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REGULATION OF APOPTOSIS BY THE MUSCLE REGULATORY 
TRANSCRIPTION FACTOR MYOD 

 
TERRI J. HARFORD 

 
ABSTRACT 

 
We have previously reported that the level of MyoD expression correlates with 

the level of apoptosis that occurs in a subpopulation of skeletal myoblasts 

induced to differentiate by serum withdrawal.  Herein we document that MyoD 

expression dictates the apoptotic threshold in myoblasts and fibroblasts in 

response to a variety of apoptotic stimuli.  Specifically, re-expression of MyoD in 

skeletal myoblasts rendered defective for both differentiation and apoptosis by 

the expression of oncogenic Ras restores their ability to undergo both 

differentiation and apoptosis in response to serum withdrawal.  Further, using a 

fibroblast cell line expressing an estrogen receptor:MyoD fusion protein, we have 

determined that addition of estrogen sensitizes these fibroblasts to apoptosis 

induced by serum withdrawal, or by treatment with etoposide or thapsigargin.  

RNAi mediated silencing of MyoD in either 23A2 or C2C12 myoblasts renders 

these cells resistant to apoptosis induced by serum withdrawal, or by treatment 

with etoposide or thapsigargin.  Finally, MyoD mediated regulation of the 

apoptotic response to these various stimuli correlates with the level of induction 

of the pro-apoptotic Bcl-2 family member PUMA. 
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CHAPTER I 
 

INTRODUCTION 
 

 
While all can agree the study of apoptosis is critical to the understanding 

of cancer and to elucidate potential therapeutic targets for cures, we must not 

overlook the importance of understanding the tightly regulated apoptosis as it 

applies to the healthy development of multicellular organisms as well as in 

maintaining homeostasis. In understanding the regulation of apoptosis in this 

context, we can utilize the knowledge gained to improve on stem cell based 

therapies currently used in the treatment of degenerative diseases such as 

muscular dystrophies and for the purpose of cardiac repair (Dona, et al. 2003, 

Menasche 2004, Sandri et al. 2001, Scorsin et al. 2000, Skuk and Tremblay 

2003, Suzuki et al. 2001, Taylor et al. 1998). Once we are able to determine the 

molecular mechanisms which determine the fate of cells during differentiation 

and the associated apoptosis, we will have potential novel targets that can be 

manipulated to improve the efficacy of these stem cell based therapies. 
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1.1 Skeletal Myogenesis 

 
 

The formation of skeletal muscle during development or in response to 

muscle damage is achieved through the process of myogenesis.  Myogenesis 

can be divided into two separate temporal events.  Determination is the process 

through which multipotential stem cells are committed to the myogenic lineage. 

Differentiation is the process through which myoblasts become myotubes (Figure 

1).  Controlling myogenesis is a family of muscle regulatory transcription factors 

(MRFs).  Although expression of any of these factors will induce the conversion 

of multipotent stem cells to myoblasts (Tapscott 2005), determination, in vivo is 

defined by the expression of two MRFs, MyoD and Myf5. Myogenin and MRF4 

are required for differentiation (Perry and Rudnicki 2000). Differentiation of 

skeletal myoblasts is a complex process composed of temporally separate 

events (de la Serna 2001). Actively dividing myoblasts must first exit the cell 

cycle at a specific point, during G1, express muscle specific genes such as 

myosin heavy chain (MHC) and fuse to form multinucleated myotubes (Rudnicki 

and Jaenisch 1995).  Differentiation is positively regulated by the activation of the 

myogenic regulatory factors MyoD, myogenin, Myf5 and MRF4.  These basic 

helix-loop-helix transcription factors activate the gene expressing of the cell cycle 

inhibitor p21Waf-1, which leads the cell to exit the cell cycle, followed by genes 

expressing skeletal muscle protein such as myosin heavy chain (MHC) (Zhang et 

al. 1999).  
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Figure 1. Skeletal myogenesis. Multipotential stem cells upon expression of 

MyoD or Myf5 are committed to the myogenic lineage. Upon activation of these 

myogenic transcription factors, actively dividing myoblasts exit the cell cycle and 

begin to express muscle specific proteins and later fuse to form multinucleated 

myotubes. A subpopulation of these myoblasts will undergo apoptosis rather than 

differentiation. 
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1.2 Myogenic transcription factors 

 

Each of the four MRFs shares two characteristic regions: a helix-loop helix (HLH) 

region and a basic region. The helix-loop-helix region is required for dimerization 

and the basic region is required for DNA binding (Davis et al. 1990 and Voronova 

et al. 1990). There are two classes of bHLH proteins: Class I bHLH proteins, also 

referred to as E proteins, which include E12, E47, HEB!, and HEB" and 

Daughterless and these are expressed in many different tissues. Class II bHLH 

proteins include MyoD, myogenin, and achaete-scute and are expressed in a 

tissue specific manner.  Class I bHLH proteins can form homo- or hetero-dimers, 

however the Class II bHLH proteins typically form hetero-dimers with Class I 

bHLH proteins instead of homo-dimers (Murre et al. 1989). Class I: Class II 

hetero-dimers can bind both canonical and non-canonical E Boxes MyoD and E 

proteins contain a conserved structure of a basic region required for binding DNA 

at specific E boxes and a HLH region required for hetero-dimerization to E 

proteins. Once the MyoD:E-protein heterodimer binds E boxes found in myogenic 

promoters and chromatin remodeling occurs, transcription of genes required for 

differentiation begins. MEF2 proteins are also found to bind A/T rich regions in 

myogenic promoters and act in a co-operative manner with MyoD to drive 

transcription of the myogenic program. (Blackwell and Weintraub 1990) (Figure 

2).  
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Figure 2. MyoD and E-proteins bind to canonical E box. MyoD and E proteins 

contain a conserved structure of a basic region required for binding DNA at 

specific E boxes and a HLH region required for hetero-dimerization to E proteins. 

Once the MyoD:E-protein heterodimer binds E boxes found in myogenic 

promoters and chromatin remodeling occurs, transcription of genes required for 

differentiation begins. MEF2 proteins are also found to bind A/T rich regions in 

myogenic promoters and act in a co-operative manner with MyoD to drive 

transcription of the myogenic program. 
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The MyoD protein shares sequence identity among mammalian species 

(88-93%) and zebra fish (73%). Additional homologues can be found in C. 

elegans (HLH1), Drosophila (Nautilus) and in jelly fish (Ci-MyoD). In muscle 

specific promoters, MyoD/E-protein hetero-dimers typically bind two canonical E 

boxes and work cooperatively with myocyte enhancing factor (MEF) proteins 

bound to A/T rich regions in promoters also found near the E boxes (Gossett et 

al. 1989 and Bergstrom et al. 2002). Interestingly, MyoD is found bound to the 

myogenin promoter in myoblasts cultured in growth media (GM), but is 

transcriptionally silent. MyoD transcription repression is achieved by the 

methyltransferase Suv39H1. Suv39H1 methylates the chromatin at the myogenin 

promoter (Harter and Mal 2003 and Mal 2006). Additionally, histone de-

acetylases (HDACs) are also present at the promoters, blocking transcription 

activation by preventing acetylation of histones (Dillworth et al. 2004). Upon 

serum withdrawal, histone acetyltransferases (HATs) are recruited to myogenic 

promoters, chromatin is remodeled and transcription will commence (Sartorelli et 

al. 2005). Recruitment of chromatin remodeling complexes is required to activate 

the transcription of the myogenic program. An additional level of regulation of 

expression of the myogenic program occurs through the Id proteins. Id proteins 

function to block differentiation by binding E proteins or the MRFs (Friday et al. 

2003, and Megeney et al. 1995).  Binding of Id to E proteins or MRFs sequesters 

these factors in the cytosol. Once serum is withdrawn, Id is rapidly degraded, and 

the E protein or MRF is free to translocate to the nucleus to transcribe the 

myogenic suite of genes. 
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1.3 Skeletal myoblast model system 

 

  Since the muscle regulatory transcription factor (MRF) family consisting of 

Myf-5, MyoD, myogenin and MRF4, was discovered, skeletal myogenesis has 

served as the model for understanding signaling events regulating cell lineage 

determination and differentiation. Detailed information about the mechanistic 

regulation of myogenesis has come from studies using established mouse 

myoblast cell lines. The most commonly used myoblast cell lines are either 

isolated from C3H mice (C2C12 and BC3H-1) or derived from multipotent non-

specified 10T1/2 fibroblasts also isolated from C3H mice (23A2 myoblasts). 

These fibroblasts were treated with 5 azacytidine, which blocks re-methylation of 

DNA, then selected for the expression of MyoD and the ability to undergo 

differentiation as determined by the expression of MHC or myogenin (Pinney et 

al. 1988). Additionally, 10T1/2 fibroblasts expressing a MyoD: estrogen receptor 

fusion protein is also utilized, where a MyoD estrogen receptor fusion protein is 

expressed but kept inactive until addition of estradiol to the culture medium 

(Pinney et al. 1988). In vivo, circulating mitogens keep myoblasts in an actively 

dividing and undifferentiated state. Differentiation of myoblasts occurs in 

response to a decrease in mitogens after appropriate migration during 

development. To imitate this response in vitro, skeletal myoblasts are switched 

from culture in GM (medium plus 10-20% fetal bovine serum) to culture in 

differentiation medium (DM) (medium with low (2%) or no serum) (Olson 1992).  
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23A2 skeletal myoblasts are 10T1/2 fibroblasts committed to the myogenic 

pathway through the expression of MyoD (Pinney et al. 1988). The 23A2 

myoblasts can be induced in vitro to differentiate by switching cultured cells from 

GM to DM (Dee et al. 2002).  Myoblasts can also be induced to differentiate by 

allowing cultures to grow to confluence in GM or when cells are grown without a 

fresh supply of serum (Dee et al. 2002).  Growth factors contribute to the 

regulation of cell differentiation by activating specific transmembrane receptors, 

leading to the stimulation of multiple intracellular signal transduction pathways. 

MRFs are kept inactive in undifferentiated actively dividing myoblasts by 

signaling pathways initiated by growth factors or mitogens, such as fibroblast 

growth factor-2 (FGF-2) or transforming growth factor-" (TGF") (Ludolph and 

Konieczny 1995, Campbell et al. 1998).  Low concentrations of insulin-like growth 

factors (IGFs) enhance myoblast differentiation whereas high concentrations 

inhibit their differentiation (Florini and Ewton 1996, Weyman and Wolfman 1998) 

by acting to promote cell proliferation. 

 

We (Dee et al. 2002) and others (Wang and Walsh 1996) have previously 

reported that when induced to differentiate in response to mitogen withdrawal, 

approximately 30% of myoblasts will undergo apoptosis instead of differentiation. 

While the apoptotic process in other cell systems has been comprehensively 

investigated, the apoptotic process as a consequence of differentiation in skeletal 

myoblasts is only now emerging. 
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1.4 General Apoptosis 

 

Apoptosis is a tightly regulated form of cell death that has the ability to 

clear unwanted cells without the induction of an immune response. Apoptosis is 

characterized by chromatin condensation, nuclear fragmentation, membrane 

blebbing and finally clearance of the apoptotic body via macrophages (Kerr et al. 

1972). Apoptosis is important developmentally and in tissue homeostasis. Most 

of our current understanding of the mechanisms in apoptosis came from studies 

done in C. elegans. (Horvitz 1999). During maturation of the nematode, 1090 

cells are formed but 131 of these cells undergo apoptosis at specific times. In 

exploring the mechanisms responsible for the well orchestrated apoptotic 

program in C. elegans, many genes were uncovered to play an integral part in 

the cell death program (Ellis and Horvitz 1991). Apoptosis can be triggered by a 

variety of stimuli, such as genetic damage, cellular stresses, cellular responses 

to external cues, or by aging. There are two predominant pathways cells utilize to 

carryout apoptosis; the intrinsic pathway and the extrinsic pathway, which will be 

discussed next. It is important to note that there is cross talk between these two 

pathways, both upstream and downstream of the mitochondria. 

 

 

 

 

 



 

 10 

1.5 Extrinsic apoptotic pathway 

 

The extrinsic apoptotic pathway is triggered by external signals which are 

transduced to the cell via transmembrane receptors called death receptors. 

These death receptors are part of the TNF receptor gene family (Locksley et al. 

2001). In skeletal myoblasts, the death receptor 5 (DR5)  plays an important role 

in apoptosis (O’Flaherty et al. 2005). Upon binding the TNF related apoptosis- 

inducing ligand (TRAIL), the DR5 receptor trimerizes signaling the recruitment of 

cytosolic adapter molecules to bind the cytosolic portion of the receptor 

(Sartorius 2001). Binding of the adapter molecule Fas associated death domain 

protein (FADD) to DR5 leads to the association of FADD with pro-caspase 8. 

