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On internal cone cracks induced by conical indentation 
in brittle materials 
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I. Introduction 

Indentation techniques urc commonly used to characterize the mechanical properties of materials. Compar­
ing with traditional testing techniques, instrumented indentation is an effect ive and simple method which 
requires minimum sample prepara tion. Sharp indentation can be em ployed to reveal the elastic- plastic prop­
erties [1,2] and residual stresses [3- 5] of a material, and may also be lIsed to determine Ihe rracture character­
istics of brittle materials - the focus of this paper. 

Several types of c racks may appear in brittle materials during indenta tion , depending on the indenter shape 
(con ical , spherica l, flat punch, Berkovich, Vickers. etc.) and on the properties of the material. The finite plast ic 
deformation occurring beneath the indenter can induce large st resses during load ing, ca using rad ia l (median) 
cracks du ring Berkovich/Vickers indentation [6,7]. The elast ic recovery during unloading a lso leads to st ress 
redistribu tion, wh ich is responsible fo r lateral cracki ng [8- 10]. For different material systems, variants of lat· 
era l and radial crack systems are observed [6,7]. Early studies in the 70's and 80's [11- 18] used dimensional 
analysis and elastic-contact (or void-expansion) based models to est imate the energy release rate . 
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Fig. 1. An example of a cone crack originating in the vicinity of the indenter tip shown in a SEM image of a thermal barrier coating after 
Rockwell indentation. Two major layers of the coating are visible, the ceramic top coat consisting of Yttria Stabilized Zirconia (YSZ) and 
the metallic bond coat (NiCoCrAlY). (As coated, indentation force 200 N.) 

Various forms of cone cracks are observed in brittle materials when an axisymmetric indenter is used (e.g. 
conical, spherical, or cylindrical) – this is also referred to as ‘‘the Hertzian cone crack.’’ Lawn and co-workers 
have investigated cone cracks developing from the free surface in spherical indentation [7,12,13,19], and the 
inner cone cracks developing in brittle solids submerged in water [20]. Besides bulk materials, cone cracks 
developed beneath a spherical indenter in multi-layered structures are characterized by Evans and co-workers 
[21,22]. A method to determine the fracture toughness of a material based the length of the induced cone 
cracks from a spherical indentation tests was suggested in [23,24]. In addition, the formation of Hertzian cone 
cracks was simulated in [25,26]. Most work pertaining to cracks induced by Vickers indentation investigates 
surface cracks (e.g., [27,28]), however, the developments of cracks under a Vickers indentation is explored 
experimentally for glass in [29,30], where cone cracks are seen to develop at the tip of the indenter in Ref. [29]. 

Compared to the relatively well-understood response due to spherical and cylindrical indentation, cone 
cracks developed during conical indentation are not completely understood. Preliminary experimental results 
[31] and from our own recent work, Fig. 1, have indicated that cone-cracks indeed can develop during conical 
indentation. This class of cracks has not (to the knowledge of the authors) been systematically investigated. 
Thus, the theoretical aspect of the formation of internal cone cracks induced by conical indentation is there­
fore the focus of this paper. In this initial study, we will characterize the requirements for internal cone cracks 
to develop in a homogeneous material. We will show that cone cracks indeed can develop in brittle materials. 

2. Problem formulation 

The axisymmetric problem of indentation induced internal cone crack is sketched in Fig. 2. The half apex 
angle of the rigid conical indenter is a = 70.3°. The maximum indentation depth is d. The cone crack devel­
oping at max indentation load is assumed to be of length a, and the half-apex angle of the cone crack is 
p/2 - h. The material under consideration is assumed semi-infinite and linear-elastic, perfectly-plastic, which 
is a good approximation for brittle materials where indentation cracking are observed – for these materials, 
their yield stress is usually high and thus the strain hardening is negligible [8–10]. 

2.1. Superposition principle 

The commonly used superposition technique will be employed to determine the stress intensity of the sys­
tem. The superposition techniques can be used when the crack tip plasticity can be ignored, that is, for brittle 
material. For clarity of the presentation, we will review the general concept of this technique (even though it 
can be found in most text books treating fracture mechanics). 

