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Determining plastic properties of a material with residual 
stress by using conical indentation 
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1. Introduction 

Instrumented indentation has emerged as a popular meth od \0 determine the mechanical properties of 
materials where traditional methods (such as tensile testing) arc not convenient to usc. For example, coatings 
and multilayered structures may consist of materials that are not available in bulk, or- when ava ilable- the 
bulk properties may be quite differen t from the properties of the small sizes associated with laye red or coated 
structures. Moreover. coat ings used for therma l protection in high temperature applications, such as gas tur­
bines for propulsion and energy production , evolve as they are exposed to elevated temperatures and can in 
addition ex hibit local compressive mismatch stresses as high as 4-6 G Pa at room temperatures, e.g. (Karl sson 
and Evans, 2001; Karlsson et al.. 2002). In this class of applications, the material properties are many times 
un known , since the materials onl y ex ist as a coating and- in the case ofevo lving properties- may o nly exist in 
a particular fo rm for a relatively sho rt time, e.g. (Chen et aI. , 2003; Pan et aI. , 2003). Thus, instrumented 
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indentation may be a preferred method to evaluate the properties of such materials, since this technique is rel­
atively simple to perform. Unfortunately, in-spite of its popularity, there are still some challenges involved 
with evaluating instrumented indentation tests. For example, the most popular method used (Oliver and 
Pharr, 1992), does not take into account residual stress and the existence of work hardening makes it more 
difficult to interpret the indentation measurements. 

Thus, our aim is to develop a technique that can be used for evaluating indentation tests of a material with 
significant strain hardening that is also subjected to equi-biaxial residual stress (which is one of the most com­
mon forms of residual stress). Before proceeding, we will review the ‘‘traditional method’’ for evaluating 
indentation tests and discuss related work striving to extend the commonly used method. The discussion will 
be limited to the more widely used axisymmetric, conical indenters (Johnson, 1985) even though the technique 
can be easily be extended to spherical indenters and other forms of residual stress. We note that indentation 
made by a Berkovich or Vickers indenter, results in the same force-displacement curve as a conical indenter 
with half apex angle, a = 70.3° (Fig. 1) (Cheng and Cheng, 2004; Lichinchi et al., 1998)—the same principle 
applies to other pairs of sharp pyramid and conical indenters, and also for materials with work hardening and/ 
or residual stress: as long as the depth-cross section area ratio keeps the same, the indentation force-displace­
ment curve measured with a sharp pyramid tip is almost the same as that with a conical indenter. Subsequent­
ly, the conical indenter is used in this study to help reducing computational effort. 

1.1. A brief review of the indentation technique 

In evaluating indentation testing, the indenter is usually assumed as a rigid cone with half apex angle, a, see 
Fig. 1. In the absence of residual stress and of strain hardening, the classic indentation theory relates the hard­
ness, H, and contact stiffness, S, with the yield strength, ry, and Young’s modulus, E, for a homogeneous, 
isotropic bulk material as: 

H ¼ P =ðpa2Þ ¼ cry ; ð1aÞ 

and 
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Fig. 1. Schematic illustration of instrumented indentation with a sharp, conical axisymmetric indenter. (a) Indentation of a homogeneous, 
isotropic, semi-infinite material. (b) A typical load displacement curve obtained from an indentation experiment. (c) Biaxial, residual 
stress. 



S ¼ 2caE=ð1- m2Þ: ð1bÞ 
In Eq (1) ry is the yield strength of an elastic-perfectly plastic specimen; for materials with work hardening, it 
should be replaced by a uniaxial flow stress corresponding to an effective strain of about 0.08–0.1 (Tabor, 
1951). S is the slope of the initial portion of the elastic unloading curve (Fig. 1), c is a constraint factor that 
increases nonlinearly with E/ry, c � 1.08 is a correction factor for the conical indenter, and m is Poisson’s ratio 
of the homogeneous, isotropic specimen (Hay et al., 1999; Johnson, 1985). Finally, a is the projected contact 
radius measured at maximum penetration, as indicated in Fig. 1. A common approximation used for deter­
mining a is from the expression for the projected contact area, A, for a geometrically perfect conical indenter 

S 

(Oliver and Pharr, 1992): 

A ¼ pa2 ¼ 24:5d2 
c ; ð2aÞ 

where the contact depth, dc, can be determined by (Oliver and Pharr, 1992) 

dc ¼ dmax - e : 
P max ð2bÞ 

with e = 0.75 for a Berkovich indenter (a = 70.3° (Oliver and Pharr, 1992))1 and dmax being the maximum 
indentation depth (Fig. 1). When the indentation depth is sufficiently large, such that the strain gradient effect 
may be ignored, both hardness and stiffness are independent of the indentation depth2 (Fleck and Hutchinson, 
1997). 

