
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

2007

Byzantine Fault Tolerant Coordination for Web Services Atomic Byzantine Fault Tolerant Coordination for Web Services Atomic

Transactions Transactions

Wenbing Zhao
Cleveland State University, w.zhao1@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons, and the Electrical and Computer

Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
Zhao, W. (2007). Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions. Lecture
Notes in Computer Science, 4749, 307-318.

Repository Citation
Zhao, Wenbing, "Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions" (2007). Electrical
Engineering and Computer Science Faculty Publications. 123.
https://engagedscholarship.csuohio.edu/enece_facpub/123

This Conference Proceeding is brought to you for free and open access by the Electrical and Computer Engineering
Department at EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and
Computer Science Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more
information, please contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/123?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Byzantine Fault Tolerant Coordination for

Web Services Atomic Transactions*

Wenbing Zhao

Department of Electrical and Computer Engineering

Cleveland State University, Cleveland, OH 44115

wenbing@ieee.org

Abstract. In this paper, we present the mechanisms needed for Byzan­
tine fault tolerant coordination of Web services atomic transactions. The
mechanisms have been incorporated into an open-source framework im­
plementing the standard Web services atomic transactions specification.
The core services of the framework, namely, the activation service, the
registration service, the completion service, and the distributed commit
service, are replicated and protected with our Byzantine fault tolerance
mechanisms. Such a framework can be useful for many transactional Web
services that require high degree of security and dependability.

Keywords: Reliable Service-Oriented Computing, Service-Oriented
Middleware, Distributed Transactions, Byzantine Fault Tolerance.

1 Introduction

The bulk of business applications involve with transaction processing and re­
quire high degree of security and dependability. We have seen more and more
such applications being deployed over the Internet, driven by the need for busi­
ness integration and collaboration, and enabled by the latest service-oriented
computing techniques such as Web services. This requires the development of
a new generation of transaction processing (TP) monitors, not only due to the
new computing paradigm, but because of the untrusted operating environment
as well.

This work is an investigation of the issues and challenges of building a Byzan­
tine fault tolerant (BFT) [1] TP monitor for Web services, which constitutes
the major contribution of this paper. We focus on the Web services atomic
transaction specification (WS-AT) [2]. The core services specified in WS-AT are

the BFT algorithm. As documented in detail in later sections, we proposed a
number of novel mechanisms to achieve BFT with minimum overhead in the
* This work was supported in part by Department of Energy Contract DE-FC26­

06NT42853, and by a Faculty Research Development award from Cleveland State
University.

replicated and protected with BFT mechanisms. The BFT algorithm in [3] is
adapted for the replicas to achieve Byzantine agreement. We emphasize that the
resulting BFT TP monitor framework is not a trivial integration of WS-AT and

mailto:wenbing@ieee.org

context of distributed transactions coordination, and the experimental evalua­
tion of a working prototype proves the optimality of our mechanisms and their
implementations.

2 Background

2.1 Byzantine Fault Tolerance

Byzantine fault tolerance refers to the capability of a system to tolerate Byzan­
tine faults. It can be achieved by replicating the server and by ensuring all server
replicas reach an agreement on the input despite Byzantine faulty replicas and
clients. Such an agreement is often referred to as Byzantine agreement [1].

The most efficient Byzantine agreement algorithm reported so far is due to
Castro and Liskov (referred to as the BFT algorithm) [3]. The BFT algorithm
is executed by a set of 3f + 1 replicas to tolerate f Byzantine faulty replicas.
One of the replicas is designated as the primary while the rest are backups. The
normal operation of the BFT algorithm involves three phases. During the first
phase (called pre-prepare phase), the primary multicasts a pre-prepare message
containing the client’s request, the current view and a sequence number assigned
to the request to all backups. A backup verifies the request message and the
ordering information. If the backup accepts the message, it multicasts to all other
replicas a prepare message containing the ordering information and the digest of
the request being ordered. This starts the second phase, i.e., the prepare phase. A
replica waits until it has collected 2f matching prepare messages from different
replicas before it multicasts a commit message to other replicas, which starts
the third phase (i.e., commit phase). The commit phase ends when a replica
has received 2f matching commit messages from other replicas. At this point,
the request message has been totally ordered and it is ready to be delivered to
the server application. To avoid possible confusion with the two phases (i.e., the
prepare phase and the commit/abort phase) in the two-phase commit (2PC)
protocol [4], we refer the three phases in the BFT algorithm as ba-pre-prepare,
ba-prepare, and ba-commit phases in this paper.