Consider an elastic, crack free body, Fig. 3a, subjected to the prescribed tractions Tu over the boundary ST 

and the prescribed displacements ui over the boundary Su. The internal stress ri is generated from the bound­
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Fig. 2. Schematic of an indented surface and the associate crack in a brittle material. 
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Fig. 3. Superposition technique – the general approach. 

ary conditions. This case will be referred to as case A. Consider next an equivalent elastic body (with the same 
boundary conditions) containing a crack, Fig. 3b, referred to as case B. A stress field, -r(x), can be applied 
over the crack faces, closing the crack and effectively eliminate the presence of the crack. Thus, case B is iden­
tical to case A. Case B is a superposition of two cases: C and D, illustrated in Fig. 3c and d, respectively. Case 
C has an unloaded crack and the boundary conditions as described in B; whereas case D is only subjected to a 
surface traction on the crack. Within the framework of linear fracture mechanics, the stress intensity factor K 
is additive and it must hold that 

KC þ KD ¼ KB ¼ KA ¼ 0 ð1Þ 

thus 

KC ¼ -KD ð2Þ 

where the index denotes the cases A–D, respectively. We next note that the stress -r(x) required to close the 
crack in B, is equivalent to the negative stress that the original structure A carried in the corresponding area of 
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Fig. 4. Superposition technique as applied to the current problem. 

the crack in B. Finally, we introduce case E (Fig. 3e), where the crack opening stress r(x) is imposed on the 
crack. It follows that 

KC ¼ KE ð3Þ 
The method of superposition is commonly used for solving case C by first calculating the internal stress for A 
(no crack) followed by determining KE (crack with tractions only). 

We will use the superposition technique described above for the current problem of interest (Fig. 2). To this 
end, we will first solve the problem without a crack, as shown in Fig. 4a. The problem we are considering, i.e. 
indentation induced cone cracking, corresponds to the case in Fig. 4c where the crack develops as the maxi­
mum indentation load is applied.1 For a length corresponding to the assumed crack length a, stresses along the 
line L–L in Fig. 4a are extracted and applied on a system corresponding to case E described above, as illus­
trated by Fig. 4e. Using Eq. (3) above, we can then determine the stress intensity of the crack as described in 
Fig. 2 (or Fig. 4c). 

2.2. Finite element model 

The numerical simulations are conducted with the commercially available finite element program ABA­
QUS, using PC workstations. The ‘‘rigid surface’’ option is used to simulate the (relatively) rigid indenter 
in a contact analysis. Two axisymmetric meshes are used to simulate cases A and E in Figs. 3 and 4. A typical 
mesh comprises more that 5000 eight-node axisymmetric elements with reduced integration. For the indenta­
tion problem, a fine grid is used adjacent to the indenter, to capture the large stress and strain gradients. In the pffiffi 
subsequent cracking problem, the mesh is also refined near the vicinity of crack tip to reproduce the 1= r sin­
gularity. Furthermore, ‘‘non-linear geometry’’ is used to allow for finite strains and deformations when sim­
ulating case A in Fig. 4 (corresponding to indentation loading until crack initiation), whereas small strains are 
assumed when simulating case E in Fig. 4 where the conditions for the crack is investigated. 

The stress field is acquired from the elastic–plastic indentation model at maximum penetration (model A in 
Fig. 4), and superimposed on the elastic crack model (model E in Fig. 4). In model A, the material is assumed 
to be linear-elastic, perfectly-plastic, with the von Mises criteria governing the yielding. The elastic modulus is 
denoted by E and the yield strength is ry. During indentation, friction according to Coulomb’s law is used 
with the coefficient of friction set to be 0.1 (which is essentially frictionless). From this model, the normal 
and shear stresses that act over the putative crack are extracted using interpolation of the stress field, which 
are then imposed on the nodes and elements along the crack surface in model E. The J-integral around the 
crack tip is computed, from which the fracture toughness is obtained from model E. The path-independency 
of the J-integral has been verified and the results are taken from the averaged values of several contours 
around of the crack tip. Moreover, from the ratio between shear and normal stresses ahead of the crack 
tip, the mode mixity can be determined, discussed below. 

