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Abstract. In this paper, we present the mechanisms needed for Byzan­
tine fault tolerant coordination of Web services atomic transactions. The 
mechanisms have been incorporated into an open-source framework im­
plementing the standard Web services atomic transactions specification. 
The core services of the framework, namely, the activation service, the 
registration service, the completion service, and the distributed commit 
service, are replicated and protected with our Byzantine fault tolerance 
mechanisms. Such a framework can be useful for many transactional Web 
services that require high degree of security and dependability. 

Keywords: Reliable Service-Oriented Computing, Service-Oriented 
Middleware, Distributed Transactions, Byzantine Fault Tolerance. 

1 Introduction 

The bulk of business applications involve with transaction processing and re­
quire high degree of security and dependability. We have seen more and more 
such applications being deployed over the Internet, driven by the need for busi­
ness integration and collaboration, and enabled by the latest service-oriented 
computing techniques such as Web services. This requires the development of 
a new generation of transaction processing (TP) monitors, not only due to the 
new computing paradigm, but because of the untrusted operating environment 
as well. 

This work is an investigation of the issues and challenges of building a Byzan­
tine fault tolerant (BFT) [1] TP monitor for Web services, which constitutes 
the major contribution of this paper. We focus on the Web services atomic 
transaction specification (WS-AT) [2]. The core services specified in WS-AT are 

the BFT algorithm. As documented in detail in later sections, we proposed a 
number of novel mechanisms to achieve BFT with minimum overhead in the 
* This work was supported in part by Department of Energy Contract DE-FC26­

06NT42853, and by a Faculty Research Development award from Cleveland State 
University. 

replicated and protected with BFT mechanisms. The BFT algorithm in [3] is 
adapted for the replicas to achieve Byzantine agreement. We emphasize that the 
resulting BFT TP monitor framework is not a trivial integration of WS-AT and 
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context of distributed transactions coordination, and the experimental evalua­
tion of a working prototype proves the optimality of our mechanisms and their 
implementations. 

2 Background 

2.1 Byzantine Fault Tolerance 

Byzantine fault tolerance refers to the capability of a system to tolerate Byzan­
tine faults. It can be achieved by replicating the server and by ensuring all server 
replicas reach an agreement on the input despite Byzantine faulty replicas and 
clients. Such an agreement is often referred to as Byzantine agreement [1]. 

The most efficient Byzantine agreement algorithm reported so far is due to 
Castro and Liskov (referred to as the BFT algorithm) [3]. The BFT algorithm 
is executed by a set of 3f + 1 replicas to tolerate f Byzantine faulty replicas. 
One of the replicas is designated as the primary while the rest are backups. The 
normal operation of the BFT algorithm involves three phases. During the first 
phase (called pre-prepare phase), the primary multicasts a pre-prepare message 
containing the client’s request, the current view and a sequence number assigned 
to the request to all backups. A backup verifies the request message and the 
ordering information. If the backup accepts the message, it multicasts to all other 
replicas a prepare message containing the ordering information and the digest of 
the request being ordered. This starts the second phase, i.e., the prepare phase. A 
replica waits until it has collected 2f matching prepare messages from different 
replicas before it multicasts a commit message to other replicas, which starts 
the third phase (i.e., commit phase). The commit phase ends when a replica 
has received 2f matching commit messages from other replicas. At this point, 
the request message has been totally ordered and it is ready to be delivered to 
the server application. To avoid possible confusion with the two phases (i.e., the 
prepare phase and the commit/abort phase) in the two-phase commit (2PC) 
protocol [4], we refer the three phases in the BFT algorithm as ba-pre-prepare, 
ba-prepare, and ba-commit phases in this paper. 

2.2 Web Services Atomic Transactions Specification 

In WS-AT [2], a distributed transaction is modelled to have a coordinator, an 
initiator, and one or more participants. WS-AT specifies two protocol (i.e., the 
2PC protocol and the completion protocol), and a set of services. These protocols 
and services together ensure automatic activation, registration, propagation, and 
atomic termination of Web-services based distributed transactions. The 2PC 
protocol is run between the coordinator and the participants, and the completion 
protocol is run between the initiator and the completion service. The initiator is 
responsible to start and end a transaction. The coordinator side consists of the 
following services: 



– Activation Service: It is responsible to create a coordinator object (to handle 
registration, completion, and distributed commit) and a transaction context 
for each transaction. 