2.2 Web Services Atomic Transactions Specification

In WS-AT [2], a distributed transaction is modelled to have a coordinator, an
initiator, and one or more participants. WS-AT specifies two protocol (i.e., the
2PC protocol and the completion protocol), and a set of services. These protocols
and services together ensure automatic activation, registration, propagation, and
atomic termination of Web-services based distributed transactions. The 2PC
protocol is run between the coordinator and the participants, and the completion
protocol is run between the initiator and the completion service. The initiator is
responsible to start and end a transaction. The coordinator side consists of the
following services:

– Activation Service: It is responsible to create a coordinator object (to handle
registration, completion, and distributed commit) and a transaction context
for each transaction.

– Registration Service: It is provided to the transaction participants and the
initiator to register their endpoint references for the associated participant-
side services.

– Coordinator Service: This service is responsible to run the 2PC protocol to
ensure atomic commitment of a distributed transaction.

– Completion Service: This service is used by the transaction initiator to signal
the start of a distributed commit.

The set of coordinator services run in the same address space. For each trans­
action, all but the Activation Service are provided by a (distinct) coordinator
object. The participant-side services include:

– CompletionInitiator Service: It is used by the coordinator to inform the
transaction initiator the final outcome of the transaction, as part of the
completion protocol.

– Participant Service: The coordinator uses this service to solicit votes from,
and to send the transaction outcome to the participants.

The detailed steps of a distributed transaction using a WS-AT conformant
framework are shown with a banking example (adapted from [5] and used in our
performance evaluation) in Fig. 1. In this example, a bank provides an online
banking Web service that a customer can access. The transaction is started due
to a single Web service call from the customer on the bank to transfer some
amount of money from one account to the other.

3 System Models

We consider a composite Web service that utilizes Web services provided by
other departments or organizations, similar to the example shown in Fig. 1. We
assume that an end user uses the composite Web service through a Web browser
or directly invokes the Web service interface through a standalone client appli­
cation. In response to each request from an end user, a distributed transaction is
started to coordinate the interactions with other Web services. The distributed
transactions are supported by a WS-AT conformant framework such as [5].

For simplicity, we assume a flat distributed transaction model. We assume
that for each transaction, a distinct coordinator is created. The lifespan of the
coordinator is the same as the transaction it coordinates.

The composite Web service provider serves as the role of the initiator. We as­
sume that the initiator is stateless because it typically provides only a front-end
service for its clients and delegates actually work to the participants. All trans­
actions are started and terminated by the initiator. The initiator also propagates
the transaction to other participants through a transaction context included in
the requests.

2. Create
transaction context

3. Transaction context

12. Register

13. Register Response

14. Commit
15. Prepare

19. Commit

16. Prepare

20. Commit

17. Prepared

21. Committed

18. Prepared

22. Committed
23. Committed

5. Register

9. Register

6. Register Response

10. Register Response

4. Debit

7. Debit Response

11. Credit Response

1. Fund transfer
request

24. Fund transfer
Succeeded

8. Credit

Bank

Banking
Service

Completion
Initiator

Client

Activation
Service

Registration
Service

Completion
Service

Coordinator
Service

Coordinator
Account A

Account
Service

Participant
Service

Account B

Account
Service

Participant
Service

SOAP Message Private Method Call

Fig. 1. The sequence diagram of a banking example using WS-AT

We assume that the transaction coordinator runs separately from the initiator
and the participants.1 Both the coordinator and the initiator are replicated. For
simplicity, we assume that the participants are not replicated. We assume that
3f + 1 coordinator replicas are available, among which at most f can be faulty
during a transaction. Because the initiator is stateless, we require only 2f + 1
initiator replicas to tolerate f faulty initiator replicas. There is no limit on the
number of faulty participants.

