
Cleveland State University Cleveland State University 

EngagedScholarship@CSU EngagedScholarship@CSU 

Civil and Environmental Engineering Faculty 
Publications Civil and Environmental Engineering 

12-2017 

Comparing Methods of Targeting Obesity Interventions in Comparing Methods of Targeting Obesity Interventions in 

Populations: An Agent-based Simulation Populations: An Agent-based Simulation 

Rahmatollah Beheshti 
Johns Hopkins Bloomberg School of Public Health 

Mehdi Jalalpour 
Cleveland State University, m.jalapour@csuohio.edu 

Thomas A. Glass 
Johns Hopkins Bloomberg School of Public Health 

Follow this and additional works at: https://engagedscholarship.csuohio.edu/encee_facpub 

 Part of the Civil and Environmental Engineering Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Recommended Citation Recommended Citation 
Beheshti, Rahmatollah; Jalalpour, Mehdi; and Glass, Thomas A., "Comparing Methods of Targeting 
Obesity Interventions in Populations: An Agent-based Simulation" (2017). Civil and Environmental 
Engineering Faculty Publications. 117. 
https://engagedscholarship.csuohio.edu/encee_facpub/117 

This Article is brought to you for free and open access by the Civil and Environmental Engineering at 
EngagedScholarship@CSU. It has been accepted for inclusion in Civil and Environmental Engineering Faculty 
Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact 
library.es@csuohio.edu. 

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/encee_facpub
https://engagedscholarship.csuohio.edu/encee_facpub
https://engagedscholarship.csuohio.edu/encee
https://engagedscholarship.csuohio.edu/encee_facpub?utm_source=engagedscholarship.csuohio.edu%2Fencee_facpub%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=engagedscholarship.csuohio.edu%2Fencee_facpub%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/encee_facpub/117?utm_source=engagedscholarship.csuohio.edu%2Fencee_facpub%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu


SSM - Population Health 3 (2017) 211-218

Contents lists available at ScienceDirect

SSM - Population Health

journal homepage: www.elsevier.com/locate/ssmph

CrossMark

Article

Comparing methods of targeting obesity interventions in populations: An 
agent-based simulation
Rahmatollah Beheshtia, Mehdi Jalalpourb, Thomas A. Glassc,*
a Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, United States
b Washkewicz College of Engineering, Cleveland State University, United States
c Johns Hopkins Bloomberg School of Public Health, United States

ARTICLE INFO ABSTRACT

Keywords:
Intervention targeting 
Obesity
Social networks 
Agent-based modeling 
Simulation
Influence maximization 
Effectiveness

Social networks as well as neighborhood environments have been shown to effect obesity-related behaviors 
including energy intake and physical activity. Accordingly, harnessing social networks to improve targeting of 
obesity interventions may be promising to the extent this leads to social multiplier effects and wider diffusion of 
intervention impact on populations. However, the literature evaluating network-based interventions has been 
inconsistent. Computational methods like agent-based models (ABM) provide researchers with tools to 
experiment in a simulated environment. We develop an ABM to compare conventional targeting methods 
(random selection, based on individual obesity risk, and vulnerable areas) with network-based targeting 
methods. We adapt a previously published and validated model of network diffusion of obesity-related behavior. 
We then build social networks among agents using a more realistic approach. We calibrate our model first 
against national-level data. Our results show that network-based targeting may lead to greater population 
impact. We also present a new targeting method that outperforms other methods in terms of intervention 
effectiveness at the population level.

1. Introduction

The obesity epidemic has been linked to a web of interdependent 
causes operating at multiple cascading levels (Galea, Riddle, & Kaplan, 
2010; Glass & McAtee, 2006; Huang, Drewnosksi, Kumanyika, & 
Glass, 2009) including environmental influences, genetics, cultural 
preferences, environmental cues, food pricing and availability, and 
peer influence (Myers & Rosen, 1999). These complex relationships 
have been widely studied using conventional study designs and 
regression-based models. However, it is increasingly understood that 
obesity is an outgrowth of complex dynamic processes at multiple 
levels that demonstrate non-linear features such as feedback loops and 
endogenous peer influences that are not well-captured using conven­
tional approaches (Finegood, 2012; Finegood & Cawley, 2011; Galea
et al., 2010; Hammond & Dube, 2012; Huang & Glass, 2008; Ip,
Rahmandad, Shoham, Hammond, & Huang, 2013). The complexity of
the obesity epidemic has drawn attention from researchers from a wide 
range of disciplines seeking new strategies to study the drivers of and 
solutions to the epidemic. Therefore, increasingly, agent-based com­
putational models (ABMs) have been explored as an alternative 
approach for addressing scientific and policy questions and as a focal

point for collaborations of multidisciplinary teams.
Agent-based models are computational simulations of real-world

