively (m), 
L is the supporting span (Fig. 3) (m), Pm is the maximum load ob
served during the test (N), and m is the slope of the tangent to 
the initial straight-line portion of the force–deflection curve (N/m). 

Due to variation in material properties between the various 
material batches used, and a variation in dimensions due to vari
ability in manufacturing, the measured force P and measured dis

; ð3Þ 

ð4Þ 

d are the normalized force and displacement, respec-
P , as a function of the normalized dis

placement, d̂, for the four configurations investigated are displayed 
in Fig. 4. 
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Fig. 4. Normalized experimental force–displacement data from the ‘‘long beam test’’ (ASTM D790), on (A) baseline (BL) structure; (B) single helicoidal (SH) structure; (C) 
double helicoidal (DH) structure; (D) single helicoidal mid-plane symmetrical (SHMS) structure. 

The flexural stiffness and flexure strength are determined 
according to ASTM D790 Eqs. (1) and (2). The averaged results 

EBE ¼ 
12D11 

h3 
; ð5Þ 

(with deviations) are reported after normalization with respect to 
the corresponding material properties of each specimen’s source where D11 is the flexural stiffness component along the beam length 
material batch, as summarized in Table 3. direction. Both the experimental and theoretical results are given in 

For comparison, theoretical analysis was performed to estimate Table 3 and Fig. 5. 
laminate material properties based on the classic laminated com- The experimental results and the theoretical predictions show 
posites theory [29,30]. The equivalent flexural modulus for a lam- excellent agreement for three of the laminate structures (Fig. 5). 
inate, EBE, can be predicted theoretically given the parent batch For the single helicoidal (SH) structure, the experimental data devi
material properties and laminate stacking configuration (Tables 1 ated noticeably from the theoretical value. We believe the discrep
and 2). The corresponding components (Dij) in the laminate flex ancy is caused by the high void content in these specimens induced 
ural stiffness matrix, D, can first be calculated based on the given during manufacturing, Table 3. The overall trend in the flexural 
information (Appendix A) and the equivalent flexural modulus is stiffness can be seen in Fig. 5A: the flexural stiffnesses of the bio
given by: inspired helicoidal structures are all higher than the baseline (BL) 

Table 3 
Specimen parameters and test results (theoretical and experimental) from the ‘‘long beam test’’ (ASTM 790). Experimental deviations are expressed as one standard deviation 
about the mean. 

Structure Baseline Single helicoidal Double helicoidal Single helicoidal mid-plane symmetric 

Number of replicates tested 5 5 5 5 
Length, L (mm) 76.00 76.00 72.00 71.00 
Width, b (mm) 11.06 10.61 10.25 10.16 
Thickness, h (mm) 4.84 5.01 4.52 4.44 
Void content (%) 1.3 2.2 0.8 1.0 
Normalized flexural stiffness (EB) Theory [Eq. (5)] 0.47 0.60 0.55 0.74 

Experiment [Eq. (1)] 0.48 (±0.01) 0.74 (±0.01) 0.52 (±0.02) 0.74 (±0.01) 
Normalized flexural strength (rfM) 0.64 (±0.03) 0.63 (±0.01) 0.57 (±0.02) 0.67 (±0.02) 
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Fig. 5. Mechanical properties of the laminate beam structures using the ‘‘long beam 
test’’ (ASTM D790): (A) normalized flexural stiffness (EB), from both experimental 
result and theoretical prediction; (B) normalized flexural stress (rfM). The error bars 
indicate the standard deviation of the result within each group. 

structure. The flexural stiffness increase of the double helicoidal 
(DH) laminate is small compared to the other two bio-inspired 
structures. This is due to the relatively ‘‘coarse’’ ply rotation. The 
single helicoidal (SH) and single helicoidal mid-plane symmetric 
(SHMS) laminates, which feature a smaller ply rotation between 
neighboring layers, both exhibit a significant flexural stiffness in
crease, where theoretically a 54% relative improvement is pre
dicted. However, as stated previously, due to the relatively large 
void content of the manufactured single helicoidal (SH) laminates 
(Table 3), the experimental results show an increase that is lower 
than the prediction. 

3.2. Short beam test results (ASTM D2344) 

In the ‘‘short beam test’’ (ASTM D2344), short-beam strength 
(Fsbs) is defined by: 

0:75PmFsbs ¼ ; ð6Þ
bh 

where the parameters are the same as defined in Eqs. (1) and (2). 
In order to ensure the validity and accuracy of the shear prop

erty evaluation, only the samples observed with clear interlaminar 
failure during the loading were analyzed accordingly. Test data 

from ASTM D2344, normalized in a similar manner as for ASTM 
D790, are shown in Fig. 6 and a summary of these results, are pre
sented in Table 4 and Fig. 7. 