We call a coordinator/initiator replica correct if it does not fail during its
lifetime, i.e., it faithfully executes according to the protocol prescribed from the
start to the end. However, we call a participant correct if it is not Byzantine
faulty, i.e., it may be subject to typical non-malicious faults such as crash faults
or performance faults.

1 Even though it is a common practice to collocate the initiator with the coordinator
in the same node, it might not be a desirable approach, due to primarily two reasons.
First, collocating the initiator and the coordinator tightly couples the business logic
with the generic transaction coordination mechanism (also observed in [6]), which is
desirable neither from the software engineering perspective (it is harder to test) nor
from the security perspective (it is against the defence-in-depth principle). Second,
the initiator typically is stateless, which can be rendered fault tolerant fairly easily,
while the coordination service is stateful. This naturally calls for the separation of
the initiator and the coordinator.

The coordinator and initiator replicas are subject to Byzantine faults, i.e., a
Byzantine faulty replica can fail arbitrarily. For participants, however, we have
to rule out some forms of Byzantine faulty behaviors. A Byzantine faulty par­
ticipant can always vote to abort, or it can vote to commit a transaction, but
actually abort the transaction locally. It is beyond the scope of any distributed
commit protocol to deal with these situations. Rather, they should be addressed
by business accountability and non-repudiation techniques. Other forms of par­
ticipant faults, such as a faulty participant sending conflicting votes to different
coordinator replicas, will be tolerated.

All messages between the coordinator and the participants are digitally signed.
We assume that the coordinator replicas and the participants each has a pub­
lic/secret key pair. The public keys of the participants are known to all coordina­
tor replicas, and vice versa, while the private key is kept secret to its owner. We
assume that the adversaries have limited computing power so that they cannot
break the encryption and digital signatures of correct coordinator replicas.

4 Byzantine Fault Tolerance Mechanisms

4.1 Activation

Figure 2 shows the mechanisms for the activation process. Upon receiving a
request from a client, the initiator starts a distributed transaction and sends an
activation request to the activation service. The client’s request has the form
<creq, o, t, c >σc , where o is the operation to be executed by the initiator, t is
a monotonically increasing timestamp, c is the client id, and σc is the client’s
digital signature for the request. A correct client sends the request to all initiator
replicas. An initiator accepts the request if it is properly signed by the client, and
it has not accepted a request with equal or larger timestamp from the same client.
If the request carries an obsolete timestamp, the cached reply is retransmitted
if one is found in the reply log.

The activation request has the form <activation, v, c, t, k>σk
, where v is

the current view, k is the initiator replica id. The request is sent to the primary
replica of the activation service. The primary initially logs the activation request
if the message is correctly signed by the initiator replica and it has not accepted
a request with equal or larger timestamp from the initiator in view v. Only
when f + 1 such messages are received from different initiator replicas with
matching c and t, does the primary accept the activation request. This is to
ensure the request comes from a correct initiator replica. The primary then
sends a ba-pre-prepare message to the backup replicas. The ba-prepare message
has the form <ba-pre-prepare, v, r, uuidp, p>σp , where r is the content of the
activation request, p is the primary id, uuidp is a universally unique identifier
(uuid) proposed by the primary.

The uuid is used to generate the transaction id, which will be used to identify
the transaction and its coordinator object. To maximize security, the uuid should
be generated from a high entropy source, which means the activation operation
is inherently nondeterministic, and the uuid proposed by one replica cannot be

Replica0

Activation Service

Ba-commit
Phase

Ba-prepare

Ba-commit

Ba-pre-prepare

Ba-pre-prepare-update

Replica1

Request

Activate

Activate Response
(with transaction context)

Ba-prepare
Phase

Ba-pre-prepare
Phase

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Client

Ba-pre-prepare-reply

Fig. 2. Byzantine fault tolerance mechanisms for the activation of a transaction

verified by another. This calls for the collective determination of the uuid for
the transaction.2 This is achieved during the ba-pre-prepare phase.