1 We assume that the indentation is interrupted once the crack appears. The incipience of the crack in a physical test can be determined 
by observing the force–displacement response, or from acoustic emission. Thus, we will in this study not consider the state and evolution of 
the crack if the indentation load is increased after its formation. 



2.3. Strategies for evaluating the results 

For simplicity, we will assume that the crack will propagate with a constant angle relative the surface 
(Fig. 2), which is consistent with the cone cracks observed in preliminary experimental results [31]. With 
the assumption that the material is brittle, linear-elastic material properties in the vicinity of the crack tip 
can be assumed. Thus, the energy release rate, G, and the J-integral are identical quantities. The stress intensity 
factor can be determined by rffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffi 

E
K ¼ G ð4Þ 

1- m2 

for plane strain conditions, where m is Poisson’s ratio and fixed at 0.3 in this study. The stress intensity factor 
obtained in Eq. (4) is the total stress intensity. However, we are more interested in the mode I stress intensity 
factor, since a crack usually propagates in mode I in a homogeneous brittle material [32]. Thus, the mode mix­
ity must be determined, which is quantitatively represented by the mode mixity angle, w, 

rx0y0 
tan w ¼ ð5Þ 

ry0y0 

where rx0y0 ; ry0y0 are the shear and the crack opening stress, respectively, measured just ahead of the crack tip in 
the local coordinate system described in Fig. 2. The mode I stress intensity factor is determined by 

KI ¼ K cos w ð6Þ 
We recall that w = 0° correspond to pure mode I (tensile) and w = 90° corresponds to pure mode II (shear). 

To cover a range of properties it is convenient to express the results in dimensionless form. Since the only 
length scale involved in the problem is the indentation depth, the non-dimensional crack length is a/d. The 
angle characterizing the crack path is h, as shown in Fig. 2. The non-dimensional material property is 
E/ry. For most glasses and ceramic materials it holds that 10 < E/ry < 200. Furthermore, dimensional analysis 
(verified with numerical simulations not presented for brevity), show that the relationships for energy release 
rate and fracture toughness can be expressed as   

G a E ¼ g ; h; ð7Þ
aE=ð1- m2Þ d ry  

KI a E pffiffiffi ¼ h ; h; ð8Þ 
aE=ð1- m2Þ d ry

By varying a/d, h, and E/ry over a wide range, the functional forms of g and h can be determined from finite 
element simulations. For a given material, the optimum crack path (h) (i.e., the mostly likely angle for crack 
propagation) is determined by the mode I stress intensity whereas the length of cone crack (once the initiated 
crack is arrested) depends on the fracture toughness of the material. 

In what follows, we will first determine the likely angle of crack propagation, based on extensive finite ele­
ment simulations over a range of properties. To this end, a maximum KI criterion, as described below, will be 
used. With this established, we will present a method for determining the fracture toughness of a material 
when cone-cracks are observed due to a conical indentation. 

3. FE results 

We assume that the cone cracks are initiated beneath the indenter tip, as sketched in Fig. 2. Furthermore, 
we assume that the cone cracks develop at the maximum load, i.e., during the holding of maximum penetra­
tion depth of the conical indenter [6]. Lateral cracks may develop during unloading [8–10], but will not be con­
sidered here. In all simulations d = 0.4 mm and E = 100 MPa and we vary ry to achieve a range of E/ry, that 
is, a range of material properties. Once initiated, the crack is assumed to propagate quasi-statically along a 
straight path, until its energy release rate falls below the fracture toughness and arrest. 

First, we will determine the preferred direction of crack propagation. By introducing a local coordinate sys­
tem (X1–Y1) rotated by an angle h relative the material surface as indicated in Fig. 2, the stress-field associated 