dynamic patterns of adaptive behavior (Auchincloss & Diez Roux, 
2008; Bonabeau, 2002; Gilbert & Troitzsch, 2005). Their principal 
strength is the ability to model and capture emergent collective 
behavior arising from dynamic adaptation of knowledgeable actors 
who seek strategic solutions in the face of environmental constraints 
and whose complex interactions create emergent patterns that cannot 
be predicted or understood using conventional methods that do not 
permit non-linear dynamics (Epstein, 2006; Epstein & Axtell, 1996; 
Macy & Willer, 2002; Maglio & Mabry, 2011). In obesity research, 
ABMs have been used previously to understand the role of the food and 
physical activity (PA) environments (Auchincloss & Diez Roux, 2008; 
Widener, Metcalf, & Bar-Yam, 2013; Yang, Diez Roux, Auchincloss, 
Rodriguez, & Brown, 2011; Yang & Diez-Roux, 2013), social norms 
(Auchincloss, Riolo, Brown, Cook, & Diez Roux, 2011; Hammond & 
Ornstein, 2014; Mooney & El-Sayed, 2014; Shoham, Tong, 
Lamberson, Auchincloss, & Zhang, 2012; Wang, Xue, Chen, & 
Igusa, 2014), network and peer effects (El-Sayed, Scarborough, 
Seemann, & Galea, 2012; Hammond & Ornstein, 2014; Shoham 
et al., 2012; Trogdon & Allaire, 2014), and diffusion of interventions
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(El-Sayed, Seemann, Scarborough, & Galea, 2013; Rahmandad & 
Sterman, 2008; Widener et al., 2013; Zhang, Giabbanelli, Arah, & 
Zimmerman, 2014). It is this last application that is our principal focus, 
to which we now turn.

A central challenge in public health response to the obesity 
epidemic is the lack of consensus about the optimal strategy for 
targeting intervention resources. While behavioral interventions to 
prevent and reduce pathogenic weight gain in various populations 
have proven difficult, there are strategies that have been tested and 
found to be, to varying degrees, efficacious. These include interventions 
to reduce caloric intake and increase physical activity over a sustained 
period for purposes of weight reduction or obesity prevention. For 
instance, given a fixed pool of available resources, policy makers, 
program managers, and other decision makers must decide how to 
target resources to achieve the maximum desired benefit across a target 
population. Given a behavioral intervention of fixed efficacy and fixed 
cost per person (on average), should we target those who are obese, 
those who live in high-risk areas, or choose at random? This is an ideal 
problem for agent-based simulation models that can be used to conduct 
counterfactual experiments to test alternative targeting strategies (El- 
Sayed et al., 2013). This approach has been effective in tobacco. For 
example, Levy used a simulation model to show that targeting youth 
smokers results in limited impact compared to targeting all age groups 
(Levy, Cummings, & Hyland, 2000).

The main goal of this paper is to develop and use an ABM to 
evaluate different methods of targeting obesity interventions. 
Therefore, a model is needed that can, at minimum, incorporate three 
key factors determining the diffusion of intervention effects throughout 
a population: personal characteristics of actors, social network ties and 
social influence, and the role of environmental factors (Andajani- 
Sutjahjo, Ball, Warren, Inglis, & Crawford, 2004). We assume a fixed 
funding pool from which a fixed number of persons can be enrolled in a 
well-validated behavioral intervention.

To evaluate population intervention effectiveness, we begin by 
selecting the state-of-the-art behavioral intervention shown to be 
efficacious in randomized experiments of two key behavioral pathways: 
dietary intake and physical activity. For this analysis, we assume an 
average intervention effect size based on Cochrane Reviews of obesity 
prevention interventions (Brown, Avenell, Edmunds, Moore, & 
Whittaker, 2009; Doak, 2002; Mastellos, Gunn, Felix, Car, & 
Majeed, 2014; McTigue, Harris, Hemphill, Lux, & Sutton, 2003; 
Prevention & Glickman, 2012). We identified and reviewed rando­
mized trials of adults who represented all weight classes or overweight 
and obese. We included only studies that reported behavioral outcomes 
(change in diet or physical activity) with at least 6 months of follow-up. 
We prioritized studies that involved intensive non-pharmacological 
interventions that would be moderate in cost and could be scaled up 
with sufficient resources. Studies of disease groups (e.g., diabetes) or 
among only obese adults were excluded. We selected the best studies 
that also reported pre-post intervention change in diet or PA, where the 
latter was measured with a pedometer or accelerometer. For each 
category (diet or PA) we summarized the top and bottom of estimated 
proportional change. For our final estimate, we chose the midpoint of 
the range. For dietary change, we used the America on the Move trial 
for the upper bound estimate (Rodearmel, Wyatt, Stroebele, Smith, & 
Ogden, 2007; Stroebele, de Castro, Stuht, Catenacci, & Wyatt, 2009) 
and the Diabetes Prevention Program (DPP) (Group, 2002; Mayer- 
Davis, Sparks, Hirst, Costacou, & Lovejoy, 2004) for the lower bound.
The mid-point estimate is 15% reduction in total kcals of consumption
at 6-12 months. For physical activity, we base the upper-bound 
estimate on the trial by Dinger, Heesch, Cipriani and Qualls (2007) 
that used pedometers to investigate increased walking after intensive 
intervention based on the transtheoretical model of behavior change. 
For a lower bound estimate, we used the Reasonable Eating and 
Activity to Change Health study (REACH) a randomized trial of 665 
overweight men and women ages 40-69 followed for 2 years after an