A backup activation replica accepts the ba-prepare message if it is in view v,
the message is properly signed, r is a correct activation request, and it has not
accepted the same message before. The backup then sends a ba-pre-prepare-reply
message in the form <ba-pre-prepare-reply, v, d, uuidi, i>σi to all replicas,
where d is the digest of the ba-prepare message, i is the replica id and uuidi is
i’s uuid proposal. When the primary collects 2f ba-prepare-reply messages from
different backups, it sends a ba-prepare-update message in the form <ba-pre­

prepare-update, v, d, U, p>σp to the backup replicas, where U is the collection
of the digests of the 2f ba-pre-prepare-reply messages.

A backup accepts a ba-pre-prepare-reply message if it is in view v, the mes­
sage is properly signed and d matches the digest of the ba-pre-prepare message.
It accepts the ba-pre-prepare-update message if it is in view v, d matches that
of the ba-pre-prepare message, and the digests in U match that of the ba-pre­
prepare-reply messages. It is possible that a backup has not received a particular
ba-pre-prepare-reply message, in which case, the backup asks for a retransmis­
sion from the primary. Upon accepting the ba-pre-prepare-update message, a
backup sends a ba-prepare message to all replicas. The message has the form
<ba-prepare, v, d, uuid, i>σi , where uuid is the final uuid computed determin­
istically based on the proposals from the primary and 2f backups (we choose to
use the average of the group of uuids as the final uuid, but other computation
method is possible). A replica accepts a ba-prepare message if it is in view v, the

2 One might attempt to replace the high entropy source with a deterministic source to
ensure the replica consistency. However, doing so might result in an easy-to-predict
transaction identifier, which opens the door for replay attacks. An alternative to our
approach is the coin-tossing scheme [7], however, it requires an additional phase to
securely distribute the private key shares to the replicas.

Replica0

Registration Service

Registration
Response

Process
Request

Normal
Response

Replica1

Request
(with transaction context)

Register

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Participant

Fig. 3. Byzantine fault tolerance mechanisms for the registration of a participant

message is properly signed, d is the digest of the ba-pre-prepare message, and
uuid matches its own.

When an activation replica has accepted 2f ba-prepare messages from differ­
ent replicas (including the message it sent), in addition to the ba-pre-prepare
and ba-pre-prepare-update messages it has accepted or has sent (if it is the pri­
mary), it sends a ba-commit message in the form <ba-commit, v, d, uuid, i>σi

to all other replicas. The verification of the ba-commit message is similar to that
of the ba-prepare message. When a replica accepts 2f + 1 matching ba-commit
messages from different replicas (including the message it has sent), it calculates
(deterministically) the transaction id tid based on uuid, creates a coordinator
object with the tid, and sends the activation response to the initiator replicas.
The response has the form <activation-response, c, t, C, i>σi , where c and t
are the client id and the timestamp included in the activation request, C is the
transaction context. Note that if the primary is faulty, it can prevent a correct
replica from completing the three phases, in which case, the replica suspects the
primary and initiates a view change.

An initiator replica logs the activation response if it is properly signed, and c
and t match those in its activation request. The replica accepts the message if it
has collected f + 1 matching responses from different activation service replicas.

4.2 Registration and Transaction Propagation

To ensure atomic termination of a distributed transaction, it is essential that
all correct coordinator replicas agree on the set of participants involved in the
transaction. This can be achieved by running a Byzantine agreement algorithm
among the coordinator replicas whenever a participant registers itself. However,
doing so might incur too much overhead for the coordination service to be prac­
tical. In this work, we defer the Byzantine agreement on the participants set
until the distributed commit stage and combine it with that for the transac­
tion outcome. This optimization is made possible by the mechanisms shown in
Fig. 3. In addition, we assume that there is proper authentication mechanism in
place to prevent a Byzantine faulty process from illegally registering itself as a
participant at correct coordinator replicas.

A participant does not accept a request until it has collected f + 1 matching
requests from different initiator replicas. This is to prevent a faulty initiator
replica from excluding a participant from joining the transaction (e.g., by not
including the transaction context in the request), or from including a process
that should not participate the transaction. Since at most f initiator replicas
are faulty, one of the messages must have been sent by a correct initiator replica.