Pro-caspase 8 then can auto-activate itself through a proteolytic cleavage 

(Denault 2002). Once activated, caspase 8 perpetuates the apoptotic cascade by 

either cleaving caspase 3 or cleaving the proapoptotic Bcl-2 protein Bid which, 

when activated, translocates to the mitochondria to activate Bax or Bak to initiate 

mitochondrial membrane permeabilization and cytochrome C release (Figure 3) 

(Luo 1998). 
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Extrinsic Apoptotic Pathway 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3. Extrinsic Apoptotic Pathway. The extrinsic apoptotic pathway is 

triggered by external signaling molecules or death ligands binding to death 

receptors at the plasma membrane. This binding initiates the trimerization of the 

receptor which in turn recruits the adapter molecule FADD to the cytosolic portion 

of the receptor. Once bound, caspase 8 is recruited and activated via an induced 

proximity self cleavage event. Activated caspase 8 then cleaves and activates 

caspase 3 leading to completion of the apoptotic program or cleaves the pro-

apoptotic Bcl-2 molecule Bid which then translocates to the mitochondria to 

activate Bax or Bak which will cause disruption of the mitochondrial membrane. 
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1.6 Intrinsic apoptotic pathway 

 

The Intrinsic apoptotic pathway can be triggered by a multitude of signals 

including but not limited to: ER stress, DNA damage, and depletion of nutrients.   

These intrinsic apoptotic stimuli will set into motion intracellular signaling events 

involving the Bcl-2 family of proteins that result in the disruption of the 

mitochondrial membrane, followed by the release of cytochrome C.  

 

The Bcl-2 family of proteins makes up a group of both anti-apoptotic 

members and pro-apoptotic members. The anti-apoptotic members include Bcl-2, 

Bcl-xL, Mcl1, and Bcl-w.  Pro-apoptotic members can be classified as either 

multidomain, such as Bax and Bak, or as BH-3 only (Bcl-2 Homology domain 3 

only) such as PUMA, Noxa, Bim and Bad (Figure 4). Proapototic members can 

be regulated in a number of ways. For instance, regulation can occur by 

phosphorylation (Bad) or increased expression in response to trophic factor 

withdrawal (Bim and PUMA) or in response to genotoxic stress (PUMA, Noxa 

and Bax) or by cleavage (Bid) in response to death ligand signaling. The primary 

role of BH3 only members, such as PUMA, is to assist the proapoptotic functions 

of Bax and Bak (Chao and Korsmeyer 1998, Scorrano and Korsmeyer 2003). 

Interestingly, the BH-3 only proteins share only a 9 amino acid sequence 

similarity found in the BH-3 region (Huang and Strasser 1997) and this region is 

responsible for the pro-apoptotic function. Bax or Bak is necessary for the 

release of cytochrome C whereas truncated Bid (tBid) (Fidzianska and Goebel 
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1991), as well as distinct but yet unidentified pathway (Kandasamy et al. 2003), 

is required for additional mitochondrial disruption.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4. Bcl-2 family of proteins.  This family of proteins is the watchdog of 

apoptosis, guarding the mitochondrial membrane. Most members contain multiple BH 

domains, however some contain only the BH-3 domain, which is responsible for the pro-

apoptotic functions. Additionally, some members contain a transmembrane domain. 

Although these proteins function mainly at the mitochondria, their cytosolic locations may 

not be at the mitochondria when not activated. 
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Hypotheses of upstream events leading to mitochondrial membrane disruption 

vary but the general consensus is that Bax or Bak dimerization leads to the 

formation of a mitochondrial permeability transition pore within the mitochondrial 

membrane (Datta et al. 1997 and Lindsten et al. 2000). These pores cause the 

membrane potential to become disrupted and to the release of cytochrome C as 

well as other pro-apoptotic molecules (Scorrano 2002). Bax or Bak dimerization 

is prevented by binding of Bax or Bak to the anti-apoptotic Bcl-2 or Bcl-XL 

molecules. The mechanism responsible for the interruption of the Bcl-2/Bax or 

Bak interaction is not fully understood, but activated Bid has been shown to play 

a role (Letai 2002). Additionally, it is thought that PUMA, another pro-apoptotic 

Bcl-2 member, may act at the mitochondria by binding Bcl-2 or Bcl-XL (Bouillet 

and Strasser 2002). Once cytochrome has been released, formation of the 

apoptosome occurs. The apoptosome consists of the cytosolic adapter protein 

Apaf-1, ATP, cytochrome C and procaspase 9 (Acehan 2002).  Upon formation 

of the apoptosome, caspase 9, an initiator caspase, is activated, and once 

activated, will in turn activate the executioner caspases 3, 6 and 7 (Figure 5) 

(Slee 1999).  
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Intrinsic Apoptotic Pathway 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5. Intrinsic Apoptotic Pathway. Upon apoptotic stimulus, such as DNA 

damage, ER stress or nutrient depletion, signaling events key to the release pro-

apoptotic molecules from the mitochondria. Cytochrome C binds Apaf-1 which 

recruits caspase 9. This complex, the apoptosome, activates caspase 9 which in 

turn activates caspase 3 via cleavage event. Smac/Diablo and Omi can also be 

released, which function to block the anti-apoptotic IAPs that block caspase 3 

activation. Once caspase 3 is activated, the final stage of apoptosis occurs as 

seen by chromatin condensation and DNA fragmentation. 
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1.7 Overview of mitochondrial disruption in other systems 

 

Apoptosis in other systems is a result of the mitochondrial outer 

membrane permeabilization (MOMP) followed by the release of pro-apoptotic 

molecules    from the inner membrane space of the mitochondria (Newmeyer and 

Ferguson-Miller 2003). These molecules include: cytochrome C, Smac/Diablo, 

Omi, apoptosis inducing factor (AIF), and endonuclease G.  Upon release from 

the mitochondrion, cytochrome c, along with the cytosolic adaptor protein Apaf-1, 

forms the apoptosome to activate caspase 9, an initiator caspase. A caspase 

(cysteine-aspartic acid specific protease) cascade is initiated by the release of 

cytochrome C from the mitochondria (Robertson et al. 2000, Salvensen and Dixit 

1997, Thornberry and Lazebnik 1998). Smac/Diablo acts as antagonist through 

an inhibitory binding of cytosolic inhibitor of apoptosis proteins (IAPs) to enhance 

this cascade when released, whereas Omi is responsible for cleavage of IAPs. 

The function of IAPs is to bind and inhibit the activation sites of caspase 3, 7 and 

9 and target these for proteosomal degradation. A non-canonical form of 

apoptosis that is caspase-independent results from the release of apoptosis 

inducing factor (AIF) and endonuclease G from the mitochondrial inner 

membrane space (19), in addition to the loss of the mitochondrial membrane 

potential (#$m) (Kroemer 1999).  AIF and endonuclease G both can lead to DNA 

fragmentation and chromatin condensation in the absence of caspase activation.  
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1.8 Caspases 

 

Caspases (cysteine aspartic acid-specific proteases) are proteases which 

are expresses as inactive zymogens or pro-caspases. Caspases can be 

classified as initiator caspases, which include caspases 2, 8 9 and 10, or 

executioner caspases, which include caspase 3, 6 and 7. The role of the initiator 

caspases is to activate the downstream executioner caspases. The role of 

executioner caspases is to carry out the degradation of cellular components 

including structural proteins and DNA, resulting in membrane blebbing and final 

clearance (Salvesan et al. 1997 and Savill and Fadok 2000). Structurally, 

caspases contain a prodomain, and the catalytic caspase domain. The caspase 

domain is subdivided into large and small subunits. Inactive caspases occur as 

homodimers, but upon cleavage, associate into a tetrameric complex containing 

two large and two small subunits (Figure 5). Caspases contain a cysteine residue 

within the catalytic pocket that participates in the cleavage of the carbonyl end of 

aspartic acid residues found within target proteins.  
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Figure 6. Caspase structure and activation. Caspases are expressed in an 

inactive form and exist in the cytosol as homodimers. Once an apoptotic signal is 

received, the procaspase domain is cleaved followed by the formation of the now active 

tetrameric complex.  The large and small domains make up the catalytic subunit 
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1.9 Serine Proteases in apoptosis 

 

Serine proteases have been implicated in the apoptotic process. 

Granzyme B, which is a serine protease expressed in T cells also contributes to 

apoptosis (Talanian et al. 1997). Interestingly, in melanoma cells, serine 

proteases were found to participate in apoptosis in a caspase independent 

manner. Omi is known to be released from the mitochondria during apoptosis 

and functions to cleave IAPs (Miller and Stockdale 1986). Omi is expressed in an 

inactive form and is activated via autocatalytic process. Once activated, Omi 

translocates to the cytosol where it binds XIAP (x linked inhibitor of apoptosis) 

protein (Hedge et al. 2002). The protease function of Omi has not yet been found 

(Verhagen et al.2002). Utilizing the serine protease inhibitor AEBSF, apoptosis 

was abrogated upon DNA damage, induced by etoposide and ER stress induced 

by tunicamycin or brefeldin A (de Bruin et al. 2003). Additionally, blocking 

caspase activation by treatment with z-VDVAD-fmk, a cell permeable caspase 

inhibitor that binds to the active site but cannot be cleaved, was unable to inhibit 

DNA damage or ER stress induced apoptosis. Similar results were also seen in 

rat fibroblasts, thymocytes, HeLa and neuronal cells (Egger et al. 2003). In the 

rat fibroblast, over-expression of Bcl-2 was able to block this caspase 

independent apoptosis (Egger et al. 2003).  The mechanism, by which serine 

proteases can perpetuate apoptosis, is unknown. We have determined that 

AEBSF blocks the release of cytochrome C in skeletal myoblasts cultured in DM. 
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A serine protease that functions prior to mitochondrial disruption has not yet been 

reported. 

 

1.10 Molecular mechanisms of apoptosis in skeletal myoblasts 

 

Upon induction of differentiation in skeletal myoblasts, apoptosis occurs in 

vertebrate model systems, in primary cultured myoblast systems and in 

established cell lines, such as C2C12 myoblasts and 23A2 myoblasts (Dee et al. 

2002, Wang and Walsh 1996, Fidzianska and Goebel 1991, and Sandri et al. 

1996). Our lab has previously reported that when cultured myoblasts are 

switched from growth medium (GM) to differentiation medium (DM), 

approximately 30% of myoblasts will undergo to apoptosis, whereas the 

remaining 70% will exit the cell cycle and differentiate. The apoptotic process will 

occur within 12 hours while the differentiation process takes 48 hours (Dee et al. 

2002).  Typically, myoblasts will first exit the cell cycle, and then proceed to 

differentiation. Differentiation results in survival (Wang and Walsh 1996, Miller 

and Stockdale 1986).   

 

Our lab has documented a role for PUMA, the TRAIL/DR5/FLIP pathway, 

serine proteases, release of cytochrome C and activation of caspase 9 and 3 in 

the apoptotic process of skeletal myoblast induced to differentiate. While 

regulation of PUMA (Nakanishi and Morishima 2005, Nakano and Vousden 2001, 

Yu et al. 2001), DR5 (Han et al. 2001) and FLIP (Wu et al. 1997) is attributed to 
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p53 in other systems, we have found that increased PUMA expression is not a 

result of p53 signaling in skeletal myoblasts. DR5 and FLIP regulation have not 

yet been investigated. The transcription factor FOXO3a also regulates PUMA 

and FLIP (Cerone et al. 2000, You et al. 2006). However, activation of FOXO3a 

is responsible for the increased expression of proapoptotic member Bim and 

TRAIL, but this does not occur in our system (Skurk et al. 2004, Wang et al. 

2002). We have previously documented cells that express constitutively active 

forms of G12V H-Ras and Raf will not undergo differentiation and are defective 

for apoptosis in response to serum withdrawal (Dee et al. 2002, Wang et al. 

1997). Thus our data suggests expression of G12V H-Ras leads to a decrease in 

the expression of MyoD.  

 

1.11 Transcription factors associated with apoptosis 

 

MyoD induces differentiation, but can it also play a role in apoptosis? 