intensive behavioral intervention tailored to the subjects stage of 
change (Logue, Sutton, Jarjoura, Smucker, & Baughman, 2005). The 
mid-point estimate for proportional change in physical activity based 
on these trials is 17%.

Existing research show that obesity patterns can be contagious; 
friends and family can affect an individual's behavior (Ali, Amialchuk, 
Gao, & Heiland, 2012a; Ali, Amialchuk, & Rizzo, 2012b; Baker, 
Little, & Brownell, 2003; Blanchflower, Landeghem, & Oswald, 2009; 
Centola, 2011; Christakis & Fowler, 2012, 2007; Crandall, 1988; de la 
Haye, Robins, Mohr, & Wilson, 2011a, b; Eisenberg, Neumark- 
Sztainer, Story, & Perry, 2005; El-Sayed et al., 2012; Sentocnik, 
Atanasijevic-Kunc, Drinovec, & Pfeifer, 2014). For instance, an 
individuals' chance of becoming obese increases as their friends or 
family became obese. As Trogdon and Allaire (2014) point out , the 
burgeoning literature on peer effects on obesity has important policy 
implications: social multiplier effects imply that interventions to reduce 
obesogenic behaviors may spill over and translate to increase overall 
population impact. A key goal of this analysis was to evaluate which 
targeting strategy leads to larger overall impact via social multiplier 
effects.

We address this problem from a computational modeling point of 
view, and build an ABM that simulates the outcomes of different 
targeting methods including selected realistic factors that may interact. 
There exists a limited but rapidly developing literature for modeling 
social influence on obesity patterns, and studying network-based 
obesity interventions. However, the literature seems to provide contra­
dictory conclusions. On one side, Zhang, Tong, Lamberson, Durazo- 
Arvizu, and Luke (2015) finds no differences between selecting random 
vs. overweight opinion leaders. El-Sayed et al. (2013) claims that 
interventions that target the most well-connected individuals in a 
population will have little or no added value compared with at-random 
implementation. On the other hand, Bahr, Browning, Wyatt, and Hill 
(2009) find that random targeting approaches require more individuals 
to effect the same change as targeting well-connected individuals on 
cluster edges. Similarly, Trogdon and Allaire (2014) show that the 
effect of population-level interventions depend on the underlying social 
network, and selecting the most popular obese agents for weight loss 
interventions resulted in greater population impact. These models have 
been estimated using different datasets in both adult and adolescent 
populations. Moreover, different network structures have been used to 
build simulated networks. This includes random, lattice, scale-free, 
small-world and online social networks (Barabasi, 2009).

In all of existing work, the concept of behavioral induction has been 
used to implement peer influence, which leads to diffusion of behavior 
change throughout the network. The structure of the network, for 
instance small-world vs. scale-free, does not affect intervention out­
comes significantly (El-Sayed et al., 2013; Trogdon & Allaire, 2014). 
However, the social diffusion dynamics have differed dramatically, 
which may explain differences in results. Since the population effec­
tiveness of any simulated intervention is directly determined by the 
model's assumptions about the diffusion process, it is critical to 
validate this part of the model before exploring intervention strategies 
with the model. In this paper, we limit ourselves by holding the 
diffusion dynamics under consideration constant, focusing exclusively 
on how different targeting strategies alter population impacts. The 
question of whether alternate diffusion dynamics may magnify or 
weaken the impact of interventions across targeting strategies will be 
the subject of a subsequent analysis.

2. Materials and methods

In this section we introduce the details of our ABM, and describe 
the diffusion model that was used for simulating the spread of the 
intervention's effect through social networks. By diffusion model, we 
refer to the social diffusion dynamics that are assumed for the 
propagations of behavior change and obesity in a social network. We
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then present the details of the network structure used to connect the 
agents in the model. The five different targeting methods that are 
compared in this study are introduced after this. At the end, imple­
mentation details and parameter values of our ABM are discussed.