with cracks adjacent to the indentation tip are revealed, for a set of assumed directions of crack-propagation. 
In Fig. 5a–c, the stress fields for E/ry = 100 at the maximum indentation depth are examined from different 
local coordinate systems (X1–Y1) that have been rotated by 45°, 60°, and 70°, respectively. Thus, the contour 
plots in Fig. 5 correspond to case ‘‘A’’ (Fig. 3) in our superposition scheme, where the X1 axis in each selected 
coordinate system corresponds to a hypothetical direction of crack propagation. Both the ‘‘crack-opening 
stress,’’ ry0y0 , and the shear stress, rx0y0 , are presented for each local coordinate system. As noted previously, 
in a homogeneous brittle material the crack will likely propagate in mode I corresponding to the case where 
the shear stress is vanishingly small in the local coordinate system. Thus, it follows that the crack propagates 
along a path where KI has the maximum value and where rx0y0 is zero. Since the crack path is assumed to be 
straight and only a finite number of possible crack propagation angles are investigated in this study, KII may 
not be exactly zero; however the preferred direction where rx0y0 is approaching zero will be identified from the 
numerical analysis. 

We now can determine the preferred direction of crack propagation by exploring in which direction KI 

approaches its maximum. In order to do so, we first determine the J-integral from finite element analyses 
of the crack model in Fig. 4e. The normalized energy release rate for various assumed material combinations 
and normalized crack lengths, assuming material properties E/ry = 20, 100, and 200 with local coordinate sys­
tems rotated by 45°, 60°, 65°, and 70°, are shown in Fig. 6. For E/ry = 20 (Fig. 6a), a putative crack aligned at 
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propagation. (a) h = 45°, (b) h = 60°, and (c) h = 70°, where h is defined in Fig. 3. The stresses are normalized with ry. E/ry = 100. 
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different scale for each E/ry. 

45° angle gives the maximum normalized energy release rate. As the crack propagates, the energy release rate 
peaks at about a/d = 5 and then dramatically decreases with further increasing of the normalized putative 
crack length. The same tendency is observed for cases where E/ry = 100 (Fig. 6b) and E/ry = 200 (Fig. 6c). 
The maximum value of the normalized energy release rate for E/ry = 20 (Fig. 6a) is more than 20 times larger 
than for E/ry = 200 (Fig. 6c). 

However, the maximum value of the J-integral is not necessarily related to the maximum value of KI, since 
the mode mixity might not vanish for the selected angles. Using Eqs. (4)–(6) the mode mixity and finally KI can 
be determined. For all cases of E/ry, the mode mixity for 65° crack angle are the closest to 0, which correspond 
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Fig. 7. Mode mixity as a function of the normalized crack length for (a) E/ry = 20; (b) E/ry = 100; (c) E/ry = 200. 

to primarily mode I (Fig. 7). The corresponding normalized KI values, according to Eq. (6), are shown in 
Fig. 8, for E/ry = 20, 100, and 200 and crack paths aligned at 45°, 60°, 65°, and  70°, respectively. In 
Fig. 9, it is shown that when the crack angle is 60°, the highest normalized KI values are reached for all cases 
considered. Thus, when considering the mode mixity, the crack growth may be deduced to occur in a 65° 
angle, whereas considering the maximum KI suggests an optimum crack propagation direction at 60°. This 
small inconsistency – maximum KI does not correspond to vanishing shear force – may indicate that the pre­
ferred direction of propagation lies in between the two angles. Based on the maximum KI criterion, the cracks 
are assumed to propagate (approximately) in the 60° direction in the following reverse analysis. 
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Fig. 8. Normalized KI as a function of the normalized crack length for (a) E/ry = 20; (b) E/ry = 100; (c) E/ry = 200. 

We note that a ‘‘local maximum’’ of the stress intensity factor is found around 30° (Fig. 9), in particular for 
materials with low values of E/ry. Thus, under particular conditions, a crack may propagate in a 30° direction. 
This could for example be triggered by pre-existing flaws favoring the 30° direction. 

4. Reverse analysis to determine the fracture toughness 

Assuming that an internal cone crack is induced due to a conical indentation experiment, we will now dis­
cuss a method to determine the fracture toughness of the tested material. Based on the results in the previous 
chapter, we will assume that the crack will propagate in a 60° angle relative the material surface. Thus, Eq. (8) 
can be simplified to 
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Fig. 9. For each material combination and assumed crack angle, the maximum normalized KI as a function of assumed crack angle. 
A global maximum of KI is found around h = 60°. 