There are several disadvantages with the classical theory discussed above, see for example (Cheng and 
Cheng, 2004). The most critical shortcomings are (i) ignoring the plastic pile-up (or sink-in) at the perimeter 
of the indentation (Chen et al., 2006); (ii) needing the projected contact area, A (the true contact area can devi­
ate significantly from the estimate); (iii) difficulties to account for the strain hardening effect accurately and (iv) 
assuming a structure without residual stresses. A significant amount of work aiming to release some of these 
restrictions can be found in the referred literature, for example (Atkins and Tabor, 1965; Cao and Lu, 2004; 
Carlsson and Larsson, 2001a,b; Chen et al., 2006; Chollacoop et al., 2003; Dao et al., 2001; Eriksson et al., 
2003; Lee and Kwon, 2003, 2004; Ogasawara et al., 2005, 2006a,b; Suresh and Giannakopoulos, 1998; Swa­
dener et al., 2001; Xu et al., 2005; Yan et al., 2007; Zhao et al., 2006a,b). 

A common method for considering the effects of residual stresses is to compare the contact depth, contact 
area and/or force-displacement curves (Carlsson and Larsson, 2001a,b; Lee and Kwon, 2003, 2004; Swadener 
et al., 2001) of material samples with and without residual stress. Recent work have suggested simplified 
approaches, where the knowledge of the stress free indentation response is not needed (Chen et al., 2006), with 
further simplifications that eliminated the need of knowledge about the projected contact area (Yan et al., 
2007; Zhao et al., 2006a,b). The effect of strain hardening has also been noted to have a significant effect 
on indentation testing. An effective method to incorporate strain hardening is to introduce ‘‘representative 
strain.’’ The concept of representative strain was introduced by Atkins and Tabor (Atkins and Tabor, 
1965) and has been used by several authors (Cao and Lu, 2004; Chollacoop et al., 2003; Dao et al., 2001) 
and generalized by Ogasawara et al. (2005, 2006a,b). In the current paper, we will follow the latter approach 
which is summarized later in this chapter. Interestingly (to the knowledge of the authors), there is no signif­
icant work towards combining the effect of strain hardening and residual stress when analyzing of indentation 
testing, even though several authors have noted that this may be a significant factor, e.g. (Eriksson et al., 2003; 
Suresh and Giannakopoulos, 1998; Xu et al., 2005). 

With the goal of the current paper being to develop a technique that can be used for evaluating indentation 
tests of a material with significant strain hardening that is also subjected to equi-biaxial residual stress, we will 
in the following outline some fundamental concepts pertaining to strain hardening and the associated concept 
of ‘‘representative strain,’’ before discussing how this can be combined with residual stress. 

1 Indentation made by a Berkovich or Vickers indenter, results in the same force-displacement curve as a conical indenter with half apex 
angle, a = 70.3° (Cheng and Cheng, 2004; Lichinchi et al., 1998). 

2 For metals, it is observed that the hardness increases with decreasing indentation depth, when the penetration is in the sub-micron 
regime. This is known as strain gradient plasticity. Such effects are ignored here, assuming that the indentation depth is sufficiently deep. 



 

 

 

 

 

 

 

1.2. Strain hardening 

A typical uniaxial stress-strain curve including both elastic and inelastic responses is shown in Fig. 2. This 
class of curves is commonly described by a power law: 

{ 
Ee for e 6 ry =E 

r ¼ : ð3Þ 
Ren for e P ry =E 

In Eq. (3), n is the work-hardening exponent and R = ry (E/ry)n is the rate of work-hardening. Vanishing n 

corresponds to linear-elastic, perfectly-plastic material. For most metals and alloys 0.1 6 n 6 0.5. 
Based on dimensional analysis, the following relationship between the indentation force (during loading), 

displacement, constitutive properties and indenter angle has been suggested for material with strain hardening 
(Cheng and Cheng, 1998, 2004): 

P ¼ PðE=ry ; n; m; aÞ; ð4Þ 
Ed2 

where P is a dimensionless function. However, Poisson’s ratio, m, may be ignored in indentation analysis 
(Cheng and Cheng, 1998, 2004; Mesarovic and Fleck, 1999), thus reducing the dependency of the dimension­
less function P to only two material properties and the indenter shape. P can be determined through extensive 
finite element simulations, see for example (Cheng and Cheng, 2004). Reverse analysis based on such dimen­
sionless function can then be used to extract the unknown mechanical properties. To reduce the apparent 
number of unknowns, a ‘‘mathematical trick’’ is commonly used, involving the introduction of the parameters 
‘‘representative strain’’ and ‘‘representative stress,’’ discussed next. 
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Fig. 2. (a) Typical uniaxial, stress-strain curves following the power-law given in Eq. (3). (b) The equi-biaxial stress strain curve, 
identifying the representative strain, eR, and representative stress, rR. 