2.1. Model development

The model of human metabolism and social diffusion in our ABM 
builds on the model proposed by Giabbanelli, Alimadad, Dabbaghian, 
and Finegood (2012), which is based on basic components of energy 
homeostasis including energy intake, energy expenditure and energy 
storage. This model has been previously validated using the NLSY 
dataset (Bureau of Labor Statistics, 2012). It is one of the best models 
that can be used to simulate the spread of obesity-related behavior 
change in a networked populations (Li, Zhang, & Pagάn, 2016). We 
begin with an overview of this model and then describe our extensions. 
In Giabbanelli's model, individuals influence each other with respect to 
food intake and physical activity. The model also allows for environ­
mental influences. The difference between energy intake (EI) and 
energy expenditure (EE), defined as energy imbalance (EIB), is used 
to determine body weight changes over time. A fixed energy density of 
32.2 MJ/kg is used for turning energy surplus to body-weight (i.e. 
gaining 1 kg for each extra 32.2 MJ). Energy expenditure is the sum of 
physical activity, resting energy expenditure and thermal effect of food 
metabolism. From this, BMI is calculated assuming height to be fixed. 
For each individual two parameters are defined: social network 
influence (SNI) and environment influence (ENV). The value for social 
network influence is determined by a formula, which is a function of 
physical activity and energy intake of an agent's friends. A fixed value is 
used for ENV. These two values are then combined to generate a socio­
environmental influence value. If this value is greater than a threshold 
(fixed for all agents), the agent will change energy intake (EI). 
Similarly, if this value is greater than another threshold, the agent will 
update physical activity (PA). No change will happen for values lower 
than threshold.

We made several additions and modifications to the model as 
follows. First, our experiments with the model seemed to indicate that 
single thresholds cause large fluctuations in the amount of energy 
intake and physical activity and consequently individuals' weight. To 
resolve this issue, we used a low and a high threshold. If the combined 
influence is smaller than the low threshold for EI (TEI,low), an agent will 
decrease EI. If the combined influence is larger than the high threshold 
for EI (TEI,high) EI will increase. The same procedure was used for PA. By 
providing a range for influence not to impact EI and PA, the model 
stabilizes such that sharp and sudden weight changes are not gener­
ated. Fig. 1 shows this process. More technical details including the 
formulas for agent behaviors are included in supplemental material.

Next, we turned our attention to individuals' variability in thresh­
olds. In the original model, threshold values are fixed across the whole 
population. In our model, each agent has his/her own threshold values. 
Similar to the original model, and because these individual-level 
threshold values are difficult to measure directly, their best values will 
be determined by “fitting” them to an actual dataset of individual 
weight change over time (more details are provided in supplemental 
material). This process is also called model calibration. While the 
original model assumes a similar environmental influence parameter 
(ENV) value for the whole population, in our model agents have a 
distinct ENV that depends on their location. It is set to a lower value in 
healthier (less obesogenic) environments, and a larger value in a more 
obesogenic environment. The numerical range for the ENV values was 
(0.93 to 1.02). ENV < 1 represents a healthy environment, ENV = 1 a 
neutral environment (has no effect on individuals), and ENV > 1 
represents an obesogenic environment. The final change made is on 
how energy imbalance impacts weight. Instead of using a fixed 
conversion rate (as in the original model) for mapping energy 
surplus/deficit to weight change, we used a formula presented by

Fig. 1. Depiction of how the model specifies the influence of social networks and 
environment on agent behavior change. The process of updating energy intake (EI) is 
shown. A similar process can be imagined for physical activity (PA) by replacing all EIs 
with PA.

Hall, Heymsfield, Kemnitz, Klein, and Schoeller (2012). According to 
this formula, for loosing 1 kg of weight, an individual with x kg of initial 
body fat needs to have an energy deficit of f (x)=7×ln(x+ 1)+5 
megajoules. This results in more realistic weight change estimates in 
our model.

2.2. Building social networks among agents

To test the impact of social influence on diffusion of intervention 
effects, we require a realistic model of social network structure. We use 
the approach described by Beheshti and Sukthankar (2014) for 
building network structure. This approach constructs social networks 
among agents following a power law degree distribution and homo- 
phily1 properties. We borrowed information from existing network 
data to set the degree of nodes in our network to approximately 12, and 
the clustering coefficient2 (average local) to 0.42. For comparison, the 
reported clustering coefficient in the social network studied in 
Framingham Heart Study (Christakis & Fowler, 2007) was 0.66. 
Reciprocity rate3 was 0.54 for the nodes in our network. This was 
equal to 0.57 for males and 0.71 for females in data from the Add 
Health study (Trogdon & Allaire, 2014).