To register, a participant sends its registration request to all coordinator repli­
cas and waits until 2f + 1 acknowledgments from different replicas have been col­
lected. Since at most f replicas are faulty, at least f +1 correct replicas must have
accepted the registration request. If the participant can register successfully and
complete its execution of the initiator’s request, it sends a normal reply to the ini­
tiator replicas. Otherwise, it sends an exception back (possibly after recovery from
a transient failure). If an initiator replica receives an exception from a participant,
or times out a participant, it should choose to abort the transaction.

The initiator replicas also register with the coordinator replicas prior to the
termination of the transaction. It follows a similar mechanism as that of the
participants. Because at most f initiator replicas are faulty, at least f +1 replicas
can finish the registration successfully.

4.3 Completion and Distributed Commit

The Byzantine fault tolerant transaction completion and distributed commit
mechanisms are illustrated in Fig. 4. When an initiator replica completes all
the operations successfully within a transaction, it sends a commit request to
the coordinator replicas. Otherwise, it sends a rollback request. A coordinator
replica does not accept the commit or rollback request until it has received f +1
matching requests from different initiator replicas.

Upon accepting a commit request, a coordinator replica starts the first phase
of the standard 2PC protocol. However, at the end of the first phase, a Byzantine
agreement phase is conducted so that all correct coordinator replicas agree on the
same outcome and the participants set for the transaction. This will be followed
by the second phase of the 2PC protocol. If a rollback request is received, the
first phase of 2PC is skipped, but the Byzantine agreement phase is still needed
before the final decision is sent to all participants. When the distributed commit
is completed, the coordinator replicas inform the transaction outcome to the
initiator replicas. An initiator replica accepts such a notification only if it has
collected f + 1 matching messages from different coordinator replicas. Similarly,
a participant accepts a prepare request, or a commit/rollback notification only if
it has collected f + 1 matching messages for the same transaction from different
coordinator replicas. Again, this is to ensure the request or notification comes
from a correct replica.

As shown in Fig. 4, the Byzantine agreement algorithm used for distributed
commit is similar to that in Sect. 4.1, except that no ba-pre-prepare-reply and
ba-pre-prepare-update messages are involved and the content of the messages
are different. Due to space limitation, we only describe the format and the veri­
fication criteria for each type of messages used.

Replica0

Completion and Coordinator Service

Ba-commit
Phase

Ba-prepare

Ba-commit

Ba-pre-prepare

Replica1

Commit

Response

Committed

Notify
Participants

Ba-prepare
Phase

Ba-pre-prepare
Phase

Replica1 Replica2 Replica3Replica2Replica0

Initiator

Client

Collect
Votes from

Participants

Prepare
Phase (2PC)

Commit
Phase (2PC)

Fig. 4. Byzantine fault tolerance mechanisms for completion and distributed commit

The ba-pre-prepare message has the form <ba-pre-prepare, v, tid, o, C>σp ,
where o is the proposed transaction outcome (i.e., commit or abort), C is the
decision certificate, and σp is the primary’s signature for the message. The de­
cision certificate contains a collection of records, one for each participant. The
record for a participant j contains a signed registration Rj = (tid, j)σj and a
signed vote Vj = (tid, vote)σj if a vote from j has been received by the primary.
The tid is included in each registration and vote record so that a faulty pri­
mary cannot reuse an obsolete registration or vote record to force a transaction
outcome against the will of some correct participants.

A backup accepts a ba-pre-prepare message provided it is in view v, it is
handling tid, the message is signed properly, the registration records in C are
identical to, or form a superset of, the local registration records, and it has not
accepted another ba-pre-prepare message for tid in view v. It also verifies that
every vote record in C is properly signed by its sending participant and the tid
in the record matches that of the current transaction, and the proposed decision
o is consistent with the registration and vote records.

The ba-prepare message takes the form <ba-prepare, v, t, d, o, i>σi , where
d is the digest of the decision certificate C. A coordinator replica accepts a
ba-prepare message provided it is in view v, it is handling tid, the message is
correctly signed by replica i, the decision o matches that in the ba-pre-prepare
message, and the digest d matches that of the decision certificate in the accepted
ba-pre-prepare message.