1.3. Representative strain and stress 

The concept of representative strain was introduced by (Atkins and Tabor, 1965), was later extended by 
(Dao et al., 2001), and generalized by (Ogasawara et al., 2005). In general, on the uniaxial stress-strain curve, 
a representative strain eR can be identified and a universal description of the representative stress can be writ­
ten as  n rRheRi rRheRi ¼ R m þ 2eR : ð5Þ 

E 

For each m, the value of eR is varied such that Eq. (4) effectively loses its apparent dependency of the work-
hardening exponent. In other words, with the normalization of the representative stress, the relationship 

C P 
 

E 
 

U = 
rRheRi 

= 
d2 rRheRi 

¼ P1 rRheRi
ð6Þ 

becomes essentially independent of n. Here, U = C/rR heRi corresponds to the normalized indentation load, 
C = P/d2 is the loading curvature, and EE ¼ E=ð1- m2Þ is the plane strain modulus. P1 is the fitting of the 
numerical results, often expressed by polynomial functions. The R2 value (R2) can be computed between 
the functional fit P1 and data points. For a given m, the optimum value of eR is identified when R2 is maxi­
mized (closest to 1). 

R2 is plotted as a function of m and 2eR in Fig. 3. [Numerical results based on Ogasawara et al. (2005)]. It 
can be readily seen that the most accurate numerical results (maximum R2) are obtained when m = 2 for a 
Berkovich indenter, where the best independency of n is obtained for Eq. (6). Therefore, it is shown that—ab­
sent residual stress—the optimum value of the representative strain for a Berkovich indenter (a = 70.30°) is  
eR = 0.0115 at m = 2. The optimum value of m (=2) that leads to the best numerical results (thus takes the 
most advantage of the representative strain-based indentation analysis) is unchanged when the indenter angle 
is varied in a moderate range (Ogasawara et al., 2005). 

Ogasawara et al. (2005) justified the representative strain obtained from such optimization procedure as the 
plastic strain of equi-biaxial loading, Fig. 2(b), by assuming small Poisson’s effect during elastic deformation. 
Inspired by the earlier work, here we adopt the same formulation of the representative stress, i.e. 
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Fig. 3. The R-squared value, R2, as a function of m and eR for a = 70.3°. The best numerical results are obtained when m = 2 and 
2eR = 0.023 (on the uniaxial stress-strain curve). 



  

  

rRheRi n 

rRheRi ¼ R 2 þ 2eR : ð7Þ
E 

When residual stress is taken into account, for a given indenter shape (i.e. a is known) and at a give residual 
stress level rres/ry, a representative strain eR needs to be identified such that the following function is essen­
tially independent of n: 

C E ¼ Pa;rres : ð8Þ 
ryrRheRi rRheRi 

The functional form of Eq. (8) can be determined through extensive finite element simulations, where eR must 
be determined for each value of residual stress and indenter shape, and so is the fitting function Pa; .rres 

ry 

The approach outlined above, resulting in Eq. (8), involves significantly more effort than using the classical 
theory summarized in Eq (1)–(2). However, without the help of the representative strain, the material elastic-
plastic properties would have to be solved from series of equations like (4), which involves a complicated 
numerical procedure to solve for multiple unknown material variables from multiple equations. Such 
approach becomes even more complicated and also prone to error when a residual stress is involved (Chen 
et al., 2006; Cheng and Cheng, 2004; Wang et al., 2005; Wang and Rokhlin, 2005; Zhao et al., 2006a,b). When 
using an approach including the representative strain, the apparent number of unknown variables is reduced 
to only one parameter which can be determined fairly easily and accurately from just one equation (Eq. (8)). 
The effectiveness of the representative strain approach on stress-free specimens has been well demonstrated 
(Cao and Lu, 2004; Chollacoop et al., 2003; Dao et al., 2001; Ogasawara et al., 2005, 2006a,b). 