2.3. Intervention designs and implementations

We compare five targeting approaches in our experiments, shown in 
Table 1. The selected targeting approaches consist of random targeting, 
two conventional targeting approaches and two network-based meth­
ods. Similar to previous studies, the number of targeted individuals is 
the same for all methods (10 percent of the population) (El-Sayed et al., 
2013; Sangachin, Samadi, & Cavuoto, 2014; Zhang et al., 2015). These 
targeting strategies are implemented in the model as follows.

In random targeting, agents are chosen randomly from an appro­
priate registry or sampling frame. The most common methods involve 
selecting vulnerable persons (those living in high-risk areas) and high- 
risk individuals (those who are overweight, sedentary or who have 
obesogenic diets). In our model, vulnerable individuals live in obeso- 
genic environments such as food deserts or unsafe neighborhoods. The 
ENV variable, introduced earlier, determines the obesogenicity of the 
agent's neighborhood. High-risk targeting selects individuals at ran-

1 Homophily refers to the tendency to be connected to others who are more similar 
with respect to age, gender and weight status (Hruschka, Brewis, Wutich, & Morin, 
2011).

2 Clustering coe fficient is a measure of the degree to which nodes in a graph tend to 
cluster together.

3 Reciprocity is a measure of the likelihood of vertices in a directed network to be 
mutually linked.
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dom based on the agent's BMI assigned at baseline randomly from a 
realistic distribution.

The first implemented network-based method, the centrality-based 
approach, chooses agents with the largest number of connections based 
on network centrality. Individuals with the most connections (edges 
starting from them to other nodes) in the network (out-degree 
centrality) are selected. The second network-based strategy is termed 
“influence maximization”, and borrows from a machine learning 
approach used in other fields like viral marketing and advertisement 
(Chen, Wang, & Wang, 2010; Morone, & Makse, 2015). This method 
selects targeted individuals based on a pre-determined optimization 
goal: given a directed social network and a number k, find k seed nodes 
(agents) such that activating them (intervention) leads to the maximum 
expected number of activated nodes, according to a predefined 
propagation model (Goyal, Lu, & Lakshmanan, 2011; Hajibagheri, 
Alvari, Hamzeh & Hashemi, 2012; Hajibagheri, Hamzeh, & 
Sukthankar, 2013). The optimization goal is called the objective 
function in the literature. In our ABM, the optimization goal is finding 
a fixed number of nodes in a network that, when selected for 
intervention, the number of other nodes in the graph that change 
behavior is maximized. In general, finding the optimum set of initial 
nodes in a graph is computationally expensive (NP-Hard problem); 
there is no fixed computational algorithm for finding the optimum 
nodes in a short time. Different heuristics are employed to find the best 
near-optimum solution. Kempe et al. (2003) proposed a method using 
a natural greedy strategy, and proved that it can always find a close-to- 
optimal solution.

In our model, the influence maximization (IM) targeting approach 
works in this way: identify one node that if targeted for intervention, 
maximizes the overall effectiveness of intervention in the population 
(e.g. result in the lowest number of obese individuals). The second node 
will be added such that the two nodes will maximize the influence. 
Additional nodes up to the fixed target number for the intervention is 
added similarly. In each step, the selected nodes are kept. The IM 
method does not use the same diffusion mechanism as the main model. 
A simple linear threshold model (Kempe et al., 2003) is used by the IM 
method for modeling the diffusions. The threshold value is assigned 
based on the body-weight of the node. More technical details are 
provided in supplemental material.

We evaluate the effectiveness of two hypothetical interventions in 
our experiments: 1) intervention on EI, in which EI of targeted agents 
is decreased by 15% and 2) intervention on PA, in which a 17% 
increase is considered for the target agents.

Our ABM was implemented in the NetLogo environment (Wilensky, 
1999). Instructions for accessing the source-code are provided in 
supplemental material. At the beginning of the model run, agents' 
features were initialized according to the parameters and distributions 
shown in Table 2. The size of the population was optionally set (equal 
to the number of samples in NLSY79). Similar results were obtained 
using larger populations sizes. Values for low and high thresholds for 
both EI and PA were set to 0.002 and 0.2 respectively. Gender, age, 
weight and height distributions are assigned based on the data from the 
year 1986 of National Longitudinal Surveys (NLSY79) dataset (Bureau 
of Labor Statistics, 2012). This dataset is also used to validate our 
ABM. These features are used to implement the homophily property of 
nodes while initializing the network. Threshold values and ENV 
parameters are calibrated in our model. A set of sensitivity analysis 
experiments have been performed on the calibrated values. Results of 
these experiments are available in the supplemental material. In our 
model, while height remains fixed, weight changes across each time 
step according to changes in energy intake and physical activity.

The initial population was simulated for two years before applying 
any intervention. This period was chosen since the NLSY79 dataset is 
collected in two-year cycles. After this, we used each of five targeting 
methods to select agents to receive the standard intervention (either for 
physical activity increase or reduction in dietary intake). The process ofTa
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Table 2

Agent-based modeling parameter settings.