ASTM D2344 does not provide a method to determine the trans
verse shear modulus, GT, since the test is designed to determine the 
‘‘short-beam strength’’ only. However, the small span-to-thickness 
ratio of the specimen increases the contribution of the transverse 
shear to beam deformation. Therefore, we will use the results from 
this particular test to assess the transverse shear modulus GT, 
according to the following. 

‘‘Timoshenko beam theory’’ incorporates the transverse defor
mation due to transverse shear deformation into the total beam 
deflection [31]. Assuming a constant transverse shear stress distri
bution through the beam thickness, the theory gives a simplified 
but adequate approximation for the mechanism of short beam 
deformation. The deflection at the beam center span, x, is given 
by [31]: ! 

L3 1 3L 1 
x ¼ P þ ; ð7Þ 

4bh3 EB 10bh GT

where P is the applied force and EB is the flexural stiffness (in this 
study obtained through the ‘‘long beam test’’, ASTM D790). There
fore, the transverse shear modulus (GT) can be obtained from the 
experimental data: 

3L 

GT ¼ 10bh ; ð8Þ 
L3x 1-P 4bh3 EB 

where x/P is the apparent beam compliance (m/N), which is the in
verse of the slope of the tangent to the initial linear portion of the 
force–deflection curve. It corresponds to the linear elastic response 
at the early stage of the loading, before the onset of non-linear 
behavior. 

Alternatively, theoretical prediction of the equivalent trans
verse shear modulus (GTE) of the laminates can be established 
based on classic laminate composite theory [29,30], given the par
ent material properties and laminate stacking configuration (Ta
bles 1 and 2): 

A55GTE ¼ ; ð9Þ
h 

where A55 is the corresponding transverse shear component in the 
laminate extensional stiffness matrix A (Appendix A). 

The experimentally-based (using ‘‘Timoshenko beam theory’’, 
Eq. (8)) and the theoretically-based (using classic laminate com
posite theory, Eq. (9)) transverse shear modulus predictions are 
summarized in Table 4 and Fig. 7A. The methods show good agree
ment, verifying the validity of Timoshenko beam theory in describ
ing the beam deformation mechanism for these specimens. 

The results of the transverse shear modulus, GT, and the short-
beam shear strength, Fsbs, from the bio-inspired composites did 
not show noticeable improvement over those from the baseline 
composite (Fig. 7). It may be attributed to the fact that transverse 
shear modulus, as well as transverse shear strength, of a typical fi
ber-reinforced laminate is more dependent on the matrix proper
ties rather than that of the properties and orientation of the 
reinforcing fibers. Consequently, unlike the case of the flexural 
stiffness investigated in the ‘‘short beam test’’ (ASTM 790), the 
stacking sequence serves a secondary role in shaping the lami
nate’s transverse shear property. 

4. Discussion 

Excessive load and deformation in a composite structure will 
lead to damage and ultimately failure, resulting in service-life 
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Fig. 6. Normalized experimental force–displacement data from the ‘‘short beam test’’ (ASTM D2344), on (A) baseline (BL) structure; (B) single helicoidal (SH) structure; (C) 
double helicoidal (DH) structure; (D) single helicoidal mid-plane symmetrical (SHMS) structure. 

Table 4 
Specimen parameters and test results (theoretical and experimental) from the ‘‘short beam test’’ (ASTM 2344). Experimental deviations are expressed as one standard deviation 
about the mean. 

Structure Baseline Single helicoidal Double helicoidal Single helicoidal mid-plane symmetric 

Number of replicates tested 5 5 5 5 
Length, L (mm) 19.00 19.50 18.30 17.50 
Width, b (mm) 11.01 8.29 10.43 10.09 
Thickness, h (mm) 4.92 5.11 4.52 4.39 
Void content (%) 1.3 2.2 0.8 1.0 
Normalized transverse shear modulus (GT) Theory [Eq. (9)] 0.84 0.83 0.82 0.83 

Experiment [Eq. (8)] 0.83 (±0.04) 0.87 (±0.05) 0.92 (±0.07) 0.86 (±0.02) 
Normalized short-beam shear strength (Fsbs) 0.76 (±0.02) 0.80 (±0.04) 0.76 (±0.03) 0.76 (±0.07) 

degradation. The onset of damage is usually characterized by the 
degradation of structural stiffness and load-bearing capability. In 
composite structures, multiple mechanisms are involved in the 
damage initiation and evolution, including fiber breakage, matrix 
cracking, fiber–matrix debonding and delamination [32–34]. 
Delamination is generally the most common and serious mode of 
failure. Due to their complicated damage evolution, composite 
structures usually demonstrate a progressive degradation of mate
rial stiffness and strength, instead of failing catastrophically upon 
initial damage onset [35,36]. As a result, after damage initiation, 
the structure usually can still function with a residual load-carry
ing capacity until ultimate failure. Thus, evaluating the post-dam
age behavior of a composite can reveal important information. 