Transcription factors associated with the expression of proapoptotic molecules 

include p53 (Scorrano 2003), FOXO3a (Cerone et al. 2000, You et al. 2006, 

Gilley et al. 2003 and Wildey and Howe 2009), STAT1 (Peschiaroli et al. 2002), 

SMAD3 (Kumar et al. 1997) and Myc (Wildey et al. 2003). Of these, MyoD 

activity most closely resembles that of either p53 or FOXO3a.                          
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1.11.1 P53 

The well known, intensely studied tumor suppressor p53 has been 

reported to have an impressive number of roles including regulation of 

metabolism, proliferation, differentiation and apoptosis.  Since this body of work 

encompasses the study of apoptosis and to some degree, proliferation and 

differentiation, we will discuss only these functions of p53. One mechanism by 

which p53 can induce cell death is by the expression of the pro-apoptotic Bcl-2 

member PUMA (Nakano et al 2001). Additionally, p53 plays a role in regulation 

of cell cycle progression. The cyclin dependent kinase inhibitor p21 has been 

shown to be activated by p53 (el-Diery 1998). Cell cycle and apoptotic regulation 

by p53 serves dual purposes. Firstly, exit from cell cycle can allow sufficient time 

to correct any harm caused by genotoxic stress, preventing tumor formation 

(Gatz and Wiesmuller 2006). Secondly, exit from the cell cycle or apoptosis 

blocks progression of tumor growth. 

 

 Interestingly, p53 has been shown to play a role in myoblast 

differentiation rather than apoptosis. When cultured in DM,  p53-/- myoblasts 

showed a 50% reduction in differentiation as detected by the expression of 

myosin heavy chain in comparison to p53+/+ myoblasts (Porrello et al. 2000).  

This differentiation defective phenotype was attributed to the failure to upregulate 

Rb, since expression of MyoD, myogenin, p21, cyclinD1, and cyclinD3 showed 

no changes in expression patterns (Porrello et al. 2000). The role of Rb during 

differentiation is to induce cell cycle withdrawal and it cooperates in regulating 



 

 23 

the expression of late differentiation genes (Gu et al. 1993). Also shown in the 

previous paper was that p53-/- myoblasts, when cultured in DM,  differentiation 

associated apoptosis levels did not change, supporting our findings that 

apoptosis in skeletal myoblasts cultured in DM is a non-p53 mediated event  

(Shaltouki et al.  2007). 

 

1.11.2 FOXO3a 

 

Foxo3A is another transcription factor that serves dual roles in cells. 

Under certain stress conditions, Foxo3a can regulate apoptosis or cell cycle 

progression.  One way Foxo3a can regulate apoptosis is through the increased 

expression of the pro-apoptotic Bcl-2 member Bim. Bim pro-apoptotic function is 

exerted in cells by binding the anti-apoptotic protein Bcl-2. Bcl-2 functions to 

inhibit apoptosis by preventing the dimerization of Bax or Bak, a step that is 

critical for the release of cytochrome C during mitochondrial apoptosis.  Other 

pro-apoptotic target genes for Foxo3a are TRAIL and FasL (Obexer et al. 2007). 

Both FasL and TRAIL are responsible for the activation of the extrinsic apoptotic 

pathway by binding their respective death receptors Fas and DR5. Foxo3a can 

also block cell cycle progression by regulating the expression of GADD45 or p21 

(Tran et al. 2002). As with p53, expression of cell cycle inhibitors can allow cells 

with genotoxic DNA damage to repair the damage, rather than undergo 

apoptosis, thus promoting survival rather than cell death. 
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MyoD is a helix loop helix transcription factor.  To date, the only other helix 

loop helix transcription factors known to be involved in the apoptotic process is 

the Daughterless-like (HLH-2) and Achaete-scute-like (HLH-3) transcription 

factors expressed in C. elegans, shown to induce apoptosis during neuronal 

development (Thellmann et al. 2003). Additionally, preliminary evidence using 

RNAi (RNA interference) in C. elegans has suggested that HLH-2, along with 

HLH-3, regulates the expression of egl-1, a BH3 only protein similar to PUMA 

(Peden et al. 2008). 

 

The role of MyoD in skeletal myoblast differentiation has been extensively 

studied. However, the potential role of MyoD in skeletal myoblast apoptosis is a 

novel idea. The purpose of this body of work is to explore the role of MyoD in 

regulation of the apoptosis associated with differentiation as well as in response 

to other more traditional apoptotic stimuli. Further, we will explore the molecular 

mechanisms by which MyoD can affect apoptosis.  My first hypothesis is that 

MyoD is sufficient and necessary for the differentiation-associated apoptosis in 

response to culture in DM in both skeletal myoblasts and in fibroblasts. My 

second hypothesis is that MyoD plays a role in apoptosis in response to the DNA 

damaging agent etoposide and thapsigargin, an agent which induces ER stress. 

Lastly, my third hypothesis is that MyoD plays a role in the expression of the pro-

apoptotic Bcl-2 protein PUMA in response to culture in DM and in response to 

etoposide and thapsigargin treatments in GM. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Cells and cell culture 

 

The growth and differentiation properties of 23A2 myoblasts and the 23A2 

derivatives expressing the G12V:H-Ras (A2:H Ras myoblasts), A2Q61K N-Ras 

(N-Ras) (Weyman and Wolfman, 1997), 10T1/2 (Weyman et al. 1988) and 

10T1/2 ER:MyoD fibroblasts (Hollenberg et al. 1993) have been reported 

previously.  Cells were cultured on gelatin-coated plates and maintained in 

growth medium (GM), which consists of basal modified Eagle’s medium (BME), 

10% fetal bovine serum (FBS) and a 1% combination of 10,000 I.U./ml penicillin 

and 10,000 %g/ml streptomycin (1% P/S).  Differentiation was induced by 

switching cells from growth medium to differentiation medium (DM), which 

consists of BME, 1% P/S and 0% FBS. Cells were incubated at 37&C in 5% CO2.  
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2.2 Transient Transfection 

 
Prior to transfection, cells were plated at 1 X 105 on 35 mm 6 well culture dishes 

or at 4X105 on 100 mm culture plates.  A plasmid containing the full length cDNA 

of murine MyoD (pcDNA3:MyoD) was transfected using Lipofectamine and Plus 

reagents following manufacturers’ instructions (GibcoBRL).  Briefly, varying 

amounts as indicated of plasmid DNA was preincubated with Plus reagent in 

OPTImem low serum media, then combined with Lipofectamine preincubated 

with OPTImem for 15 minutes. Cells were washed with phosphate buffered 

saline 7.4 (PBS) followed by the addition of plasmid DNA/Lipofectamine/Plus 

reagent mixture to the cell culture.  After three hours, the OPTImem 

DNA/Lipofectamine/PLUS mixture was replaced with fresh GM and cells were 

allowed to incubate overnight.   

 

2.3 Immunoblot analysis 

 

Cells were plated at 4 X 105 and the following day, were treated as indicated in 

each figure legend.  Lysates were prepared by adding 50-100 %l of lysis buffer 

(20 mM MOPS pH 7.4, 5 mM magnesium chloride, 200 mM sucrose, 100 mM 

EDTA, 0.001% DNAse, 200 mM P-ser ,   100 mM P-tyr,  100 mM  P-thr ,  100 

mM PNPP,  1 M phenyl methylsufonylfluoride (PMSF) and 50 %g/ml each of 

aprotinin, pepstatin, and leupeptin with 1% CHAPS). Protein concentrations of 

the cell lysates were determined using Coomassie Protein Assay reagent from 

Pierce per manufacturer’s instructions. Following protein determination, lysates 
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were denatured in 5X sample buffer containing 10% SDS, 50% glycerol, 10% 2-

mercaptoethanol,   300 mM Tris HCl, and pH 6.8 and 0.0025% bromphenol blue.   

 

Protein extracts were separated through denaturing polyacrylamide gels 

following the Laemmli method (Laemmli 1970).  Following SDS polyacrylamide 

gel electrophoresis (SDS-PAGE), samples were transferred electrophoretically 

from thirty-five minutes to one hour at 1500 milliamps onto Hybond-P 

polyvinylidene difluoride membrane in transfer buffer (20% methanol, 1 g/L SDS, 

5.8 g/L Tris base and 29 g/L glycine.  After transfer, membranes were placed in a 

blocking solution of 5% non-fat dry milk, 10% newborn calf serum in TBS-T buffer 

(136.9 mM NaCl, 25 %M Tris and 1% Tween20).  Immunoblot analysis was 

performed to detect: p53 by incubating membrane for 1 hour with p53 antibody 

diluted 1:1000 , MHC   by incubating membrane for one hour with a mouse 

monoclonal antibody MF20 that is specific for skeletal myosin heavy chain 

protein (Bader et al. 1982), MyoD by incubating membrane overnight with a 

mouse monoclonal MyoD antibody (BD Biosciences, 554130) diluted 1:1000, 

PUMA by incubating membrane overnight with a rabbit polyclonal PUMA 

antibody (Abcam ab-9643) diluted 1:500. Actin or Hsp70 expression levels were 

monitored to ensure equal loading using monoclonal anti-! actin antibody (Sigma 

A5441- 0.5ML) diluted 1:30,000 or anti-Hsp70 antibody (BD Biosciences 

610608). All membranes were then incubated in an HRP-conjugated secondary 

antibody to the primary antibody for one hour diluted 1:1000. Following 

incubation with antibodies and prior to the addition of chemiluminescence 
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substrate, the membranes were washed 5 times in TBS-T buffer. Membranes 

were then incubated with SuperSignal West Pico Chemiluminescence Substrate 

(Pierce) as instructed by the manufacturer and bands were visualized by using 

Kodak Scientific Imaging film. 

 

2.4 ELISA 

 

The presence of cytosolic nucleosomes is a hallmark of apoptosis and indicates 

that DNA fragmentation has occurred. Cytosolic nucleosomes were detected 

using the Cell Death Detector ELISA (Enzyme linked immunosorbant assay) plus 

kit (Roche Diagnostics). Briefly, G12V H-Ras myoblasts or 23A2 myoblasts were 

plated 105 per well in 6 well plate. Next day, G12V H-Ras myoblasts were 

transfected as described in figure legend and next day transferred to culture in 

GM or DM for 8 hours as noted. Cells were lysed in 100 %l lysis buffer from Cell 

Death Detection ELISA kit for 30 minutes with rocking at room temperature. The 

contents of this lysis buffer are unknown (proprietary according to Roche). This 

lysis buffer only breaks plasma membrane and leaves nuclear membrane intact. 

Cytosolic extracts were then incubated in 96-well microtiter plate pre-coated with 

streptavidin. Additionally, a mater mixture containing 72 %l incubation buffer and 

4 %l each histone:biotin antibody and  DNA:ABTS antibody was added to each 

well The lysate/antibody mixture was incubated at 4ºC rocking overnight. Next 

day, plate was washed three times with PBS, followed by addition of 100 %l 

ABTS substrate prior to reading on plate reader at 405 nm wavelength at 60 
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second intervals for 30 minutes. Readings were taken at a time point when in  

linear range.  

 

2.5 Stable transfection of shRNA for gene knockdown 

2.5.1 Assembly of lentiviral vector for transduction of myoblasts 

 

We purchased a pKLO.1 vector expressing a shRNA against murine MyoD or no 

insert. These expression vectors were transformed in DH5! E. coli, then grown 

up on agar plates containing the selective antibiotic carbenicillin  (Sigma C1389). 

The expression vector was grown in broth culture and purified using Qiagen 

Midiprep kit.  

 

Next, lentivirus was assembled using HEK293Tcells. 293T cells were transfected 

with pKLO.1 shRNA vectors along with pCMVdelta 8.2 lentivirus vector and 

pVSV-G vector expressing viral coat protein.  Briefly, 2 million cells were plated 

on 60mm plate. Next day, media was removed and washed with PBS, followed 

by transfection with solution containing 300 %l OPTImem, 12 %l Lipfectamine 

2000 and 5 %g each pKLO.1, pCMV#R8.2 and pVSV-G vectors for 10 hours. 

After 10 hours transfection reagent was removed and 4 ml DMEM containing 

10% FBS and 1% penstrep was added. After 24 hours, media containing the 

assembled shMyoD expressing lentivirus or empty vector was collected, and 

again fresh DMEM was added. This was repeated for three days. The collected 
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DMEM was centrifuged to remove cellular debris then flash frozen at -80ºC for 

future use.  

 

2.5.2 Stable transduction of myoblasts with lentivirus containing pKLO.1 

puro-MyoD shRNA or pKLO.1 puro (control vector) 

 

23A2 or C2C12 myoblasts were plated at 400,000 cells per plate and next day 

transduced with lentivirus. Briefly, 23A2 myoblasts and C2C12 myoblasts were 

cultured in previously frozen DMEM containing lentivirus plus 10ug/ml polybrene 

overnight. Next day, DMEM was removed and replaced with fresh GM for 24 

hours. Next day, cells were split into 3 150 mm plates and cultured in GM 

overnight. Next day, cells were cultured in GM plus puromycin (2ug/ml Sigma 

P8833) for two weeks. After two weeks, clonal populations were selected for 

further analysis of MyoD expression by immunoblot analysis and RT-PCR. 