Measure Value

Population size 12686
Gender (female %) 50%
Age (yr) 21≤(24.68±2.27)≤29
Weight (lb) 50≤(154.55±56.98)≤400
Height (in) 40≤ (67.84±4.89)≤90
Targeted individuals 10% of total
Simulated length (days) 730
EI intervention effectiveness 15%
PA intervention effectiveness 17%
TEI,low,TPA,low 0.002
TEI,high,TPA,high 0.2
ENV [0.93,1.02]

Footnote:
For age, weight and height, values are shown in the form of min≤(mean±sd)≤max. The 
values of four thresholds (T variables) in the model and ENV are calibrated such that 
realistic patterns of weight change in the population are obtained; sensitivity analysis 
results are provided as supplemental material.

obtaining EI and PA intervention effectiveness at individual level was 
described earlier. The objective function that was used for the influence 
maximization method in our experiments was the minimum number of 
obese individuals. In other words, the influence maximization method 
is set to find target individuals that, based on their network ties and a 
given diffusion model, minimized the obesity prevalence in the 
population. It should be noted that the objective function could be 
defined in other ways. For instance, it could be defined such that the 
number of overweight individuals are minimized, or sum of the number 
of overweight and obese individuals are minimized. These additional 
cases are reported in supplemental material. The model is run for an 
additional two years after intervention roll-out, and the population­
wide results are recorded. The results shown in the following section 
are the average of 100 independent runs of the model for each of 5 
targeting experiments. A larger number of runs did not produce 
different results.

2.4. Model validation

We use the NLSY79 dataset for validating our model (Bureau of 
Labor Statistics, 2012). The purpose is to evaluate whether the 
simulated weight changes (due to social and environmental factors) 
that our model generates are realistic given historical trends observed 
in the real world. This dataset is a nationally representative sample of 
12,686 individuals in the US who have been surveyed starting in 1979. 
For the purpose of validation, we used biennial changes in weight for 
the years 1986 to 2012 from this dataset.

3. Results

The results of model validation is shown in Fig. 2. The reported 
results relate to two years of running our model without any interven­
tion. The mean and standard deviation for the average weight change is 
equal to 1.8 and 4.0 (pounds) in the NLSY dataset, and 1.5 and 6.6 for 
our model.

Next, we compared the performance of five targeting methods 
described earlier, as shown in Figs. 3 and 4 below. Fig. 3 plots change 
in average agent weight over two years after a behavioral intervention 
is delivered to reduce EI. As specified by the model, EI is reduced by 
15% in agents assigned to the intervention (on average). The figure 
shows the combined population impact on average body weight, taking 
account of both diffusion and environmental effects. A dashed line 
shows the average weight change of the population, had the simulation 
continued without any intervention. This shows a slight increase in 
average body mass consistent with population trends, and represents

Fig. 2. Comparison between the average biennial change over weight in NLSY79 dataset 
(blue bars) and our model that was used for the simulation of weight changes (orange 
bars). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 3. Simulation results for 5 targeting scenarios after implementation of intervention 
to reduce dietary intake in 10% of the population. Average weight across the simulated 
population after applying intervention as obtained by five different targeting, and 
baseline scenario (no intervention) approaches are shown. Confidence intervals for the 
influence maximization method are shown using light blue color. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 4. Simulation results for 5 targeting scenarios after implementation of intervention 
to increase physical activity in 10% of the population. Average weight across the 
simulated population after applying intervention as obtained by five different targeting, 
and baseline scenario (no intervention) approaches are shown. Confidence intervals for 
the influence maximization method are shown using light blue color. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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the control condition or the causal scenario of no intervention against 
which the 5 targeting methods can be compared.

Across all five targeting scenarios, the range of change in population 
average weight was between -0.35 and -1.60 kg (with an average loss of 
-0.69 kg). Random targeting and vulnerable (agents residing in a more 
obesogenic area) showed the least overall impact (change in mean 
weight at 2 years of -0.49 kg and -0.47 kg compared to no intervention 
(CTNI for short). Targeting high-risk agents (obese) and those with 
more network connections resulted in more weight loss (-0.63 and 
-0.75 CTNI respectively). Results showed that selecting subjects on the 
basis of our IM model resulted in the most average weight loss (-1.7 kg 
CTNI). Confidence intervals (CIs) of vulnerable and random targeting 
were overlapping, as well as CIs of high-risk and centrality methods. 
CIs of these two groups were separate, as well as CI of the IM method 
(shown in the chart) and others. For energy intake, the rate of 
aggregate weight loss was similar over time with evidence of conver­
gence to a steady state by day 500. The rate of average weight loss was 
steeper early in the post-intervention period in the IM targeting 
scenario.