The ‘‘short beam test’’ (ASTM D2344) described in the previous 
section will be used to study the residual strength of the investi
gated laminates under a transverse quasi-static load. The struc
tures were continuously loaded (using displacement-controlled 
loading) after initial stiffness degradation until ultimate failure oc
curred (which is characterized by the complete loss of load-carry
ing capacity). Due to the small span-to-thickness ratio of the 
specimen required by the test protocol, the transverse shear stress 
is substantial in the structure compared to samples with large 
span-to-thickness ratio. Delamination modes (both along initial 
interface and branched through the thickness) were dominant dur
ing failure, but other modes were also observed (e.g., matrix crack, 
and fiber pull-out). 
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Fig. 8. A typical force–displacement curve from the ‘‘short beam test’’ (ASTM 
D2344). (A–F) denotes different deformation/damage stages of the test during 
quasi-static loading. P is the average residual force after the onset of initial damage. 

structure which, along with the residual strength, reveals the post-
damage behavior. Consequently, the average sustained force after 
initial damage, P, can be used as a measure of the residual strength 
of the structure after initial damage. 

Fig. 9 summarizes the normalized residual strength from the 
‘‘short beam test’’ (ASTM 2344) for all structures, where the resid
ual strength is normalized by the corresponding maximum force 
(PB) for each individual configuration. The bio-inspired structures 
demonstrate a remarkable increase of residual strength over the 
baseline structure (Fig. 9), especially those with the smaller fiber 
rotation; specifically, the single helicoidal mid-plane symmetric 

Fig. 7. Mechanical properties of the laminate beams structures using the ‘‘short 
beam test’’ (ASTM D2344): (A) normalized transverse shear modulus (GT), from (SHMS) and single helicoidal (SH) structures (83% for the SH and 

both experimental result and theoretical prediction; (B) normalized short-beam 
strength (Fsbs). The error bars indicate the standard deviation of the result within 

56% for the SHMS). The double helicoidal (DH) structure shows a 
significant but smaller improvement over the baseline structure 

each group. 

A representative force–displacement curve from a laminated 
composite structure subjected to three-point-bending is shown 
in Fig. 8. The initial response (A–B) is dominated by the linear elas
tic properties of the constituent materials. An abrupt drop in the 
force (B–C) is an indication of initial damage onset (delamination 
initiation) in the structure. Elastic energy is absorbed by the struc
ture in A–B and is partly dissipated by the delamination in B–C. 
Upon continuous displacement-controlled loading, the delamina
tions grow (together with other possible failure modes) (C–D–E). 
Although the structural integrity is compromised, the structure 
can typically sustain significant load, Fig. 6, enabling it to function 
at a reduced load level (e.g., an airplane could make a safe emer
gency landing, ‘‘limp home’’). The absorbed energy during this 
stage is dissipated as the failure modes evolve. The final failure 
(E–F) is characterized by the structure reaching its maximum deg
radation and is completely deprived of its residual load-carrying 
capacity. 

Although the post-damage behavior of a composite structure is 
complex due to the involvement of multiple coupled mechanisms, 
the force–displacement response of the structure under three
point-bending still reveals some characteristic structural behavior. 
The ultimate failure occurred approximately at the same displace
ment for all the configurations (Fig. 6). Thus, the residual strength 
indicates the post-damage energy-absorption capability for a given 

(23% increase). 
These results suggest that with the same parent materials and 

structural size, the bio-inspired structures (particularly the SH 
and SHMS) are able to retain significantly higher residual strength 
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Fig. 9. Normalized residual strength of laminated composites with selected 
structures. The error bars indicate the standard deviation of the result within each 
group. 



(83% for the SH and 56% for the SHMS), after damage initiation and 
before final failure. Thus, the bio-inspired composites provide con
siderable improvement in damage resistance behavior over the 
baseline structure. This result agrees with the findings of other 
researchers [37–39], who argued that a smaller change of fiber ori
entation in the stacking sequence may increase the critical energy 
release rate of corresponding laminated composites and suppress 
the delamination propagation. The bio-inspired structural design 
(particularly SH and SHMS) confirms this principle by using a re
fined gradual lamina rotation to achieve a small and smooth fiber 
orientation change across the layer interfaces. As a result, it leads 

Appendix A. Classic laminate theory 

A short summary of the ‘‘classic laminate theory’’ is presented 
here. This theory can now be found in many text books, and nota
tions consistent with that of Reddy [29] are used in the following 
text. 