 

2.6 Semi-quantitative RT- PCR 

 

Cells were plated at 4x105 /100 mm plate and cultured in GM overnight. Next day 

cells were cultured as indicated in figure legends. Total RNA was isolated using 

standard Trizol (Invitrogen) procedures as indicated by manufacturer. Following 

extraction and quantitation of RNA, 0.5-1ug of total RNA was used in a 20 %l 

reverse transcription reaction using superscript III (Invitrogen) as indicated in 

manufacturers instructions with dNTPs, random hexamers, DTT and 5X 
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manufacturer buffer. 2 %l of the cDNA was used in real time PCR reaction with 

forward and reverse primers and 10 %l of Platinum® SYBR®Green qPCR 

SuperMix (Invitrogen). Reactions were performed in triplicate, amplified and 

quantified using the Opticon 2 quantitative real time PCR system (MJ Research). 

The cycle number at which fluorescence increased linearly was calculated by the 

Opticon monitor in the form of Ct values. The Ct value for GAPDH (used as a 

control reaction) was subtracted from the GAPDH value for the untreated control 

(GM, vehicle control, etc.) to obtain the correction factor (#Ct (GAPDH)). This 

correction factor was then subtracted from the Ct value for each experimental 

mRNA (mexp): (Ct(mexp)- #Ct (GAPDH)= normalized Ct(mexp). The normalized value for 

each experimental mRNA was then subtracted from the value of the 

corresponding untreated control to obtain the difference in cycle number. The 

difference of a single cycle is the equivalent to a 200 percent change in mRNA, 

so that the normalized value of each experiment is expressed as a change over 

the untreated sample (set to 100%) 

 

2.7 RT-PCR 

 

Reverse transcription is the same as described above. The PCR reaction differs 

as follows. Again 2 %l of the cDNA was used in the PCR reaction along with 

forward and reverse primers plus 10ul of 2X PCR mix (Fermentas). PCR 

reactions were run for the number of cycles in which amplification of products 

were still within a linear range as determined by previous reactions. PCR 
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products were then run on 1% agarose gel stained with ethidium bromide. 

Images were analyzed using GE Healthcare Life Sciences Typhoon 9410 Imager 

and band volume quantified using ImageQuant software (v5.2).  

Table 1: Primers for PCR 

 

Message Forward Primer Reverse Primer 

MyoD GACAGGACAGGACAGGGAGG GCACCGCAGTAGAGAAGTGT 

PUMA CCAGAAATGGAGCCCAACTA TATGCTCTTCACAGACCCCC 

GAPDH TGATGACATCAAGAAGGTGGTGAAG TCCTTGGAGGCCATGTAGGCCAT 
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CHAPTER III 
 

RESULTS 
 

 
 
3.1 MyoD regulates the apoptosis associated with differentiation 

 

Our lab has shown that switching cultured 23A2 skeletal myoblasts from 

GM (growth medium) to DM (differentiation medium) induces approximately 30% 

of cells to undergo apoptosis (DeChant et al. 2002). Our laboratory (Karasarides 

et al. 2006) and others (Konieczny et al. 1989) have previously shown that 

skeletal myoblasts expressing oncogenic G12V:H-Ras cause 23A2 myoblasts to 

become differentiation defective. Additionally, in myoblasts expressing oncogenic 

G12V H-Ras, levels of both MyoD mRNA and protein are below the level of 

detection (Konieczny et al. 1989, Karasarides et al. 2006). Re-expression of 

MyoD in myoblasts expressing G12V:H-Ras can restore differentiation 

(Koniecnzy et al. 1989). Our lab has recently reported that the apoptotic potential 

of skeletal myoblasts correlates with expression levels of MyoD (Karasarides et 

al. 2006). These findings have lead us to hypothesize that MyoD may play a 

critical role in both the ability to undergo apoptosis or differentiation as a result of 
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serum withdrawal. To test this hypothesis, we utilized 23A2 skeletal myoblasts 

stably transfected with oncogenic G12V:H-Ras or Q61K:N-Ras. In the 23A2 

myoblasts expressing G12V H-Ras, MyoD expression is below the levels of 

detection, whereas MyoD expression in Q61K:N-Ras expressing myoblasts is 

reduced as compared to mock transfected myoblasts (Figure 7). 10T1/2 

fibroblasts which do not express MyoD are included as a negative control.  
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Figure 7. MyoD expression is reduced in oncogenic Ras expressing 
skeletal myoblasts.   Equal numbers of cells were plated and next day, in (A). whole 

cell lysates were collected, separated by SDS-PAGE prior to electrophoretic transfer to 

PVDF membrane and immunoblot analysis for MyoD. Shown are results from one 

experiment that are representative of 2 independent experiments.  In (B) total cellular 

RNA was isolated using standard Trizol method followed by reverse transcription. DNA 

was subjected to PCR analysis using Alexa Fluor 647 labeled primers for MyoD and 

actin. In (C) images from B were analyzed using GE Healthcare Life Sciences Typhoon 

9410 Imager and band volume quantified using ImageQuant software (v5.2).  Shown are 

results from one experiment that are representative of 2 independent experiments. 
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In order to measure apoptosis in different oncogenic Ras expressing cell 

lines, we cultured equal number of cells with DM for 18 hours followed by 

counting detached cells and total number of cells. Myoblasts undergoing 

apoptosis will become detached from the tissue culture plate whereas cells which 

are either quiescent or undergoing differentiation will remain adherent (Dee et al. 

2002). The myoblasts expressing different oncogenic Ras isoforms exhibit 

reduced apoptotic potential as compared to the parental 23A2 myoblast (Figure 

8).  
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Figure 8.  Oncogenic Ras-expressing myoblasts have reduced apoptotic 

potential. Equal numbers of cells were plated and next day switched to DM for 18 

hours. DM was collected and floating cells were counted. Cells remaining on the tissue 

culture plate were counted. Percent apoptotic cells were calculated by taking detached 

cells divided by total cells (adherent + detached). Shown is an average of triplicates 

(mean +/- standard deviation) from one experiment that is representative of three 

independent experiments. 



 

 37 

To further support our hypothesis that MyoD plays a role in apoptosis, we 

transiently re-expressed ectopic MyoD in oncogenic G12V:H-Ras expressing 

myoblasts at levels comparable to the endogenous levels found in parental 23A2 

myoblasts. We decided to use this oncogenic Ras expressing myoblast cell line 

since endogenous levels of MyoD expression were below the levels of detection, 

making ectopic expression of MyoD easy to distinguish from any endogenous 

MyoD expression present. Both differentiation and apoptosis are induced by 

culture in differentiation medium (DM).  This media contains low or no serum and 

mimics the decreased gradient of growth factors which myoblasts encounter as 

they migrate away from the notochord during embryonic development (Olson 

1992). The next day after transient transfection, we then cultured myoblasts in 

DM for 24 hours and assayed for the expression of MHC as a marker for 

differentiation. We performed immunoblot analysis on oncogenic H-Ras 

expressing myoblasts expressing ectopic MyoD and found that differentiation 

was restored as evidenced by the expression of MHC (Figure 9).  
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Figure 9. Transient ectopic expression of MyoD in G12V H-Ras myoblasts 
is sufficient to restore differentiation. Equal numbers of cells were plate and next 

day transiently transfected with the indicated amount of plasmid for 3 hours prior to 

switching to GM for 24 hours. In (A) whole cell lysates were collected then separated by 

SDS-PAGE and followed by immunoblot analysis for MyoD expression. Actin was 

monitored for equal loading. In (B) cells were cultured in DM for 24 hours followed by 

collection of whole cell lysates which were then separated by SDS-PAGE prior to 

electrophoretic transfer to PVDF membrane and immunoblot analysis for MHC 

expression. Actin was monitored for equal loading. Shown are results from one 

experiment that are representative of two independent experiments. 
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As the process of transient transfection can induce cytosolic nucleosome 

formation, we were required to wait 24 hour post transfection before beginning 

any apoptosis studies which involved the detection of apoptosis by measuring 

cytosolic nucleosomes. We previously determined that the optimum time for the 

detection of cytosolic nucleosomes in parental 23A2 myoblasts was after eight 

hours of culture in DM. We compared the level of cytosolic nucleosomes using 

the ELISA kit (enzyme linked immunosorbant assay) (Roche) that utilizes an 

antibody directed against cytosolic histones and an antibody against DNA 

conjugated with peroxidase, which when activated in the presence of ABTS, 

results in a colorimetric change that that can be quantitative. Myoblasts 

undergoing apoptosis will contain DNA/histone fragments in the cytosol. Only 

cytosolic lysates are used in this assay. We found that ectopic expression of 

MyoD in oncogenic H-Ras expressing myoblasts restores their apoptotic 

potential (Figure 10). Thus, MyoD confers the ability to undergo both 

differentiation and the associated apoptosis. 
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Figure 10. Ectopic expression of MyoD in G12V H-Ras expressing 
myoblasts restores apoptotic potential in response to serum withdrawal. 
Equal numbers of cells were plated and next day transiently transfected with the 

indicated amount of plasmid as indicated for 3 hours prior to switching to GM for 24 

hours. Cells were treated with fresh GM or DM as indicated for 8 hours. DNA 

fragmentation was assayed using the Cell Death Detection ELISAPLUS kit. Shown is an 

average of triplicates (mean +/- standard deviation) from one experiment that is 

representative of three independent experiments. 
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Next, we determined if MyoD expression could induce apoptosis in 

fibroblasts in response to serum withdrawal by culture in DM. We utilized 10T1/2 

fibroblasts that stably express an inducible estrogen receptor: MyoD fusion 

protein (ER-MyoD:10T1/2)  to perform the next set of experiments. The ER-

MyoD fusion protein is expressed but cannot induce transcription unless treated 

first with estradiol. When estradiol is added to the culture medium, this allows 

ER-MyoD fusion protein to translocate to the nucleus. We assessed the ability of 

these fibroblasts to undergo differentiation as evidenced by the expression of 

myosin heavy chain. This was included as a control to show that the ER-MyoD 

fusion protein could induce differentiation. Immunoblot analysis shows when 

cultured in DM with estradiol, these fibroblasts express myosin heavy chain 

(Figure 11A). To determine the apoptotic potential, fibroblasts were cultured in 

DM for 24 hours with or without estradiol. In the absence of estradiol, the ER-

MyoD:10T1/2 fibroblasts contained no more cytosolic nucleosomes than the 

parental 10T1/2 fibroblasts cultured in DM. However, the apoptotic potential was 

increased seven fold in ER-MyoD: 10T1/2 fibroblasts cultured in DM plus 

estradiol as compared to the parental 10T1/2 fibroblasts cultured in DM plus 

estradiol (Figure 11B). We also compared the expression of MyoD protein when 

cultured in GM as well as MHC when cultured in DM between 23A2 and C2C12 

myoblasts, 10T1/2 and ER-MyoD10T1/2 fibroblasts +/- estradiol as noted. MyoD 

levels between each cell line correlated to the expression of MHC (Figure 12). 
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Figure 11. MyoD activation in 10T1/2 fibroblasts expressing an estrogen 
receptor MyoD fusion protein sensitizes to the induction of differentiation 
or the associated apoptosis in response to serum withdrawal. In (A) parental 

10T1/2 fibroblasts or ER-MyoD:10T1/2 fibroblasts were cultured in DM 48 hrs +/- 

estradiol prior to collection of whole cell lysates. Immunoblot analysis for myosin heavy  

chain (MHC) expression was performed using 100 %g of total protein. Actin was 

monitored for equal loading. Shown are results from one experiment that are 

representative of 2 independent experiments. In (B) 10T1/2 or ER-MyoD:10T1/2 

fibroblasts were cultured in DM +/- estradiol for 8 hours prior to analysis of DNA 

fragmentation using the Cell Death ELISAplus kit. Shown is an average of triplicates 