Fig. 4 shows results over two years after implementation of a 
physical activity intervention in 10% of the population. The model 
dictates a 17% increase in physical activity in agents chosen for the 
intervention. On average, the average decline in body weight was 
-1.77 kg across the five scenarios ranging from -1.17 (Random) to 
-2.79 (IM). After physical activity intervention, the random, vulnerable 
and high risk targeting strategies performed similarly. Targeting based 
on network centrality yielded a 25% better average decline in weight. 
Again, the best performing targeting approach was IM, which gener­
ated the largest population-wide impact (-2.9 kg CTNI), which was 57 
percent more than average. In these results, vulnerable and random 
methods had overlapping CIs, while other CIs were separate. In 
addition to five targeting methods discussed here, four other net­
work-based targeting methods are presented in the supplemental 
material. These four methods, include three different ways of measur­
ing the centrality of nodes (degree centrality was discussed here), and a 
cluster based targeting method.

We also studied the changes in the prevalence of overweight 
(25≤BMI≤29.9), and obese individuals (BMI≥30) in the population. 
Tables 3 and 4 show the performance of various targeting methods on 
changing these prevalences. When the targeted agents are receiving an 
EI intervention, network centrality and high-risk methods yield lower 
percentages of obese individuals in the population (with 28.9% and 
28.3%) than random and vulnerable methods (with 29% for both). 
Using IM targeting, the number of individuals with obesity drops to 
26.6%. Similar patterns were observed for the physical activity inter­
vention. In this case, the IM method yielded the greatest reduction in 
obesity prevalence (-4.8% for EI and -6% for PA CTNI).

4. Discussion

Harnessing information on the social characteristics of individuals

Table 3

Population prevalence of overweight and obesity after intervention on EI by targeting 
method.

Method % Overweight mean± SD % Obese mean± SD

Beginning state 33.24± 2.3 31.22± 2.3
Centrality 32.8± 2.1 28.92± 2.08
High risk 32.82± 1.96 28.34± 2.12
Influence max. 33.68± 2.3 26.62± 2.44
Random 33.06± 1.88 29.38± 2.16
Vulnerable 33.04± 2.08 29.4± 2.1
No intervention 33.26± 2.3 31.44± 2.3

Footnote:
Beginning state shows to the initial percentages of the population.

Table 4

Population prevalence of overweight and obesity after intervention on PA by targeting 
method.

Targeting method: % Overweight mean± SD % Obese mean±

Beginning State 33.24± 2.3 31.22± 2.3
Centrality 32.56± 2.58 27.8± 2.32
High Risk 32.62± 1.94 27± 2.3
Influence Max. 33.96± 2.76 25.44± 2.64
Random 32.48± 2.2 28.58± 2.2
Vulnerable 32.64± 2.18 28.56± 2.24
No Intervention 33.26± 2.3 31.44± 2.3

in designing interventions may lead to greater population-level impact 
(Bahr et al., 2009). However, the impact of harnessing social influence 
as a basis for intervention targeting is difficult or impossible to estimate 
using traditional methods. Previous studies about the potential ad­
vantages of using social network structure for targeting have been 
inconclusive. This becomes more important when we consider the 
relative cost and difficulty of gathering social network information in 
real human populations. Few interventions have been designed and 
implemented by analyzing the network structure of the population of 
interest. The purpose of this paper was to develop and evaluate an 
agent-based model (ABM) to evaluate performance of 5 possible 
intervention targeting regimes. Computational methods provide 
powerful tools to study the effectiveness of alternative targeting 
strategies by conducting experiments in a so-called in silico environ­
ment. Our main finding is that subject to the limits and assumptions of 
our model, we find evidence that using network information to inform 
targeting outperforms more standard targeting approaches including 
random selection, or selecting high-risk individuals, or vulnerable 
contexts.

Our simulations showed that targeting individuals based on their 
network position leads to greater population effectiveness in obesity 
interventions, holding the efficacy of the intervention for an individual 
constant. This is consistent with some existing findings (Bahr et al., 
2009; Hammond & Ornstein, 2014; Sangachin et al., 2014; Trogdon 
& Allaire, 2014). However, these results conflict with other studies. El- 
Sayed et al. (2013) and Zhang et al. (2015) found that network-based 
obesity interventions have little or no added value compared with at- 
random interventions. El-Sayed et al. (2013) assumed that risk of 
obesity if an individual's contact becomes obese is 1.6 times higher. 
Sangachin et al. (2014) used a linear threshold model to implement 
diffusion of obesity. Differences in the choice of diffusion model and 
key model parameter decisions might explain these inconsistencies. In 
this study, the usage of a threshold model for simulating obesity- 
related behavior and its diffusion is based on the model proposed by 
Giabbanelli et al. (2012). We believe we have improved their approach 
by replacing a single fixed population threshold with threshold values 
drawn from a distribution. In addition, we performed sensitivity 
analysis over the range of threshold values to demonstrate that results 
are consistently plausible, and not extreme. Our final results are not 
strongly sensitive to these threshold values. The results of these 
experiments are reported in supplemental materials.