1.4. Approach to evaluate material with strain hardening and residual stress 

The most common and fundamental residual stress component in coatings is the in-plane equi-biaxial resid­
ual stress typically caused by lattice spacing mismatch and thermal expansion mismatch between the coating 
and substrate. In this paper, we focus on determining the plastic property of the specimen when its modulus 
and residual stress are known a priori. In principle, if the thermal expansion mismatch between the coating and 
substrate and the elastic modulus of the coating are known, the equi-biaxial residual stress of the coating can 
be estimated. Therefore, under the premise that there is a known residual stress in the coating, the findings of 
this paper can be used to correctly assess the plastic properties of the coating by incorporating the effects of 
residual stress. We also note that as will become evident from the following presentation, the problem can eas­
ily be recast into solving for any two unknown of the four indentation parameters (Young’s modulus, E, resid­
ual stress, rres, yield strength, ry, and work-hardening coefficient n). Although the paper focuses on the effect 
of equi-biaxial residual stress, the approach is transferable to other forms of residual stresses and will be sub­
jected to study in future work. 

The basic premises in this work is that the definition and use of the representative strain outlined in the 
previous section should still hold when the indented material is subjected to an equi-biaxial residual stress, 
allowing us to investigate the effect of both strain hardening and residual stress in a straightforward and effi­
cient way. This important assumption, has not been verified before (to our knowledge). The particular value of 
representative strain that will normalize Eq. (4) into Eq. (8) has itself no direct physical interpretation and thus 
must be determined for each combination of residual stress. In the following, we will investigate if it is possible 
to use the concept of representative strain when the test sample is subjected to residual stress, and if the mod­
ified Eq. (8) can be used to determine the yield strength and work-hardening coefficient. 

2. Numerical simulations 

2.1. Finite element model 

The functional form of Eq. (8) is achieved through extensive finite element simulations. The simulations 
were performed using the commercial code ABAQUS (Abaqus, 2004) on intel based workstations. The rigid 
indenter was simulated using the ‘‘rigid contact surface’’ option. The simulations assumed large deformations 



and strains (‘‘non-linear geometry’’). The indentation was modeled through an axisymmetric formulation, 
with a mesh containing more than 5000, 8-node elements. The constitutive behavior follows the power-law 
described in Eq. (3) with yielding according to the von Mises hypothesis. Coulomb’s friction law is used 
between the contact surfaces, assuming the coefficient of friction to be 0.1. (The friction of coefficient has only 
a minor influence in indentation (Mesarovic and Fleck, 1999)). To impose an equi-biaxial residual stress, an 
assumed thermal expansion coefficient is used and the stresses are achieved through imposing proper bound­
ary conditions and changing the temperature accordingly. After the residual stress is imposed in the model, the 
numerical indentation is conducted. 

A broad range of possible materials combinations are investigated by varying Young’s modulus, E, residual 
stress, rres, yield strength, ry, and work-hardening coefficient n. Moreover, three angles of the indenter are 
investigated, a = 60°,63.14°, and 70.3°. The first indenter tip is the commercially available Rockwell tip, 
and the third one induces the same indentation force-displacement curve as the widely used Berkovich indent­
er tip (Cheng and Cheng, 2004). The second conical indenter generates force-displacement curves similar to 
that of a pyramid with triangle 110° which is smaller than that of Berkovich (115°) and also commercially 
available; the indenter is also used in (Ogasawara et al., 2005). The justification of using three indenter shapes 
will be apparent in the following. In order to cover a broad range of engineering materials, we investigate a 
broad spectrum of possible material combinations. To this end we combine E/ry = {10, 20, 50, 100, 200, 500, 
1000} with n = {0, 0.1, 0.2, 0.3, 0.4 , 0.5} and rres/ry = {±1, ±0.8, ±0.6, ±0.4, ±0.2, 0}. In all, almost 1400 
simulations were needed. 

2.2. Numerical results 

2.2.1. The effect of residual stress and strain hardening on an indentation test 

We have in a previous paper shown that the stress and strain field caused by the indentation strongly inter­
acts with the pre-existing stress field (Chen et al., 2006). This will in turn affect the apparent hardness and stiff-
ness, resulting in that Eq (1)–(2) are not valid when evaluating the tests. The previous study (Chen et al., 2006) 
only considered a material with perfect plastic (n = 0), which will be extended to include n > 0 in this study. 