(mean +/- standard deviation) from one experiment that is representative of three 

independent experiments. 
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Figure 12. MyoD protein expression correlates with MHC expression 
between cell lines utilized.  Equal numbers of cells were plated. Immunoblot 

analysis was performed for the expression of (A) MyoD or (B) MHC between all 

cell lines as noted in (A) GM or (B) DM for various times, using 100 %g whole cell 

lysates separated by SDS-PAGE prior to electrophoretic transfer to PVDF 

membrane. Shown are results from one experiment that are representative of 2 

independent experiments. 
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Having determined that expression of MyoD plays a role in the ability of 

myoblasts and fibroblasts to undergo apoptosis, in addition to its well known role 

in differentiation, we next hypothesized that absence of MyoD in skeletal 

myoblasts would render these cells defective for both differentiation and the 

associated apoptosis. To test this hypothesis, we utilized RNAi technology. We 

transduced 23A2 and C2C12 myoblasts with a lentivirus carrying a pKLO.1 puro-

murine MyoD specific short hairpin RNA (shRNA) or control vector pKLO.1 puro 

and selected using the antibiotic puromycin for two weeks. After the selection 

period, we selected clonal populations to analyze for the knock down of MyoD 

expression. MyoD expression in untreated parental 23A2 or C2C12 myoblasts 

(each designated as “P”), or a vector alone transduced 23A2 or C2C12 

myoblasts clone (each designated as “C”) as well as multiple clones was 

analyzed (23A2:shMyoD clones or C2C12:shMyoD clones). Monitoring MyoD 

expression by both immunoblot analysis and qRT-PCR, we were able to 

successfully knock down MyoD to varying degrees in 23A2 myoblasts and in 

C2C12 myoblasts using the shRNA directed against murine MyoD (Open 

Biosystems) (Figures 13 and 14).  Having determining the expression level of 

MyoD, we selected clones 23A2:shMyoD 13, 15 and 16 and C2C12:shMyoD 16, 

17 and 19, for further analysis. 
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Figure 13. Lentiviral transduction of shRNA against MyoD reduces the 
expression of MyoD in 23A2 myoblasts. 23A2 myoblasts were transduced with 

shRNA against MyoD and various clones were screened for the reduction in MyoD 

expression levels. In (A) equal numbers of cells were plated and the next day total 

cellular RNA was isolated using the standard TRIZOL method. Quantitative RT-PCR 

was performed using the Quantitech Sybr Green PCR kit (Qiagen). Fluorescence was 

detected using an Opticon Monitor (MJ Research) Opticon software was used to 

calculate cycle threshold (Ct) values. The Ct value for MyoD PCR product was 

normalized to the Ct value for actin PCR product run parallel. Shown is an average of 

triplicates (mean +/- standard deviation) from one experiment that is representative of 

three independent experiments.  In (B) equal numbers of cells were plated.  Immunoblot 

analysis of MyoD protein expression was performed. Actin was monitored for equal 

loading. Shown is the result from one experiment that is representative of three 

independent experiments.  
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Figure 14.  Lentiviral transduction of shRNA against MyoD reduces the 
expression of MyoD in C2C12 myoblasts. C2C12 myoblasts were transduced with 

shRNA against MyoD and various clones were screened for the reduction in MyoD 

expression levels. In (A) equal numbers of cells were plated and the next day total 

cellular RNA was isolated using the standard TRIZOL method.  RT-PCR was performed 

for analysis of MyoD mRNA expression. PCR product was separated on an ethidium 

bromide stained agarose gel. Images were analyzed using GE Healthcare Life Sciences 

Typhoon 9410 Imager and band volume quantified using ImageQuant software (v5.2). 

Shown is an average of triplicates (mean +/- standard deviation) from one experiment 

that is representative of three independent experiments. In (B) an equal numbers of cells 

were plated.  Immunoblot analysis of MyoD protein expression was performed. Actin 

was monitored for equal loading. Shown are results from one experiment that are 

representative of 2 independent experiments. 
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As a control, these clones were assessed for their ability to undergo 

differentiation. We hypothesized that myoblasts will be rendered differentiation 

defective in the absence of MyoD expression.  We assayed the ability of these 

myoblasts to undergo differentiation as evidenced by the expression of myosin 

heavy chain after culture in DM for 48 hours. As anticipated, immunoblot 

analyses shows both that the 23A2:shMyoD clones and the C2C12:shMyoD 

clones with reduced MyoD expression fail to undergo differentiation when 

cultured in DM (Figure 15). Finally, we also monitored these clones for their 

ability to undergo apoptosis in response to culture in DM. As predicted, 

23A2:shMyoD and C2C12:shMyoD myoblasts with reduced MyoD expression 

were resistant to the induction of apoptosis, in response to culture in DM (Figure 

16).  
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Figure 15.  Stable silencing of MyoD expression in 23A2 and C2C12 skeletal 
myoblasts represses differentiation. Equal numbers of cells were plated and next 

day cultured in DM for 48 hours. Whole cell lysates were collected then 100 %g of total 

protein was separated by SDS-PAGE prior to electrophoretic transfer to PVDF 

membrane and immunoblot analysis for MHC expression in (A) 23A2 myoblasts 

parental, control and shMyoD clones and MHC expression in (B) C2C12 myoblasts 

parental, control and shMyoD clones. Actin was monitored for equal loading. Shown is 

the result of one experiment that is representative of three independent experiments. 
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Figure 16. Stable silencing of MyoD expression in skeletal myoblasts 
represses apoptosis as a consequence of serum withdrawal. Equal numbers 

of cells were plated and next day switched to fresh GM or DM for 24 hours. In (A), 23A2 

myoblast parental, vector, and shMyoD clones and in (B) C2C12 myoblast parental, 

vector and shMyoD clones, next day, detached cells and adherent cells were collected 

and then counted. Percent apoptosis was calculated (number of detached cells/ 

detached cells plus adherent cells). Shown is an average of triplicates (mean +/- 

standard deviation) from one experiment that is representative of three independent 

experiments. 
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3.2 MyoD regulates apoptosis in response to other apoptotic stimuli 

 

Since we have determined that MyoD plays a role in the apoptosis 

associated with differentiation and since this can also be considered as apoptosis 

induced in response to serum withdrawal, we next hypothesized that MyoD might 

regulate apoptosis in response to other apoptotic stimuli. We next wanted to 

analyze apoptosis in response to DNA damage or ER stress. 

 

Prior to testing this hypothesis, we performed time and concentration 

course analysis for the treatment with etoposide, an agent that induces double- 

and single-strand breaks in DNA in intact cells or thapsigargin, a compound that 

causes the release of stored calcium from the ER and blocks calcium re-uptake, 

leading to toxic intracellular levels. We determined that the optimum time and 

concentration for treatment to easily detect apoptotic cells with etoposide was 

200 %M for 24 hours and with thapsigargin it was 3 %M for 24 hours (Data not 

shown).  We then assessed the effect of MyoD expression in myoblasts on the 

apoptosis induced by etoposide or thapsigargin. As predicted by the previous 

experiments, etoposide and thapsigargin each induced apoptosis in the 23A2 

and C2C12 parental (P) or empty vector transduced (C) myoblasts. As 

hypothesized, the 23A2:shMyoD and C2C12:shMyoD clones, where MyoD 

expression was reduced, were resistant to the induction of apoptosis induced by  

etoposide or thapsigargin (Figures 17 and 18 respectively). 
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Figure 17.  MyoD expression enhances apoptosis induced by agents  which 
cause DNA damage.   Equal numbers of cells were plated and next day treated with 

vehicle (DMSO) or 200 uM etoposide in GM for 24 hours. In (A), 23A2 myoblast 

parental, vector and shMyoD clones and in (B) C2C12 myoblast parental, vector and 

shMyoD clones, next day, detached cells and adherent cells were collected, then 

counted. Percent apoptosis was calculated (number of detached cells/ detached cells + 

adherent cells). Shown is an average of triplicates (mean +/- standard deviation) from 

one experiment that is representative of three independent experiments. 
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Figure 18. MyoD expression enhances apoptosis induced by agents which 
cause ER-stress.  Equal numbers of cells were plated and treated with vehicle or 3%M 

thapsigargin for 24 hours. In (A), 23A2 myoblast parental, vector and shMyoD clones 

and in (B) C2C12 myoblast parental, vector and shMyoD clones, next day, detached 

cells and adherent cells were counted and percent apoptosis was calculated (number of 

detached cells/ detached cells plus adherent cells). Shown is an average of triplicates 

(mean +/- standard deviation) from one experiment that is representative of three 

independent experiments. 
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We next assessed the effect of MyoD in fibroblasts on the apoptosis 

induced by etoposide or thapsigargin treatment. Using the same conditions as 

previously described for the myoblasts, we treated 10T1/2 fibroblasts and 

ER:MyoD 10T1/2 fibroblasts for 24 hours with 200 %M etoposide or 3%M 

thapsigargin and assessed apoptosis. As expected, the etoposide and 

thapsigargin treatments each induced apoptosis in the 10T1/2 fibroblasts and 

ER-MyoD:10T1/2 fibroblasts, both in the absence of estradiol. However, while 

the addition of estradiol had no effect on the apoptosis induced by etoposide or 

thapsigargin in the 10T1/2 fibroblasts, the apoptotic response was increased over 

two times by the presence of estradiol in ER-MyoD:10T1/2 fibroblasts (Figure 

19). 
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Figure 19. MyoD activation in 10T1/2 fibroblasts expressing an estrogen 
receptor MyoD fusion protein leads enhanced apoptosis induced by agents 
which cause DNA damage or ER-Stress.  Parental 10T1/2 fibroblasts or ER-

MyoD:10T1/2 fibroblasts were cultured in GM in (A) with either vehicle or 200 %M 

etoposide or in (B) 3 %M thapsigargin and +/- estradiol 24 hours as indicated. Next day, 

detached cells and adherent cells were collected then counted. Percent apoptosis was 

calculated (number of detached cells/ detached cells plus adherent cells). Shown is an 

average of triplicates (mean +/- standard deviation) from one experiment that is 

representative of three independent experiments. 
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3.3 MyoD mediated regulation of the apoptotic response correlates with the 

level of induction of the pro-apoptotic Bcl-2 family member PUMA 

 

We have previously reported that the proapoptotic Bcl-2 member PUMA 

(p53 up regulated modulator of apoptosis) expression increases when cells are 

switched to DM for three hours (Shaltouki et al. 2007). We have also previously 

shown that this induction of PUMA is p53 independent. Additionally, when 

myoblasts are untreated, basal levels of PUMA expression are difficult to detect. 

Our lab has also shown that PUMA plays a critical role in the apoptosis 

associated with differentiation of skeletal myoblasts (Shaltouki et al. 2007). 

Based on these data, we hypothesized that MyoD may play a role in the 

induction of PUMA expression as a consequence of culture in DM. First, we 

assayed for the induction of PUMA in response to culture in DM in parental and 

control transduced 23A2 or C2C12 myoblasts and compared these levels to their 

respective shMyoD clones. After switching the cells to DM for three hours, we 

collected total cellular RNA utilizing standard Trizol protocol followed by RT-PCR. 

We found that PUMA mRNA induction was impaired in 23A2:shMyoD and 

C2C12:shMyoD clones as compared to the parental and vector transduced 

control myoblasts (Figure 20). Additionally, after 3 hours in DM, we found PUMA 

protein induction was also impaired in 23A2:shMyoD and C2C12:shMyoD clones 

as compared to the parental and vector transduced control myoblasts (Figure 

21).  
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Figure 20. Elevated PUMA mRNA expression levels as a consequence of 
serum withdraw correlates with MyoD expression levels in myoblasts.  In 

(A) 23A2 myoblast parental, vector and shMyoD clones and in (B) C2C12 myoblast 

parental, vector and shMyoD clones were screened for PUMA induction. Equal number 

of cells was plated and the next day given either fresh GM or DM for 3 hours.  Total 

cellular RNA was isolated using standard TRIZOL method. Quantitative RT-PCR for 

PUMA was performed using the Quantitech Sybr Green PCR kit (Qiagen). Fluorescence 

was detected using an Opticon Monitor (MJ Research) Opticon software was used to 

calculate cycle threshold (Ct) values. The Ct value for PUMA PCR product was 

normalized to the Ct value for Actin PCR product run parallel.  Shown is an average of 

triplicates (mean +/- standard deviation) from one experiment that is representative of 

three independent experiments. 
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Figure 21. Elevated PUMA protein expression levels as a consequence of 
serum withdraw correlates with MyoD expression levels in myoblasts. In (A) 

23A2 myoblast parental, vector and shMyoD clones and in (B) C2C12 myoblast 

parental, vector and shMyoD clones, equal numbers of cells were plated and the 

next day given either fresh GM or DM for 3 hours. In (A) whole cell lysates were 

collected then separated by SDS-Page prior to electrophoretic transfer. Immunoblot 

analysis for PUMA expression was preformed. Actin was monitored for equal loading. 