Most existing work, including studies by Sayed and Zhang, used 
some variation of degree centrality to evaluate network-based inter­
ventions. As Valente (2010) points out, a major limitation of in-degree 
centrality is that nominations received may be redundant. Borgatti 
(2006) showed that conventional measures of centrality are inadequate 
for finding nodes optimally positioned to spread information for 
diffusion or to be removed from a network to disrupt spread. We 
address this by using another alternative to degree centrality finding 
that utilization of social network structures using other approaches can 
lead to higher population impacts.

This work has several strengths. First, we used a previously 
published and independently tested model of social network diffusion
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of obesity-related behavior and BMI change developed by a team with 
long experience. Secondly, we calibrated our model by evaluating 
whether a 2 year run yielded average weight change that is consistent 
with actual data based on the NLSY study. Third, this is the first study 
to combine a realistic physiologic model optimized to examine network 
diffusion, with the ability to examine the role of environmental input, 
and a realistic and sophisticated method of generating and evaluating 
social network structure among agents.

One additional strength deserves special comment. We are among 
the first to incorporate a well-established machine learning method 
called influence maximization to widen the range of network-based 
strategies. Influence maximization techniques try to find an optimal 
number of structural nodes, which, if activated, would cause the spread 
of intervention to the whole network, or, if immunized, would prevent 
the diffusion of a large scale epidemic (Morone & Makse, 2015). The 
idea of influence maximization was initially introduced in the context of 
viral marketing (Richardson & Domingos, 2002), and was used in 
other fields like applied physics (Altarelli, Braunstein, Dall'Asta, 
Wakeling, & Zecchina, 2014). However, it has not received much 
attention in obesity research. Sangachin et al. (2014) presented a 
model for the spread of obesity interventions in a networked popula­
tion, and compared their method against a greedy-based approach that 
follows an influence maximization strategy. For the influence max­
imization method, no more data other than the network structure is 
needed in practice. The need to know the structure of the existing social 
network is common among all network-based targeting methods, 
including centrality-based methods.

Network-based approaches select intervention subjects based on 
their position in a structure of network connections (e.g., friends, 
classmates, club memberships, teams, organizations, schools, neigh­
borhoods, etc.). This, as we have shown, may target those most likely to 
transmit the intervention to more people (diffusion of intervention). 
The disadvantage is that it requires prior knowledge of how potentially 
enrolled subjects are connected. This type of data can be expensive and 
time consuming to acquire. Fully dimensional social network data are 
among the most challenging to collect. In practice, it might be only 
feasible to ask people to indicate their number of friends, or name some 
of their close coworkers or relatives. Even by this limited data, a semi­
synthetic network structure for a population of interest can be 
generated and used to determine individuals with highest promise 
for propagating the intended intervention. Following power law 
distribution, common values for clustering coefficients and knowledge 
of patterns of homophily are common features of human networks. 
These can be used to generate realistic network structures. Moreover, 
recent technologies like cellular or social media networks have 
provided us with new tools to capture and study human social 
networks. These might help policy makers or intervention designers 
to access social network structure for diverse populations of interest. 
One way to extend our work is to study the performance of different 
targeting methods under conditions of incomplete knowledge of the 
network structure.

We are limited in our ability to generate agent networks with full 
fidelity to reality given that our agents are “sampled” independently. 
Therefore, the degree of clustering and homophily is likely to be less 
than the real world in which human networks operate. We generated 
networks that match the real world only in the macro-sense of total 
numbers of ties. The implication of this is that our ability to discern the 
comparative advantages of network based targeting are likely to be an 
under-estimate of the true marginal utility of network-based ap­
proaches. Moreover, the NLSY79 dataset was chosen to test our 
experiments on a realistic population. We acknowledge that using 
real-world distributions of body-weights over time for model validation 
(as in Fig. 2) is not ideal and does not indicate that our model is able to 
provide insights into the causal mechanisms generating these changes. 
It is possible that we are able to recreate overall BMI distribution 
changes but have the underlying mechanisms wrong. However, given

the absence of longitudinal data on weight trajectories and social 
network histories, this approach at least allows us to identify a badly 
performing model. In supplemental materials, we show that consistent 
results are obtained when we perform our experiments on simulated 
populations based on the HERITAGE family study dataset (Jackson, 
Stanforth, Gagnon, Rankinen, & Leon, 2002). Lastly, it is noted that 
the question of whether there is diffusion in obesity related behaviors is 
a matter of some controversy. Our results are premised on the idea that 
there are network diffusion processes at play.
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