Sample force-displacement curves obtained during the (virtual) indentation tests are shown in Fig. 4. For a 
given material (i.e., given E, ry and n) a residual compressive stress results in a higher indentation force for 
fixed displacement depth, whereas a residual tensile stress results in a lower indentation force, relative a stress 
free substrate, Fig. 4(a). Similarly, for a given residual stress, the indentation force for a fixed indentation 
depth increases with increasing work-hardening coefficient, Fig. 4(b) (assuming that E and ry are constant). 
Also, for a given residual stress and work-hardening coefficient, the indentation force for a given indentation 
depth increases by using a larger half apex angle of the indenter, Fig. 4(c). 

In order to verify that the normalized indentation load, C, is indeed independent of the indentation depth, 
d, the normalized indentation is plotted as a function of indentation depth in Fig. 5. For the various level of 
residual stresses investigated, it is evident that C is indeed independent of d. 

Additional insight may be found by investigating the effective (normalized) stresses, rE=ry , where 
2 2 2 1=2 rE ¼ p1 ffiffi ½ðr1 - r2Þ þ ðr2 - r3Þ þ ðr3 - r1Þ � at maximum indentation depth, Fig. 6. In  Fig. 6, a range of 

2
cases are investigated: the rows correspond to constant residual stress (top row: tensile residual stress, middle 
row: absent residual stress, and bottom row: compressive residual stress) whereas the columns correspond to 
constant strain hardening (from left to right: n = 0,  n = 0.3, and n = 0.5, respectively). It is seen that the stress­
es at maximum indentation load increases with increasing strain hardening, as was expected from Fig. 4 where 
the force increases with increasing strain hardening. This, of course, follows directly from the stress-strain 
response, where a larger strain hardening coefficient corresponds to a higher stress for a given strain. Thus, 
the apparent hardness increases with increasing strain hardening since additional force must be applied to 
reach the same indentation depth. Moreover, the sense of the residual stress has a significant effect on the 
response, with the residual tensile stresses in general leading to an overall higher state of stress than compres­
sive residual stresses (Fig. 6). These results are in agreement with our previous work (Chen et al., 2006) where a 
more detailed discussion of the influence of residual stresses may be found. 

When evaluating the force-displacement diagrams obtained from indentation testing, it is important to note 
that some material and residual stress combinations can result in similar response (Alkorta et al., 2005; Tho 
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Fig. 4. For the case of E/ry = 100, force-displacement curves from finite element simulations of indentations: (a) for a = 60°, rres / 
ry = {-1, 0, 1}, n = 0.3; (b) for a = 60°, rres/ry = 0 and n = {0,0.3,0.5}; (c) for a = 60°, 63.14°, and 70.3°, rres/ry = 0 and n = 0.3; and (d) 
for a = 60°, two different n and rres/ry show nearly identical force-displacement curves. 

et al., 2004). For example, Fig. 4(d) show the case of a = 60°, for two cases. Even though the strain hardening 
coefficient and the residual stresses are not the same, the force-displacement curves are almost identical (in 
particular within the resolution of a real test). Thus, care must be taken when evaluating the results. One 
way to avoid erroneous evaluation is to use a set of indenter with various shapes. Thus, we will use three 
indentation shapes, with a = 60°,63.14°, and 70.3°, as was mentioned previously. This will reduce the likeli­
hood of selecting wrong properties based on apparently similar indentation results. 
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2.2.2. Determining the representative strain 

As was previously mentioned, (Ogasawara et al., 2005) showed that—absent residual stress—the opti­
mum value of the representative strain for a Berkovich indenter (a = 70.3°) is  eR = 0.0115. This value is 
a special case, valid for rres = 0. If the representative strain approach is applicable to stressed specimens, 
we must now determine eR (rres), i.e., determine how the representative strain varies with the residual 
stress. 

The representative strain can only be determined numerically for each rres, since there is neither a direct 
physical meaning to eR, nor a closed form solution available from where the parameter can be extracted. 
To this end, the function C=rRheRi ¼  Pa; ðE=rRheRiÞ in Eq. (8) is first determined by investigating the rres 

ry 

response from a virtual indentation for a range of work-hardening coefficients. The value of eR, resulting in 
that all curves for the range of n investigated overlaps to the best degree, is then adopted as the representative 
strain for the rres considered. This is obtained by minimizing the difference between the functions, using the 
principle of ‘‘golden section search’’ and parabolic interpolation. 