The ba-commit message has the form <ba-commit, v, tid, d, o, i>σi . The ba­
commit message is verified using the same criteria as those for ba-prepare mes­
sages. When a replica collects 2f + 1 matching ba-commit messages from dif­
ferent replicas, it sends the decision o to all participants of transaction tid. If a
replica i could not reach an agreement, it initiates a view change when a timeout
occurs.

0.5

1.0

1.5

2.0

2.5

6.0

5.0

4.0

End-to-End (with BFT Support)
End-to-End (without BFT Support)
2PC (with BFT Support)
2PC (without BFT Support)
Activation (with BFT Support)

2 3 4 5 6 7 8
0.0

Th
ro

ug
hp

ut
 (T

ra
ns

ac
tio

ns
/S

ec
on

d)
 2 Participants (no BFT support)

2 Participants
3 Participants
4 Participants
5 Participants
6 Participants
7 Participants
8 Participants

La
te

nc
y

(S
ec

on
ds

)

3.0

2.0

1.0

0.0
1 2 3 4 5 6 7 8 9 10

Number of Participants in Each Transaction Number of Concurrent Clients

(a) (b)

Fig. 5. (a) Various latency measurements under normal operations (with a single
client). (b) End-to-end throughput under normal operations.

5 Implementation and Performance Evaluation

We have implemented the core Byzantine fault tolerance mechanisms (with the
exception of the view change mechanisms) and integrated them into Kandula [5],
a Java-based open source implementation of WS-AT. The extended framework
also uses WSS4J (an implementation of the Web Services Security Specifica­
tion) [8], and Apache Axis (SOAP Engine) 1.1 [9]. Due to space limitation, the
implementation details are omitted.

Our experiment is carried out on a testbed consisting of 20 Dell SC1420 servers
connected by a 100Mbps Ethernet. Each server is equipped with two Intel Xeon
2.8GHz processors and 1GB memory running SuSE 10.2 Linux.

The test application is the banking Web services application described in
Sec. 2.2. The initiator is replicated across 3 nodes, and the coordination services
are replicated on 4 nodes. The participants and the clients are not replicated, and
are distributed among the remaining nodes. Each client invokes a fund trans­
fer operation on the banking Web service within a loop without any “think”
time between two consecutive calls. In each run, 1000 samples are obtained. The
end-to-end latency for the fund transfer operation is measured at the client.
The latency for the transaction activation and distributed commit are measured
at the coordinator replicas. Finally, the throughput of the distributed commit
service is measured at the initiator for various number of participants and con­
current clients.

As can be seen in Fig. 5(a), the end-to-end latency for a transaction is in­
creased by about 400-500 ms when the number of participants varies from 2
to 8. The increase is primary due to the two Byzantine agreement phases in
our mechanisms (one for activation, the other for 2PC). The latencies for trans­
action activation and for 2PC are also shown in Fig. 5(a). While the latency
for 2PC increases with the number of participants, the activation latency re­
mains constant because the participants are not involved with activation. As
shown in Fig. 5(b), the throughput for transactions using our mechanisms is

about 30% to 40% lower than those without replication protection, which is
quite moderate considering the complexity of the BFT mechanisms. (To avoid
cluttering, only the 2-participants case is shown for the no-replication configu­
ration.)

6 Related Work

There are a number of system-level work on fault tolerant TP monitors, such as
[10,11]. However, they all use a benign fault model. Such systems do not work if
the coordinator is subject to intrusion attacks. We have yet to see other system-
level work on Byzantine fault tolerant TP monitors. The work closest to ours
is Thema [12], which is a BFT framework for generic multi-tiered Web services.
Even though some of the mechanisms are identical, our work contains specific
mechanisms to ensure atomic transaction commitment.