Shown are results from one experiment that are representative of 2 independent 

experiments. 
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We next compared the expression of PUMA in 10T1/2 fibroblasts and ER-

MyoD:10T1/2 fibroblasts in response to culture in DM in the absence or presence 

of estradiol. Estradiol addition in DM resulted in approximately a four fold 

increase in PUMA mRNA and protein in the ER-MyoD:10T1/2 fibroblasts, yet had 

no effect on the level of PUMA mRNA or protein in the 10T1/2 fibroblasts (Figure 

22).  
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Figure  22.  MyoD activation in 10T1/2 fibroblasts expressing an estrogen 
receptor MyoD fusion protein leads to PUMA induction in response to 
serum withdrawal.  Parental 10T1/2 fibroblasts or 10T1/2 ER: MyoD expressing 

fibroblasts were cultured in DM 3 hours. In (A) total RNA was isolated using the standard 

Trizol method. RT-PCR for PUMA was performed and PCR product was separated on 

an ethidium bromide stained agarose gel. Images were analyzed using the GE 

Healthcare Life Sciences Typhoon 9410 Imager and band volume quantified using 

ImageQuant software (v5.2). Shown is an average of triplicates (mean +/- standard 

deviation) from one experiment that is representative of three independent experiments.  
In (B) whole cell lysates were collected prior to separation by SDS-PAGE and 

electrophoretic transfer to PVDF. Immunoblot analysis for PUMA expression was 

performed. Actin was monitored for equal loading. Shown are results from one 

experiment that are representative of 2 independent experiments. 
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Some labs have reported the p53–dependent induction of PUMA in 

response to etoposide (Michalak et al. 2008) or thapsigargin (Li et al. 2006) in a 

variety of non-muscle cell types. Since we have determined that MyoD 

contributes to the apoptosis induced by these agents (Figures 18-20), we 

examined the contribution to the induction of PUMA in response to either 

etoposide or thapsigargin. First we performed a time course and concentration 

course analysis for treatment with etoposide or thapsigargin and determined that 

the minimum time and concentration required to increase the level of PUMA 

expression was 200 %M and eight hours for etoposide and 3 %M and 12 hours for 

thapsigargin.  We then monitored the induction of PUMA as a consequence of 

culture with either etoposide or thapsigargin in GM. When comparing parental 

and control transduced 23A2 and C2C12 myoblasts to their respective cones, we 

found both PUMA mRNA as well as protein increased as expected in the 

parental and control transduced myoblasts; however, PUMA induction was 

impaired in the 23A2:shMyoD and C2C12:shMyoD clones in response to culture 

with etoposide or thapsigargin (Figures 23-26). This indicates the presence of 

MyoD is required for the induction of PUMA expression in response to inducers 

of DNA damage or ER-stress. 
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Figure 23. Reduced MyoD expression in 23A2 myoblasts abrogates 
increased PUMA expression in response to etoposide. Equal numbers of cells 

were plated and the next day treated +/- 200 %M etoposide for 8 hours. In (A) total RNA 

was isolated using standard Trizol method. RT-PCR for PUMA was performed and PCR 

products were separated on an ethidium bromide stained agarose gel. Images were 

analyzed using GE Healthcare Life Sciences Typhoon 9410 Imager and band volume 

quantified using ImageQuant software (v5.2). Shown is an average of triplicates (mean 

+/- standard deviation) from one experiment that is representative of three independent 

experiments. In (B) whole cell lysates were collected prior to separation by SDS-PAGE 

and electrophoretic transfer to PVDF. Immunoblot analysis for PUMA expression was 

performed. Actin was monitored for equal loading. Shown are results from one 

experiment that are representative of 2 independent experiments. 
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Figure 24. Reduced MyoD expression in 23A2 myoblasts abrogates 
increased PUMA expression in response to thapsigargin. Equal numbers of 

cells were plated and the next day treated +/- 3 %M thapsigargin for 12 hours. In (A) total 

RNA was isolated using standard Trizol method. RT-PCR for PUMA was performed and 

PCR products were separated on an ethidium bromide stained agarose gel. Images 

were analyzed using GE Healthcare Life Sciences Typhoon 9410 Imager and band 

volume quantified using ImageQuant software (v5.2).  Shown is an average of triplicates 

(mean +/- standard deviation) from one experiment that is representative of three 

independent experiments. In (B) whole cell lysates were collected prior to separation by 

SDS-PAGE and electrophoretic transfer to PVDF. Immunoblot analysis for PUMA 

expression was performed. Actin was monitored for equal loading. Shown are results 

from one experiment that are representative of 2 independent experiments. 
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Figure 25. Reduced MyoD expression in C2C12 myoblasts abrogates 
increased PUMA expression in response to etoposide. Equal number of cells 

was plated and the next day treated +/- 200 %M etoposide for 8 hours. In (A) total RNA 

was isolated using standard Trizol method. RT-PCR for PUMA was performed and PCR 

product was separated on an ethidium bromide stained agarose gel. Images were 

analyzed using GE Healthcare Life Sciences Typhoon 9410 Imager and band volume 

was quantified using ImageQuant software (v5.2). Shown is an average of triplicates 

(mean +/- standard deviation) from one experiment that is representative of three 

independent experiments. In (B) whole cell lysates were collected prior to separation by 

SDS-PAGE and electrophoretic transfer to PVDF membrane. Immunoblot analysis for 

PUMA expression was performed. Actin was monitored for equal loading. Shown are 

results from one experiment that are representative of 2 independent experiments. 

 

A

0

20

40

60

80

100

120

140

C2C12
shMyoD clones

C2C12
P C 16 17 19

P
U

M
A

 m
R

N
A

 (%
)

etoposide (8 hours)
A

0

20

40

60

80

100

120

140

C2C12
shMyoD clones

C2C12
P C 16 17 19

C2C12
shMyoD clones

C2C12
P C 16 17 19

P
U

M
A

 m
R

N
A

 (%
)

etoposide (8 hours)



 

 64 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Reduced MyoD expression in C2C12 myoblasts abrogates 
increased PUMA expression in response to thapsigargin. Equal numbers of 

cells were plated and the next day treated +/- 3 %M thapsigargin for 12 hours. In (A) total 

RNA was isolated using standard Trizol method. RT-PCR for PUMA mRNA expression 

was performed and PCR product was separated on an ethidium bromide stained 

agarose gel. Images were analyzed using the GE Healthcare Life Sciences Typhoon 

9410 Imager and band volume quantified using ImageQuant software (v5.2). Shown is 

an average of triplicates (mean +/- standard deviation) from one experiment that is 

representative of three independent experiments. In (B) whole cell lysates were collected 

prior to separation by SDS-PAGE and electrophoretic transfer to PVDF membrane. 

Immunoblot analysis for PUMA expression was performed. Actin was monitored for 

equal loading. Shown are results from one experiment that are representative of 2 

independent experiments. 
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Finally, we compared the expression of PUMA in ER-MyoD:10T1/2 

fibroblasts and parental 10T1/2 fibroblasts cultured with either etoposide or 

thapsigargin in the absence or presence of estradiol in GM. Estradiol treatment 

combined with etoposide resulted in approximately a 3.5 fold induction in PUMA 

mRNA and protein in the ER-MyoD:10T1/2 fibroblasts, yet had no effect on the 

level of PUMA mRNA or protein on parental 10T1/2 fibroblasts treated with 

etoposide (Figure 27). Likewise, estradiol treatment combined with thapsigargin 

in GM resulted in over a three fold increase in PUMA mRNA and protein in the 

ER-MyoD:10T1/2 fibroblasts, yet had no effect on the level of PUMA mRNA or 

protein induction in the parental 10T1/2 fibroblasts treated in the same manner 

(Figure 28). 
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Figure 27.  MyoD activation in 10T1/2 fibroblasts expressing an estrogen 
receptor MyoD fusion protein leads to PUMA induction in response to 
etoposide.  A. Parental 10T1/2 fibroblasts or 10T1/2 ER: MyoD expressing fibroblasts 

were cultured in GM + 200 %M etoposide +/- estradiol for 8 hours. In (A) total RNA was 

isolated using standard Trizol method. RT-PCR for PUMA was performed and PCR 

products were separated on an ethidium bromide stained agarose gel. Images were 
analyzed using the GE Healthcare Life Sciences Typhoon 9410 Imager and band 

volume was quantified using ImageQuant software (v5.2). Shown is an average of 

triplicates (mean +/- standard deviation) from one experiment that is representative of 

three independent experiments. In (B) whole cell lysates were collected prior to 

separation by SDS-PAGE and electrophoretic transfer to PVDF membrane. Immunoblot 

analysis for PUMA expression was performed. Actin was monitored for equal loading. 

Shown are results from one experiment that are representative of 2 independent 

experiments. 
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Figure 28. MyoD activation in 10T1/2 fibroblasts expressing an estrogen 

receptor MyoD fusion protein leads to PUMA induction in response to 
thapsigargin.  A. Parental 10T1/2 fibroblasts or 10T1/2 ER: MyoD expressing 

fibroblasts were cultured in GM + 3 %M thapsigargin +/- estradiol for 12 hours. In (A) total 

RNA was isolated using standard Trizol method. RT-PCR for PUMA was performed and 

PCR product was separated on an ethidium bromide stained agarose gel. Images were 

analyzed using GE Healthcare Life Sciences Typhoon 9410 Imager and band volume 

quantified using ImageQuant software (v5.2). Shown is an average of triplicates (mean 

+/- standard deviation) from one experiment that is representative of three independent 

experiments. In (B) whole cell lysates were collected prior to separation by SDS-PAGE 

and electrophoretic transfer to PVDF membrane. Immunoblot analysis for PUMA 

expression was performed. Actin was monitored for equal loading. Shown are results 

from one experiment that are representative of 2 independent experiments. 
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Our lab has previously shown that PUMA induction in skeletal myoblasts 

when cultured in DM is p53 independent. This experiment utilized the 

pharmacological p53 inhibitor pifithrin! (Komarov et al. 1999).  We saw PUMA 

was still induced in the presence of pifithrin! (Shaltouki et al.  2007). Additionally, 

other labs (Han et al. 2001) have shown that PUMA induction in response to 

culture in DM is p53-independent in human tumor cells including HT29 cells 

which express a mutant form of p53, Jurkat cells which are p53 negative, and 

p53 null HL60. Since our data has lead us to believe that MyoD may be acting in 

place of p53 in skeletal myoblasts with regard to the induction of PUMA in 

response to serum withdrawal, in response to etoposide as well as thapsigargin, 

we needed to verify that basal levels of p53 were not altered during the 

transduction of these myoblasts with the shRNA against MyoD.  We performed 

an immunoblot analysis for the expression of p53 and found that when 

comparing parental and control transduced 23A2 and C2C12 myoblasts to their 

respective clones, basal p53 levels remained unchanged in the shMyoD clones 

with respect to the parental and control myoblasts in both 23A2 and C2C12 cell 

lines (Figure 29). 
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Figure 29.  Basal expression levels of p53 in myoblasts transduced with 
shRNA against MyoD is not affected.  In (A), 23A2 myoblast parental, vector 

and shMyoD clones and in (B) C2C12 myoblast parental, vector and shMyoD 

clones,p53 expression was detected by immunoblot analysis. Actin was monitored to 

ensure equal loading. Shown are results from one experiment that are representative of 

2 independent experiments. 
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Finally, in an effort to determine if PUMA induction in response to growth 

factor withdrawal required de novo protein synthesis, we cultured 23A2 and 

C2C12 myoblasts in GM or DM for three hours in the presence or absence of 

cyclohexamide. Cyclohexamide inhibits protein synthesis by blocking 

translational elongation. PUMA mRNA is induced in response to culture in DM in 

both 23A2 and C2C2 myoblasts. When cyclohexamide is added to DM, PUMA 

mRNA induction is still induced (Figure 30). We also found that in ER-

MyoD:10T1/2 fibroblasts that PUMA mRNA is induced in DM containing 

estradiol.  This induction is still occurs in the presence of cyclohexamide, 

however in the absence of estradiol, this induction is abrogated (Figure 31). This 

finding indicates that de novo protein synthesis is not required for the induction of 

PUMA mRNA and suggests that MyoD could be directly affecting the increase of 

PUMA mRNA levels. 
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Figure 30. PUMA mRNA induction does not require de novo translation in 
myoblasts. In (A) 23A2 and in (B) C2C12 myoblasts were cultured in GM, DM or DM 

+ cyclohexamide (CHX) for 3 hours. Total RNA was isolated using standard the Trizol 

method. RT-PCR for PUMA was performed and PCR products were separated on an 

ethidium bromide stained agarose gel. Images were analyzed using the GE Healthcare 

Life Sciences Typhoon 9410 Imager and band volume was quantified using ImageQuant 

software (v5.2). Shown is an average of triplicates (mean +/- standard deviation) from 

one experiment that is representative of three independent experiments. 
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Figure 31. PUMA mRNA induction does not require de novo translation in 
10T1/2 fibroblasts expressing estrogen receptor MyoD fusion protein.  
10T1/2 ER: MyoD expressing fibroblasts were cultured in GM, DM or DM + 

cyclohexamide (CHX) in the absence (A) or in the presence (B) of estradiol for 3 hours.  