Sample curves of C=rRheRi ¼  Pa; ðE=rRheRiÞ are presented in Figs. 7 and 8. C/rRheRi for the three rres 
ry 

indenter shapes investigated (for the case of rres/ry = 0.2) are shown in Fig. 7(a). Here, the representative 
strain is eR = 0.0237, 0.0223, and 0.0136 for a = 60°, 63.14°, and 70.3°, respectively. In Figs. 8(a)–(e), 
C/rRheRi is displayed for half apex angle a = 70.3° for a range of rres/ry. The representative strain for 
all cases investigated is listed in Table 1 and visualized in Fig. 9. It may be seen that, for compressive 
residual stresses, the representative strain is almost constant, but increases significantly with the residual 
stress for tensile residual stress. In (Ogasawara et al., 2005), the representative strain was determined as 
eR = 0.0115 for a = 70.3° Our value deviates somewhat from these values, probably due to the selection 
of the investigated region of E/ry. 
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2.2.3. Functional form of Pa;

rres
 
ry
 

If the functional form of Pa; can be determined, this can serve as the basis for a reverse analysis where 
experimental results are used as input to determine the material properties. (Ogasawara et al., 2005) showed 
that it is more convenient to rewrite the function to depend on ln E/rRheRi), that is 

rres
 
ry
 

C ¼ PE a; ln 
E 

: ð9Þ 
rRheRi ðrRheRiÞ 



      

      

a 

b 

Fig. 7. For the three indenter shapes investigated, normalized indentation load C/rRheRi: (a) as a function of the inverse normalized 
representative stain E/rRheRi; and (b) as a function of the logarithm of inverse normalized representative strain lnE/rR heRi). (rres/ 
ry = 0.2). 

The dimensionless load function takes the form as shown in Figs. 7(b) and 8(f)–(j) and can be fitted into a 
function of the following form: 

C E 3 E 2 E ¼ a1 ln þ a2 ln þ a3 ln þ a4; ð10Þ 
rRheRi rRheRi rRheRi rRheRi 

where ai, i = 1–4 are constants, determined empirically. Eq. (10) is valid for one specific indenter shape and 
one specific residual stress. The dependence of residual stress can be functionalized, following a general form 
of 

3 2
 rres rres rres
 ai ¼ Ai1 þ Ai2 þ Ai3 þ Ai4: ð11Þ 
ry ry ry 

Fig. 8. For a = 70.30°, normalized indentation load C/rRheRi as a function of the inverse normalized representative stain E/rRheRi for (a) 
rres/ry = -0.8, (b) rres/ry = -0.4, (c) rres/ry = 0, (d)  rres/ry = 0.4, (e) rres/ry = 0.8; and C/rR heRi as a function ln E/rRheRi) [including the 
fit of Eq. (10)] for (f) rres /ry = -0.8, (g) rres/ry = -0.4, (h) rres /ry = 0, (i) rres/ry = 0.4, (j) rres /ry = 0.8. 
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Table 1 
For the three indenter shapes investigated the representative strain and the parameters of the fitting function for normalized indentation 
force, Eq. (10) 

60° 
3 2rres rres rreseR ¼ 0:013763 � ð Þ þ 0:018330 � ð Þ þ 0:0083056 � ð Þ þ 0:021068 ry ry ryrres rres rres3 2 a1 ¼ -0:084897 � ð Þ þ 0:23559 � ð Þ - 0:14846 � ð Þ - 0:34485 ry ry ryrres rres rres3 2 a2 ¼ 0:94807 � ð Þ - 3:1944 � ð Þ þ 3:2998 � ð Þ þ 4:155 ry ry ryrres rres rres3 2 a3 ¼ -2:6705 � ð Þ þ 13:362 � ð Þ - 20:348 � ð Þ - 7:9104 ry ry ryrres rres rres3 2 a4 ¼ 0:67573 � ð Þ - 18:985 � ð Þ þ 30:426 � ð Þ þ 9:0794 ry ry ry 

63.14° 
3 2rres rres rreseR ¼ 0:011662 � ð Þ þ 0:017925 � ð Þ þ 0:0092783 � ð Þ þ 0:018575 ry ry ryrres rres rres3 2 a1 ¼ -0:07852 � ð Þ þ 0:23684 � ð Þ - 0:038037 � ð Þ - 0:50305 ry ry ryrres rres rres3 2 a2 ¼ 0:84384 � ð Þ - 3:3172 � ð Þ þ 2:1872 � ð Þ þ 6:3882 ry ry ryrres rres rres3 2 a3 ¼ -2:0205 � ð Þ þ 14:426 � ð Þ - 17:994 � ð Þ - 15:319 ry ry ryrres rres rres3 2 a4 ¼ -0:83219 � ð Þ - 21:506 � ð Þ þ 29:727 � ð Þ þ 18:025 ry ry ry 