The linear-elastic stiffness of an individual lamina can be ex
pressed via the stiffness matrix, Q [29], 2 3

Q11 Q 12 Q 13 0 0 0 666666664 

777777775 
; ðA1Þ 

Q12 Q 22 Q 23 0 0 0 

Q13 Q 23 Q 33 0 0 0 

0 0 0 Q 44 0 0 

to a higher interlaminar fracture toughness for these laminates 
Q ¼and consequently improved post-damage behavior. The marginal 

improvement of the DH laminate might possibly result from its 0 0 0 0 Q 55 0 
‘‘coarser’’ fiber rotation between layers, which ineffectively allevi

0 0 0 0 0 Q66ates the stiffness mismatch across layer interfaces and as a result, 
gains only limited improvement over the baseline structure. with the components Qij: 

Q11 ¼ E1ð1 - m23m32Þ=D; Q22 ¼ E2ð1 - m31m13Þ=D;
 
Q33 ¼ E3ð1 - m12m21Þ=D; Q44 ¼ G23; Q55 ¼ G13; Q 66 ¼ G12 ;
 

5. Concluding remarks 

This study investigated the mechanical behavior of laminated 
composite structures designed and manufactured with bio-in
spired lamina stacking sequences. The distinctive helicoidal struc
ture observed in the exoskeletons of crustaceans (H. americanus 
and C. sapidus) and insect (P. japonica) was incorporated into the 
bio-inspired structures using a glass fiber reinforced prepreg lam
ina. The helicoidal structure was characterized by a laminate stack
ing sequence in which each layer was rotated a small angle relative 
to its neighboring layer about their normal direction. Four config
urations characterized by distinctive stacking sequences were 
developed: (1) a baseline structure (BL), which is widely used in 
industry as a quasi-isotropic structure; (2) a single helicoidal struc
ture (SH) with its stacking sequence directly replicated from the 
nature designed helicoidal structure; and two variations (3) a dou
ble helicoidal structure (DH); and (4) a single helicoidal mid-plane 

Q12 ¼ E1ðm21 þ m31m23Þ=D; Q13 ¼ E1ðm31 þ m21m32Þ=D;
 
Q23 ¼ E2ðm32 þ m12m31Þ=D; D ¼ 1 - m12m21 - m23m32 - m31m13 - 2m21 m32m13 ;
 

ðA2Þ 

where E1, E2 and E3 are Young’s moduli along the lamina’s principle 
axis; G12, G13 and G23 are the shear moduli; and mij (i, j = 1, 2, 3) are 
Poison’s ratios. 

When the laminae’s principle axes are not aligned with the glo
bal coordinate system in which is structure is described, then a 
coordinate transformation is necessary to express the elastic prop
erties of laminae with various orientations within the global coor
dinate system. The transformed stiffness matrix Q can be 
expressed in matrix form as 

Q ¼ T-1 QT; ðA3Þ 

where T is the transformation matrix 2 3 
m2 n2 0 0 0  2mnsymmetric structure (SHMS). The last two configurations were 

developed to achieve mid-plane symmetry and avoid warping dur
ing cure. 

The mechanical performance of the four structures was evalu- T ¼ 
ated via standard test protocols (ASTM D790 and ASTM D2344) 
to quantify the flexural stiffness and strength, transverse shear 

666666664 

777777775 
n2 m2 0 0  0  -2mn 

0 0 1 0 0 0 

0 0 0 m -n 0 

0 0 0 n m 0 

; ðA4Þ 

modulus and strength, as well as residual strength. 
The bio-inspired structure showed improved mechanical prop

erties over the conventional baseline structure. In addition, supe
rior residual strength under static load was observed from the 
bio-inspired composites. The improvement was more significant 
when a smaller fiber rotation was used, such as the SH and SHMS 
structures. Also, the advantages of the bio-material system were 

-mn mn 0 0  0  m2 - n2 

with m ¼ cos h; n ¼ sin h, where h denotes the lamina orientation 
with respect to the global coordinate system. 

Finally, the mechanical properties governing the laminate con
stitutive behavior are given: 

XN 

maintained for the two variants where mid-plane symmetry was Aij ¼ Qij ðhk - hk-1Þ; 
kenforced. k¼1 XN 

k¼1 

The improvement in mechanical performance observed in the 1 
h2 h2 -k k-1Bij ¼ Qij ; i; j ¼ 1; 2; 6 ðA5Þbio-inspired structure underscored the advantages of the helicoi 2 k 

dal structure. Combined with practical manufacturing practices, XN 

k¼1 

such as mid-plane symmetry, the nature designed helicoidal struc- 1 
h3 h3 -k k-1Dij ¼ Q ij ;

3ture possesses great potential in future practical applications. k 

  XN 

Alm ¼ Qlm ðhk - hk-1Þ; l; m ¼ 4; 5; ðA6ÞAcknowledgements k
k¼1 
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