Total RNA was isolated using the standard Trizol method. RT-PCR for PUMA was 

performed and PCR products were separated on an ethidium bromide stained agarose 

gel. Images were analyzed using the GE Healthcare Life Sciences Typhoon 9410 

Imager and band volume was quantified using ImageQuant software (v5.2). Shown is an 

average of triplicates (mean +/- standard deviation) from one experiment that is 

representative of three independent experiments. 
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CHAPTER IV 

DISCUSSION 

4.1 Overview 

The discovery of the myogenic transcription factor MyoD by Lassar et al. 

in 1986, followed by the cloning of the other myogenic factors Myf5  (Braun et al. 

1989), myogenin (Wright et al. 1989)and MRF4 (Rhodes and Konieczny 1989) 

soon after,  lead to an entirely new area of muscle research. These initial studies 

showed expression of any of these myogenic factors could convert multipotent 

stem cells to the myogenic cell lineage. However, later studies revealed these 

factors all are temporally expressed during the differentiation process and that 

MyoD and Myf5 are responsible for determination while myogenin and MRF-4 

are required for differentiation. Thus, skeletal myoblasts serve as an excellent 

model system to study determination and differentiation.  With our findings, we 

can now state that skeletal myoblasts can also be a model system for the study 

of differentiation and the associated apoptosis.  

 MyoD has long been recognized for its role as the master regulatory 

transcription factor responsible for specification and for driving the differentiation 

process following cell cycle exit. With our findings, we conclude that MyoD also 
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serves in a pro-apoptotic capacity. The processes of differentiation and the 

associated apoptosis are mutually exclusive biological endpoints. For this to be 

true there must be a point of bifurcation in the signaling events leading to the 

decision to differentiate or undergo apoptosis. 

It has been the focus of the Weyman lab to determine the molecular 

mechanisms responsible for the fact that a subpopulation of myoblasts will 

undergo apoptosis rather than differentiation when cultured in the absence of 

serum.  We have previously shown the pro-apoptotic Bcl-2 family member PUMA 

is required for apoptosis in skeletal myoblasts upon serum withdrawal. 

Additionally, we have demonstrated that PUMA is not required for differentiation. 

Specifically, our lab has previously shown that myoblasts transduced with 

lentivirus expressing shRNA against PUMA mRNA, when cultured in DM no 

longer underwent apoptosis but can still differentiate as evidenced by the 

expression of MHC. Interestingly, increased PUMA expression in skeletal 

myoblasts in response to serum withdrawal is not a p53 mediated event. When 

23A2 myoblasts were cultured in DM with the addition of the p53 inhibitor 

pifithrin, PUMA mRNA and protein expression still increased (Shaltouki et al. 

2007). Non-p53 mediated increase in PUMA expression occurs in other cells in 

response to serum withdrawal, including the human cancer line HT29 cells (p53 

mutant) , Jurkat cells, and HL60 cells (both p53 null) (Han et al. 2001). Sp1 and 

p73 were later found to regulate PUMA induction under serum withdrawal 

conditions in HT29 cells (Ming, et al. 2008). PUMA expression levels in skeletal 

myoblasts in response to culture in DM correlates to the expression levels of 
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MyoD (Karasarides, et al. 2006).  We have shown herein that MyoD is necessary 

for both differentiation as well as the associated apoptosis. Since MyoD is 

common to both differentiation and apoptosis, whereas PUMA is only necessary 

for apoptosis, this appears to be a point of bifurcation in the signaling pathways 

required to decide between undergoing differentiation or apoptosis. (Figure 32). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 32. A Role for MyoD in the regulation of PUMA and apoptosis. The 

transcription factor MyoD has long been recognized for its direct role in the regulation of 

myogenin expression and the expression of other genes controlling muscle 

differentiation. We provide data to support a novel pro-apoptotic role in the regulation of 

PUMA expression and apoptosis. Direct regulation of PUMA expression by MyoD, as 

well as the molecular mechanisms responsible for determining whether MyoD induces 

p21 CDKI, myogenin and differentiation or MyoD’s induction of PUMA and apoptosis 

awaits further investigation. 
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MyoD is acknowledged as the master regulatory transcription factor that 

controls the expression of many genes in a temporal fashion.  MyoD can directly 

induce the expression of the cell cycle inhibitor p21 CDKI and Rb to induce cell 

cycle withdrawal. MyoD can also induce the expression of cyclin D3 during 

differentiation which appears contradictory to the typical functions of cyclins 

(Cenciarelli et al. 1999). Additionally, MyoD can directly induce the expression of 

myogenin, but not until the cell has exited the cell cycle. Interestingly, MyoD is 

bound to the myogenin promoter even in a proliferative state but remains 

transcriptionally silent (Mal and Harter 2003). Myogenin is expressed only upon 

chromatin remodeling in response to cues to differentiate (de la Serna et al. 

2001).  Mef2d is yet another gene MyoD induces. MyoD along with Mef2d co-

operatively regulate the expression of late differentiation genes such as MHC 

 

Despite the abundance of understanding of skeletal myoblast 

differentiation and the molecular mechanisms responsible, there is relatively very 

little known in regards to the molecular mechanisms that drive skeletal myoblast 

apoptosis.  Our challenge now is to elucidate the molecular mechanisms which 

allow MyoD to induce PUMA and apoptosis in a sub population of myoblasts 

instead of muscle specific genes and differentiation. We can speculate that the 

decision for MyoD to induce PUMA and apoptosis or myogenin and 

differentiation is a consequence of the cells position in the cell cycle. Previous 

reports have shown that manipulating the expression of cell cycle regulatory 

proteins can either block or induce apoptosis in myoblasts or in MyoD-expressing 
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fibroblasts (Wang and Walsh 1996). Expression of the CDK inhibitor p21 

promotes survival and additionally, forced expression of p21 leads to resistance 

to differentiation associated apoptosis and required Rb.  Rb-/- myogenic cells are 

more susceptible to apoptosis even with normal increased p21 expression and 

reduced CDK expression (Wang and Walsh 1996, and Wang et al. 1997). 

Reduced levels of Rb result in massive apoptosis (Zacksenhaus et al. 1996). We 

have an asynchronous population of myoblasts which are neither Rb nor p21 

deficient.  Based on this information, we believe the difference in cells which 

undergo apoptosis rather than differentiation is their position near the G1/S 

checkpoint where p21 no longer blocks Rb activation by cyclin dependent 

kinases. Inhibition of Rb activity leads to an increase in E2F. E2F leads to the 

increase of the apoptosis stimulating protein of p53-2 (ASSP). Increased ASSP 

then stimulates p53 which will, in turn, up-regulate pro-apoptotic genes (Chen et 

al. 2005).  During neurogenesis, neuronal apoptosis occurs at the G1/S 

restriction point. E2F is repressed by Rb, which is required for survival of neurons 

(Liu and Greene 2001).  We believe the mechanism might be similar which 

allows MyoD to either induce PUMA and apoptosis or myogenin and 

differentiation. 
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Initial studies of apoptosis involved C. elegans as the model system 

(Review, Horvitz 1999). During the development of C. elegans, 1090 cells are 

formed but 131 of these cells die via apoptosis. The study of the molecular 

mechanisms involved in the death of these cells identified a set of four genes 

which co-ordinate the apoptotic process. Egl-1 (egg-laying defective), ced-9 (cell 

death defective), ced-4 and ced-3 where found, when mutational analyses were 

conducted, to interfere with cell death. Egl-1 is a pro-apoptotic molecule and acts 

to inhibit ced-9, an anti-apoptotic molecule. Ced-4, an adapter molecule, 

activates ced-3, a protease. Ced-4 can be inhibited by ced-9, thereby blocking 

the activation of ced-3. These factors have been found to have homologues in 

vertebrate systems. Ced-3 is akin to caspase 3, ced-4 is most similar to the 

adapter molecule Apaf-1, which makes up part of the apoptosome, ced-9 is 

homologous to the anti-apoptotic Bcl-2 protein and Egl-1 shares similarity to pro-

apoptotic BH-3 only Bcl-2 family members. (Figure 33). 
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Figure 33. Apoptotic factors discovered in C. elegans and mammalian 
homologs. Factors involved in apoptosis during development were first 

discovered in C. elegans. Later, homologs of these factors were discovered in 

mammalian systems. Egl-1, a BH3 only protein, was found to inhibit Ced-9, 

whereas Ced-9 inhibited Ced-4. By Egl-1 blocking the activity of Ced-9, Ced-4 

was activated, leading to the activation of Ced-3. In mammalian cells, Egl-1 is 

most like PUMA, also a BH3 only protein. The mammalian homolog of Ced-9 is 

the antiapoptotic Bcl-2. Ced-4 most closely relates to the mammalian adapter 

molecule APAF-1, which makes up part of the apoptosome, and Ced-3 homolog 

in the mammalian system is Caspase 9, an initiator caspase. 
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MyoD is a  basic helix-loop-helix (bHLH) transcription factor and, to our 

knowledge, the only other bHLH transcription factors that are known to play a 

role in cell specification, differentiation and apoptosis are the Daughterless-like  

(HLH-2) and Achaete-scute-like bHLH (HLH-3) transcription factors expressed in 

C. elegans, and is responsible for neuronal development. HLH-2 and HLH-3 has 

been shown to form heterodimers and bind to E box consensus sequences (5’-

CANNTG-3’) much like MyoD:E protein heterodimers in mammalian systems.  

HLH-2:HLH-3 heterodimers are responsible for the transcription of Egl-1 by 

binding to E-boxes found in a cis- regulatory region of the Egl-1 promoter.  Egl-1 

is a pro-apoptotic BH3 only Bcl-2 protein as is PUMA. Egl-1 expression is 

regulated by HLH-2:HLH3 heterodimer, which resemble MyoD:E protein 

heterodimers, both of which bind E-boxes in promoter regions. Based on this 

information and our data presented herein, we believe MyoD is an excellent 

candidate transcription factor in skeletal myoblasts responsible for the expression 

of PUMA (Figure 33).  

 

The idea that a single transcription factor can regulate genes responsible 

for mutually exclusive physiological endpoints is not without precedent in 

mammalian systems. The Myc transcription factor has the dual capacity to 

induce either proliferation or apoptosis. Regulation of proliferation by Myc is 

through transcriptional targets such as cdc25 and CDK4. Myc also functions in 

apoptosis by indirectly inducing the release of cytochrome c from the 

mitochondria and may involve the pro-apoptotic Bcl-2 family member Bax. 
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Additionally, Myc has been shown to activate p19 ARF, which in turn induces p53 

dependent gene expression (Pelengaris et al. 2002).  

 

The transcription factor p53 also performs several functions. p53 plays an 

important role in growth arrest by the transcription of p21 CDKI. Expression of 

p21 CDKI blocks progression through the cell cycle at the G1/S phase 

checkpoint.  p53 carries out pro-apoptotic functions by inducing the expression of 

PUMA, as well as other pro-apoptotic Bcl-2 family members, which leads to the 

activation of the intrinsic apoptotic pathway. The ability of MyoD to induce growth 

arrest and differentiation or apoptosis is analogous to the ability of p53 to induce 

growth arrest or apoptosis in response to DNA damage in other cell types. 

Interestingly, p53 has been shown to be critical in myoblast differentiation.  p53 

has been shown to induce differentiation of mouse embryonic stem cells (ESCs) 

through the suppression of the protein Nanog, which is required to block 

differentiation of ESCs (Lin et al. 2005). Conversely, p53 has been shown to 

block differentiation of MEF to adipocytes. However, this too, is likely achieved by 

transcriptional inhibition of PPAR! and/or CEBP! (Molchadsky 2008). Utilizing 

C2C12 myoblasts, a dominant negative form of p53 was expressed which binds 

to endogenous p53, resulting in transcription inhibition. These myoblasts failed to 

upregulate Rb under differentiation conditions (Porrello et al. 2000). Rb has dual 

functions contributing to cell cycle arrest and expression of late myogenic factors. 