70.30° 
3 2rres rres rreseR ¼ 0:0055531 � ð Þ þ 0:0081265 � ð Þ þ 0:0055779 � ð Þ þ 0:012195 ry ry ryrres rres rres3 2 a1 ¼ -0:37865 � ð Þ þ 0:28257 � ð Þ þ 0:61774 � ð Þ - 0:98458 ry ry ryrres rres rres3 2 a2 ¼ 4:9742 � ð Þ - 4:2095 � ð Þ - 5:6722 � ð Þ þ 13:633 ry ry ryrres rres rres3 2 a3 ¼ -19:22 � ð Þ þ 19:469 � ð Þ þ 7:6312 � ð Þ - 39:087 ry ry ryrres rres rres3 2 a4 ¼ 19:349 � ð Þ - 31:654 � ð Þ þ 4:7804 � ð Þ þ 46:405 ry ry ry 
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Fig. 9. Representative strain as a function of normalized residual stress for the indenter shapes investigated, showing the cubical fit. 

with Aij, j = 1–4 being constants determined empirically for each indenter shape. The three sets of Eq. 
(11)—one for each indenter shape—are presented in Table 1. How the fitted function (10), using the 
parameters in Table 1, reproduces Eq. (9) is displayed in the right hand column of Fig. 8. An excellent 
fit is seen. 

3. Reverse analysis 

To explore how the presence of residual stress affects the indentation measurement, we assume that the 
residual stress, rres, and Young’s modulus, E, are known for the specimen under investigations, the yield 
strength, ry, and the work-hardening coefficient, n, can now be determined based on indentation tests and 
inverse analysis, with the effect of residual stress being incorporated. Since we only have one equation [Eq. 
(10)] but two unknowns (ry and n), two indentations experiments with different shaped indenter tip are needed 



to solve for the two unknown material parameters. From the numerical simulations, we have seen that using 
results from three different shaped indenters give significantly more accurate material properties. As noted pre­
viously, the problem can easily be recast into solving for any two combinations of the indentation parameter, 
i.e., any two of rres, E, ry, n. 

The principle of the reverse analysis is summarized by a schematic flow chart in Fig. 10, and can be 
described with the following synopsis: Based on an indentation test, C = P=d2 is determined and serves— max 

together with the known residual stress, rres, and Young’s modulus, E—as input to the reverse analysis. Addi­
tional input to the analysis is an estimated value of the yield strength, ry0. From Table 1, the corresponding 
representative strain eR and the constants ai, i = 1–4 of Eq. (10) are interpolated (by linear interpolation), 
whereupon the representative stress rRh eRi can be determined for each of the three investigated indenter 
shapes. Based on the obtained representative stress and strain, the corresponding material parameters ry 

and n can be deduced uniquely and are selected as the average of the three possible combinations of the inves­
tigated indenter-shapes. As mentioned above, only two shapes are needed to determine the two unknowns. 
However, if all three shapes are used, three combinations of two are possible. By selecting the average value, 
these three combinations result in both a faster convergence and in more accurate material parameters. Final-

Fig. 10. Schematic of the reverse analysis. 



 

ly, the yield strength obtained in the last step, ryA, is compared to the initially assumed yield strength ry0. If  
|ryA - ry0| < error (we used max 5% error), then a solution is found, where ry = ryA and n are the material 
properties of the test specimen. If |ryA -ry0| > error, then a new ry0 is selected and the routine is reiterated. 
In our implementation, we used the predefined function fminbnd in MATLAB (Matlab, 2004) to update 
ry0. This routine minimizes a function [in our case |ryA - r y0

| < error, based on a set of conditions (here the 
center part of the flow chart) for a given interval [here (ry min,ry max)]. 

The numerical accuracy of the reverse analysis is investigated by conducting a set of numerical indentations 
of material properties not used to determine the coefficients ai, i = 1–4 to Eq. (10) (as listed in Table 1). For the 
given set of input parameters, a numerical indentation testing is conducted, and C = P=d2 is determined. max 

This is then used in the reverse analysis to determine ry and n. The results for the selected set of material 
parameters are shown in Fig. 11 and it can be seen that a good reproduction of the data is achieved, with 
errors less than 5%. 

In addition, we compare to ‘‘real’’ material data based on material data available Kim et al., 2006. In that 
paper, indentations matching our proposed method are unfortunately not presented, but we select to utilize 
their material database, since it contains the needed set of parameter with the purpose of investigating the 
more realistic material properties than Fig. 11 presented. These ‘‘real’’ material data are summarized in Table 
2. In this case, we again conduct virtual experiments, assuming selected magnitudes of residual stress. Based 
on C = P =d2 obtained from the numerical simulation, we determine ry and n, presented in Table 2. Here, all max 

errors are less than 5%. For Tool steel SKH51 (Kim et al., 2006) the stress-strain response according the con­
stitutive Eq. (3) is plotted in Fig. 12. The original data is compared to the data obtained thought the reverse 
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Fig. 11. Comparison between predicted results based on the reveres analysis and the input parameters in the numerical simulation. 