Table 1 
Coefficients of Eq. (10) for four material combinations 

E/ry y0 A1 t1 A2 t2 

20 0 0.01149 3.93233 9.96482E-4 23.37740 
50 0 0.00559 3.59221 7.97102E-4 19.46045 
100 0 0.00620 2.82314 5.28224E-4 19.03356 
200 0 0.00303 3.49492 2.13278E-4 24.28268 

KI ffiffiffi 
a
p

E=ð1- m2Þ
   
h¼60 

 
¼ h 

a 
d 
; 

E 
ry

    
h¼60 

ð9Þ 

Using the decay part of the normalized KI from the FE-simulations (Fig. 8), the results from the 60° angle is 
fitted using a second order exponential decay functions, which leads to 

a=d a=dKI - -t1 t2pffiffiffi ¼ y0 þ A1  e þ A2  e ð10Þ 
aE=ð1- m2Þ 

The coefficients (y0, A1, t1, A2, t2) for various E/ry are listed in Table 1 and the fitting is shown in Fig. 10. For a 
given material and assuming that E/ry is known, the fracture toughness, KC 

I , of that material can be calculated 
directly from Eq. (10), under the condition that the arrested crack length for a known indentation depth, d, 
can be measured. This is achieved by letting KI ¼ KC 

I in Eq. (10). Alternatively, during reverse analysis, the 
crack length can be determined by providing the indentation depth, d, and the fracture toughness, KC 

I . 
As mentioned in the introduction, experimental results pertaining to internal cone cracks induced by con­

ical indentation of bulk material are not available in the literature. At a later stage, we are planning to conduct 
these sets of experiments in our laboratory to verify our simulations, but results are not available yet. How­
ever, in order to illustrate and quantify the numerical scheme presented in this paper we determined the pre­
dicted crack length for a set of brittle materials. 

Using published material data for Glassy Carbon [30], Zirconia2, fine grained Al2O3 [24] and Mullite2, 
Table 2 shows the predicted crack lengths for two assumed indentation depths. Even though we cannot 

2 Zirconia and Mullite data are estimated based a range of sources and in-kind experience. 
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Table 2 
Virtual experiments to determine crack lengths, assuming that the material properties are known 

Input Result 

Material E (GPa) ry (MPa) E/ry m KC 
I (MPa m1/2) d (mm) a (mm) 

Glassy carbon [30] 28 136 205 0.3 0.58 0.06 0.209 
0.40 4.174 

Zirconiaa 200 1750 114 0.3 11.0 0.10 0.125 
0.40 2.635 

Fine grained Al2O3 [24] 370 3,000 123 0.22 3.77 0.06 0.737 
0.40 14.259 

Mullitea 150 550 272 0.25 2.0 0.06 0.404 
0.40 5.993 

a Zirconia and Mullite data estimated based a range of sources. Indentation depth of 0.10 mm was simulated for Zirconia instead of 
0.06 mm, since the smaller indentation depth did not predict crack growth. 

directly compare these results to experimental data, the magnitude of the cracks are in agreement with what 
have been seen for cracks induced by spherical indentation for similar materials, e.g. [23,24]. 

5. Concluding remarks 

The development of cone cracks in brittle materials due to conical indentation is investigated. The finite 
element method is utilized along with a superposition technique valid for linear-elastic (brittle) materials. 
Based on the J-integral extracted from the finite element simulations, and (stress based) mode mixity in front 
of the crack tip, the stress intensity factor is established for each case considered. The starting location of the 
crack is assumed to be near or close to the tip of the indenter. By varying the material properties along with 
the crack length and crack direction, it is found that these types of cracks are prone to propagate in a 60° angle 
relative the material surface. However, a ‘‘local maximum’’ of the stress intensity factor is found around 30°, 
in particular for materials with low E/ry. Thus, under particular conditions, a crack may propagate in a 30° 
direction. This could for example be triggered by pre-existing flaws favoring the 30° direction. 

An empirical functional form of the stress intensity factor is determined based on a second order exponen­
tial decay function. From this function a reverse algorithm is presented, which may be used to measure the 
fracture toughness of a material. Experimental data to verify the proposed method is unfortunately currently 
unavailable in the literature. However, we hope to conduct experimental investigations to confirm the tech­
nique at a later stage.
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