In myoblasts with defective p53, cell cycle gene expression was not altered and 

myogenin was still expressed, however, MHC failed to be expressed (Huh et al. 
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2004). Even more fascinating is that p53 in skeletal myoblasts does not affect 

differentiation associated apoptosis. Utilizing a p53 reporter construct upstream 

of GFP gene, C2C12 myoblasts were transfected followed by induction of DNA 

damage by adriamycin treatment while culturing in differentiation media. The 

authors found no fluorescence in apoptotic population at anytime within 48 hours 

however fluorescence was visualized in all differentiated cells after 24 hours after 

culture in DM (Cerone et al. 2000). This data shows p53 is not required for 

apoptosis in skeletal myoblasts.  The future challenge previously mentioned, to 

understand the molecular mechanism that allows MyoD to induce PUMA and 

apoptosis, instead of p21 CDKI, cell cycle exit and muscle specific genes as 

described in Figure 32, resembles the long standing challenge to understand the 

same features of p53 in the choice to induce p21CDKI or PUMA (Vousden et al. 

2009). 

 

We, and others, have previously suggested an apoptotic role for MyoD. 

We reported that the level of MyoD expression correlated with the apoptotic 

potential as well as the differentiation potential in response to culture in DM 

(Karasarides et al. 2005). Another group has reported that over-expression of 

ectopic MyoD in cells lacking functional retinoblastoma protein (Rb) induces 

apoptosis (Peschiaroli et al. 2002 and Gottifredi et al. 1999). This MyoD induced 

apoptosis was also shown to be p53 independent (Gottifredi et al. 1999). As 

23A2 myoblasts, C2C12 myoblasts and 10T1/2:ER-MyoD fibroblasts, are not Rb 

deficient (data not shown), the data we have presented in this manuscript 
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indicates that endogenous levels of MyoD can confer the ability to undergo 

apoptosis in cells with functional Rb. In support of our findings, a recent report 

using primary MyoD -/- satellite derived myoblasts, upon transplantation into 

mice after cardiotoxin induced muscle injury, showed enhanced survival upon 

engraftment. It is important to note here that these myoblasts are differentiation 

delayed but not deficient and this can be attributed to a five fold increase in the 

expression of Myf5, which has been shown to compensate for MyoD during 

skeletal myoblast differentiation during embryonic development (Rudnicki et al. 

1992). In agreement with our previous findings that PUMA is required for 

myoblast apoptosis (Shaltouki et al. 2007), ectopic expression of PUMA in these 

MyoD -/- satellite cells restored their apoptotic potential (Asakura et al. 2007).  

 

We also demonstrate here that MyoD plays a role in responding to etoposide-

induced apoptosis. MyoD-/- myoblasts were also resistant to UV-induced 

apoptosis showing a four fold reduction in the number of apoptotic cells after 

treatment in comparison to MyoD +/+ myoblasts (Asakura et al. 2007). Taken 

together, these results suggest that MyoD plays a role in responding to DNA 

damage. Typically, tumor suppressor activity has been attributed to molecules 

like p53, which mediate apoptosis in response to DNA damage (Vousden and 

Prives 2009).  The significance of a pro-apoptotic role for MyoD with respect to 

the development of Rhabdomyosarcoma has not yet been explored. Further, we 

show that MyoD also plays a role in responding to ER-stress induced apoptosis. 

Since ischemia elicits an ER-stress induced up-regulation of PUMA expression 
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(Toth et al. 2006 and Nickson et al. 2007), the importance of a pro-apoptotic role 

for MyoD in ischemia induced muscle damage should also be explored. 

 

Finally, we show that the role of MyoD in responding to either DNA 

damage (as induced by etoposide treatment) or ER-stress (as induced by 

thapsigargin), similar to MyoD’s role in responding to culture in DM (serum 

withdrawal), involves PUMA (Figure 31). In the absence of an apoptotic stimulus, 

such as culture in DM or treatment with etoposide or thapsigargin in GM, reduced 

levels of MyoD has no detectable effect on basal PUMA expression (data not 

shown). What remains to be explored is whether the mechanism of MyoD’s 

induction of PUMA in response to DM is similar to the mechanisms initiated by 

culture with agents that cause DNA damage or ER-stress.   

 

What we mean by this is MyoD may have different transcriptional partners 

at different promoter locations. MyoD binds E proteins at E boxes of myogenic 

genes, however, the binding partner or other transcriptional enhancers may be 

involved in the expression of non-myogenic genes. As an example, under 

hypoxic conditions, MyoD drives the transcription of UCP3 in differentiated 

C2C12 myoblasts and UCP3 expression is enhanced by the transcription factor 

ATF-1 (Lu et al. 2008). The expression of UCP3 by MyoD is achieved by binding 

to a non-canonical E box in the UCP promoter. Additionally, under normal 

metabolic situations, UCP3 transcription is achieved by MyoD and PPAR!  rather 

than ATF-1 (Solanes et al. 2003).  
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The report demonstrating the increased survival of MyoD-/- myoblasts 

correctly suggests that targeting MyoD could be beneficial to myoblast transfer 

strategies to aid in the expansion of muscle stem cells (Asakura et al. 2007). 

Again, we must reiterate the fact that MyoD-/- satellite cell-derived myoblasts 

display delayed differentiation (Sabourin et al. 1999) and are also deficient in 

muscle regeneration (Megeney et al. 1996). Our findings show that PUMA plays 

a critical role in the apoptotic process, but plays no role in the differentiation 

process. This suggests that PUMA may also be a good candidate for therapeutic 

manipulation to enhance the regenerative potential of adult muscle stem cells 

and to increase the efficacy of myoblast transfer therapies (Shaltouki et al. 2007).  

 

 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
 



 

 86 

4.2 Future Directions 
 
 

Now we have provided data to show that MyoD is sufficient and necessary 

for the induction of apoptosis in response culture in DM (serum withdrawal), 

etoposide treatment (DNA damage) or thapsigargin treatment (ER-stress) in 

skeletal myoblasts. Our next step is to identify the molecular mechanisms by 

which induction of PUMA expression occurs. To this end, we have proposed a 

set of experiments to test whether MyoD directly controls PUMA expression. 

Additionally, since MyoD is necessary for apoptosis in skeletal myoblasts, we 

must look at other molecules involved in the apoptotic process and determine 

what effects can be attributed to MyoD. 

 

Our first hypothesis is that MyoD directly regulates PUMA expression. In 

support of this hypothesis, we have performed in silico analysis of a 5kb region of 

the murine PUMA promoter utilizing the online promoter analysis program 

MatInspector. We have found at least 5 potential canonical E box MyoD:E12/47 

heterodimer binding sites within this region. This program selects only canonical 

binding sites for MyoD. As MyoD can bind non-canonical E boxes within 

promoters, it is very possible there are more potential binding sites within this 

region. In order to test our hypothesis, we propose the following experiments. We 

will begin by creating a pGLC3 basic luciferase reporter construct containing a 

portion of the PUMA promoter cloned upstream of the luciferase gene. To create 

this construct, we will PCR amplify approximately a 2kb 5’ region of the PUMA 

gene and clone into the pGLC basic luciferase reporter construct. This or control 
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vector will be transfected into 23A2 and C2C12 myoblasts and next day, 

luciferase activity will be measured following culture in GM as compared to DM. 

We will also use this same method utilizing the ER-MyoD 10T1/2 fibroblasts +/- 

estradiol treatment cultured in GM or DM. Once we determine MyoD 

responsiveness, we will then generate a series of truncations to the 5’ promoter 

region to identify the minimal MyoD responsive cis regulatory region. We will then 

transfect the vector containing the minimal region into 23A2 and C2C12 

myoblasts silenced for MyoD, culture in GM or DM and assess for luciferase 

activity. The luciferase activity will be normalized to Renilla luciferase for 

transfection efficiency. Renilla luciferase activity is not affected by culture in GM 

versus DM. 

 

In order to determine if this interaction is through direct binding of the 

PUMA promoter, we will next perform electrophoretic mobility shift assay (EMSA) 

analysis using the minimal MyoD responsive cis-regulatory region previously 

determined. We will prepare nuclear extracts of 23A2 and C2C2 myoblasts 

cultured in GM or DM and from ER-MyoD 10T1/2 fibroblasts cultured in GM or 

DM in the absence or presence of estradiol. Extracts will be incubated with a 

radiolabelled minimal cis-regulatory region as described previously then 

subjected to EMSA. To ensure specificity, EMSA will also be performed using a 

mutant version of this regulatory region and competition experiments will be 

carried out using unlabelled sequences. The identity of the protein in the shifted 

complex will be examined using an anti-MyoD antibody. To serve as a negative 



 

 88 

control, supershift analysis will be performed using anti-IgG. AS a positive 

control, EMSA and supershift assays will be performed using the known MyoD 

cis regulatory sequence from the myogenin gene. We will duplicate these 

experiments utilizing the 23A2 and C2C12 myoblasts silenced for MyoD 

expression. 

 

In order to test if the previous association of MyoD and the PUMA 

promoter occur specifically in vivo, we will perform chromatin 

immunoprecipitation (CHiP) analysis using chromatin isolated from 23A2 and 

C2C12 myoblasts cultured in GM or DM and ER-MyoD10T1/2 fibroblasts 

cultured in GM or DM in the absence or presence of estradiol. Chromatin will be 

cross-linked using 1% formaldehyde then digested with MNase to achieve a 

length between 200-100bp fragments. Immunoprecipitation will be performed 

using EZ CHiP chromatin Immunoprecipitation kit per manufacturers’ 

instructions. Chromatin will be pre-cleared using A/G sepharose after blocking 

using salmon sperm DNA and BSA. A portion will be set aside as an input 

control, while the remainder of the sample will be immunoprecipitated using anti-

MyoD antibody. Samples will be treated with proteinase K, cross-linking reversal 

then quantitative RT-PCR will be performed to detect the putative MyoD cis-

regulatory sequence identified previously. Negative control will be 

immunoprecipitation using appropriate IgG and positive control will include PCR 

for the myogenin gene. 
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Another part of this project is to determine what role serine proteases play 

in skeletal myoblast apoptosis. In rat fibroblasts, DNA damage and ER stress 

induced apoptosis resulted in activation of serine proteases. Preliminary data 

collected by our lab has shown that serine proteases are activated within three 

hours of culture in DM in 23A2 skeletal myoblasts. We will continue to investigate 

serine protease activation in response to various apoptotic inducing factors. 

Using FLISP (Fluorescently labeled inhibitor of serine protease) to selectively 

and covalently label in situ active serine proteases, we have found many serine 

proteases are activated upon culture in DM.  When myoblasts cultured in DM 

were treated with pharmacological inhibitors of serine proteases, we found 

cytochrome C release and DNA fragmentation was abrogated.  This was also 

observed in 10T1/2 fibroblasts expressing ectopic MyoD. To this end we 

hypothesize MyoD is both sufficient and necessary to induce mitochondrial 

disruption and apoptosis through the increased activation of serine proteases. To 

investigate this hypothesis, we will assess the activation of serine proteases in 

myoblasts cultured in GM or DM and ER-MyoD:10T1/2 fibroblasts cultured in GM 

or DM in the absence or presence of estradiol. We will then assess activation of 

serine proteases in myoblasts silenced for MyoD. We will then immunoprecipitate 

the activated serine proteases labeled with FLISP using an anti-FLISP antibody. 

The immunoprecipitated activated serine proteases will be subjected to 

separation by SDS-PAGE, followed by visualization of bands, which will be then 

sent for sequence analysis. If samples subjected to immunoprecipitation cannot 

be analyzed, we will separate samples by 2D gel electrophoresis and visualize 
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spots using GE Healthcare Life Sciences Typhoon 9410 Imager which will detect 

the FLISP labeled activated serine proteases. Spots can then be sent for 

sequence analysis. 

 

4.3 Conclusions 

 

Differentiation and apoptosis are coordinately regulated in many cell 

types, and to date, this coordinate regulation is not well understood. We have 

identified in this body of work that the muscle regulatory transcription factor 

MyoD is a molecule common to both the induction of differentiation as well as 

apoptosis. Further, we have determined that MyoD is both necessary and 

sufficient to contribute to the increased expression of the pro-apoptotic Bcl-2 

family member PUMA, a molecule critical to only the apoptotic process. Finally, 

we have determined that MyoD and the corresponding induction of PUMA 

contribute to the apoptotic process in response to treatments with etoposide or 

thapsigargin.  Thus, our data suggests that MyoD is critical to the coordination of 

both differentiation and apoptosis. Additionally, and most exciting is that MyoD 

also serves as a modulator of apoptosis in response to more traditional and 

widely applicable apoptotic agents.  

 

While this body of work has offered novel and exciting new roles for MyoD 

in skeletal myoblasts, it is in no way the end to the important question, what is 

the mechanism responsible for the decision to undergo either differentiation or 
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apoptosis.  We look forward to the future in continuing these studies as outlined 

in future directions, and delving in further to elucidate the mechanisms MyoD is 

responsible in contributing to apoptosis. 
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