  

  

  

 

 

  

 

Table 2 
Sample results of the reverse analysis from virtual experiments for a range of materials 

Material Input 

E (GPa) ry (MPa) n v E/ry rres/ry 

Reverse analysis results 

ry (MPa) n 

SKH51 Toll steel 246.80 263.85 0.2591 0.2411 935.38 -0.2 267.60 0.2567 
0.3 260.45 0.2579 
-0.5 272.37 0.2572 

S45C structural steel 209.05 374.14 0.3378 0.2873 558 0.2 380.99 0.3348 
-0.4 380.32 0.3404 

NAK plastic mold steel 202.62 1207.44 0.0508 0.2868 167 0.4 1210.14 0.0642 
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Fig. 12. Comparison of the true and the predicted stress-strain curve, based on the reverse analysis and the input parameters, for Tool 
steel SKH51. The insert shows an enlargement of the stress-strain curve for stresses between 300 and 800 MPa. The markers indicate the 
pair of representative stress and strain for the three indenter shapes used. The results for rres/rY = -0.2 overlaps the input curve within the 
resolution of the figure. 

analysis. In this plot, the markers indicate the pair of the representative stress and strain for the three indenter 
shapes used. An excellent agreement between the curves predicted from the virtual experiments using our pro­
posed method and the true curves are obtained, Fig. 12. Thus, in our new approach, including both the effect 
of residual stress and strain hardening, the calculated plastic behavior is predicted reasonable well, regardless 
of the stress state in the material. 

The next step is to compare this method to experimental investigations. Work is currently ongoing in our 
laboratory to verify the model developed herein, but is not completed yet. Unfortunately, comparing to pub­
lished data is not possible, since we have not found a complete set of experiments needed to conduct the revere 
analysis. 

4. Concluding remarks 

A technique for evaluating instrumented indentation testing of materials that exhibits strain hardening after 
yielding and which are subjected to a pre-existing equi-biaxial stress field is presented. The technique is based 
on conducting two or—for better accuracy—three indentation tests, and through a reverse analysis uniquely 



determine two unknown plastic parameters. The indentation tests are assumed to be conducted with three con­
ical indenters with the half apex angle of a = 60°,63.14°, and 70.3°, which are all commercially available. 

The core of the proposed technique is based on identifying the ‘‘representative strain,’’ eR, where we have 
adopted the definition of representative strain presented by Ogasawara et al. (2005). The representative strain 
maps the response from indentation testing of the various materials (e.g., different Young’s modulus, yield 
strength and strain hardening) into depending only on one parameter: the normalized Young’s modulus. In 
this case, Young’s modulus is normalized with respect to the ‘‘representative stress,’’ which can be directly 
related to the representative strain. Previously, several authors have shown that expressing the results from 
indentation testing in terms of representative strain and representative stress is an effective method to evaluate 
indentation testing of materials that exhibits significant strain hardening during yielding. In this paper, we 
show that this technique can be extended and used when the material is subjected to an equi-biaxial residual 
stress. However, each level of residual stress is associated with one representative strain. 

The representative strain only can be determined empirically, based on numerical simulations of indenta­
tion tests. Thus, a significant effort in this work has been to determine the representative strain for the each 
level of residual stress within the range investigated. The numerical simulations were conducted with finite ele­
ment simulations, simulating indentation testing on a range of materials and levels of residual stress in order to 
determine the representative strain. Based on these simulations, a dimensionless function describing the inden­
tation force and the displacement is identified and expressed in an empirical form. This function, PE a; , along rres 

ry 

with the representative stress are the two functions used in the reverse analysis to determine the unknown 
properties. Similar dimensionless functions are constructed for each of the three indenter angles. 

We have shown that the concept of representative strain can be used when a residual stress is present. To 
this end, we presented a solution where Young’s modulus and the residual stress are assumed known (which is 
typical for coatings), and the yield strength and strain hardening are determined uniquely based on the inden­
tation testing and reverse analysis. However, with the set of equations presented herein, any two combinations 
of the four parameters Young’s modules, residual stress, yield strength and strain hardening can be deter­
mined, by slightly modifying the proposed evaluation scheme. 
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