The problem of BFT distributed commit for atomic transactions has been of
research interest in the past two decades [13,14]. The first such protocol is pro­
posed by Mohan et al. [13]. In [13], the 2PC protocol is enhanced with a Byzan­
tine agreement phase on the transaction outcome among the coordinator and all
participants in the root cluster. This approach has several limitations. First, the
atomicity of a transaction is guaranteed only for participants residing in the root
cluster under Byzantine faults. Second, it requires every participant within the
cluster knows the cluster membership, which may not be applicable to Web ser­
vices atomic transactions because a participant is not obligated to know all other
participants. Our work, on the other hand, requires a Byzantine agreement only
among the coordinator replicas and hence, allows dynamic propagation of transac­
tions. Rothermel et al. [14] addressed the challenges of ensuring atomic distributed
commit in open systems where participants may be compromised. However, [14]
assumes that the root coordinator is trusted. This assumption negates the neces­
sity to replicate the coordinator for Byzantine fault tolerance. Apparently, this
assumption is not applicable to Web services applications.

7 Conclusion and Future Work

In this paper, we presented Byzantine fault tolerance mechanisms for distributed
coordination of Web services atomic transactions. We focus on the protection of
the basic services and infrastructures provided by typical TP monitors against
Byzantine faults. By exploiting the semantics of the distributed coordination
services, we are able to adapt Castro and Liskov’s BFT algorithm [3] to ensure
Byzantine agreement on the transaction identifiers and the outcome of trans­
actions fairly efficiently. A working prototype is built on top of an open source
distributed coordination framework for Web services. The measurement results
show only moderate runtime overhead considering the complexity of Byzantine
fault tolerance. We believe that our work is an important step towards a highly

secure and dependable TP monitor for Web services.3 We are currently working
on the implementation of the view change mechanisms and conducting experi­
ments in the wide-area network configurations.

Acknowledgement. We wish to thank the anonymous reviewers for their in­
sightful comments on an earlier draft of this paper.

References

1. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans­
actions on Programming Languages and Systems 4(3), 382–401 (1982)

2. Cabrera, L., et al.: WS-AtomicTransaction Specification (August 2005)
3. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems 20(4), 398–461 (2002)
4. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, CA (1983)
5. Apache Kandula project, http://ws.apache.org/kandula/
6. Erven, H., Hicker, H., Huemer, C., Zapletal, M.: Web Services-BusinessActivity-

Initiator (WS-BA-I) Protocol: an extension to the Web Services-BusinessActivity
specification. In: Proceedings of the IEEE Internaltion Conference on Web Services,
Salt Lake City, Utah (July 2007)

7. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography. In: Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing, pp. 123–132. ACM
Press, New York (2000)

8. Apache WSS4J project, http://ws.apache.org/wss4j/
9. Apache Axis project, http://ws.apache.org/axis/

10. Frolund, S., Guerraoui, R.: e-Transactions: End-to-end reliability for three-tier
architectures. IEEE Transactions on Software Engineering 28(4), 378–395 (2002)

11. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Unification of transactions and repli­
cation in three-tier architectures based on CORBA. IEEE Transactions on De­
pendable and Secure Computing 2(2), 20–33 (2005)

12. Merideth, M., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan, P.:
Thema: Byzantine-fault-tolerant middleware for web services applications. In: Pro­
ceedings of the IEEE Symposium on Reliable Distributed Systems, pp. 131–142.
IEEE Computer Society Press, Los Alamitos (2005)

13. Mohan, C., Strong, R., Finkelstein, S.: Method for distributed transaction commit
and recovery using Byzantine agreement within clusters of processors. In: Proceed­
ings of the ACM symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, pp. 89–103. ACM Press, New York (1983)

14. Rothermel, K., Pappe, S.: Open commit protocols tolerating commission failures.
ACM Transactions on Database Systems 18(2), 289–332 (1993)

3 In the current stage, due to the high redundancy level required and the high degree of
complexity imposed by the BFT mechanisms, the solutions proposed in this paper
are useful only for those applications that are so mission critical that the cost of
doing so is well justified.

http://ws.apache.org/kandula/
http://ws.apache.org/wss4j/
http://ws.apache.org/axis/
libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2014

	Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions
	Original Citation
	Repository Citation

	Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions
	Introduction
	Background
	Byzantine Fault Tolerance
	Web Services Atomic Transactions Specification

	System Models
	Byzantine Fault Tolerance Mechanisms
	Activation
	Registration and Transaction Propagation
	Completion and Distributed Commit

	Implementation and Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