– Registration Service: It is provided to the transaction participants and the 
initiator to register their endpoint references for the associated participant-
side services. 

– Coordinator Service: This service is responsible to run the 2PC protocol to 
ensure atomic commitment of a distributed transaction. 

– Completion Service: This service is used by the transaction initiator to signal 
the start of a distributed commit. 

The set of coordinator services run in the same address space. For each trans­
action, all but the Activation Service are provided by a (distinct) coordinator 
object. The participant-side services include: 

– CompletionInitiator Service: It is used by the coordinator to inform the 
transaction initiator the final outcome of the transaction, as part of the 
completion protocol. 

– Participant Service: The coordinator uses this service to solicit votes from, 
and to send the transaction outcome to the participants. 

The detailed steps of a distributed transaction using a WS-AT conformant 
framework are shown with a banking example (adapted from [5] and used in our 
performance evaluation) in Fig. 1. In this example, a bank provides an online 
banking Web service that a customer can access. The transaction is started due 
to a single Web service call from the customer on the bank to transfer some 
amount of money from one account to the other. 

3 System Models  

We consider a composite Web service that utilizes Web services provided by 
other departments or organizations, similar to the example shown in Fig. 1. We 
assume that an end user uses the composite Web service through a Web browser 
or directly invokes the Web service interface through a standalone client appli­
cation. In response to each request from an end user, a distributed transaction is 
started to coordinate the interactions with other Web services. The distributed 
transactions are supported by a WS-AT conformant framework such as [5]. 

For simplicity, we assume a flat distributed transaction model. We assume 
that for each transaction, a distinct coordinator is created. The lifespan of the 
coordinator is the same as the transaction it coordinates. 

The composite Web service provider serves as the role of the initiator. We as­
sume that the initiator is stateless because it typically provides only a front-end 
service for its clients and delegates actually work to the participants. All trans­
actions are started and terminated by the initiator. The initiator also propagates 
the transaction to other participants through a transaction context included in 
the requests. 
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Fig. 1. The sequence diagram of a banking example using WS-AT 

We assume that the transaction coordinator runs separately from the initiator 
and the participants.1 Both the coordinator and the initiator are replicated. For 
simplicity, we assume that the participants are not replicated. We assume that 
3f + 1 coordinator replicas are available, among which at most f can be faulty 
during a transaction. Because the initiator is stateless, we require only 2f + 1  
initiator replicas to tolerate f faulty initiator replicas. There is no limit on the 
number of faulty participants. 

We call a coordinator/initiator replica correct if it does not fail during its 
lifetime, i.e., it faithfully executes according to the protocol prescribed from the 
start to the end. However, we call a participant correct if it is not Byzantine 
faulty, i.e., it may be subject to typical non-malicious faults such as crash faults 
or performance faults. 

1 Even though it is a common practice to collocate the initiator with the coordinator 
in the same node, it might not be a desirable approach, due to primarily two reasons. 
First, collocating the initiator and the coordinator tightly couples the business logic 
with the generic transaction coordination mechanism (also observed in [6]), which is 
desirable neither from the software engineering perspective (it is harder to test) nor 
from the security perspective (it is against the defence-in-depth principle). Second, 
the initiator typically is stateless, which can be rendered fault tolerant fairly easily, 
while the coordination service is stateful. This naturally calls for the separation of 
the initiator and the coordinator. 



The coordinator and initiator replicas are subject to Byzantine faults, i.e., a 
Byzantine faulty replica can fail arbitrarily. For participants, however, we have 
to rule out some forms of Byzantine faulty behaviors. A Byzantine faulty par­
ticipant can always vote to abort, or it can vote to commit a transaction, but 
actually abort the transaction locally. It is beyond the scope of any distributed 
commit protocol to deal with these situations. Rather, they should be addressed 
by business accountability and non-repudiation techniques. Other forms of par­
ticipant faults, such as a faulty participant sending conflicting votes to different 
coordinator replicas, will be tolerated. 

All messages between the coordinator and the participants are digitally signed. 
We assume that the coordinator replicas and the participants each has a pub­
lic/secret key pair. The public keys of the participants are known to all coordina­
tor replicas, and vice versa, while the private key is kept secret to its owner. We 
assume that the adversaries have limited computing power so that they cannot 
break the encryption and digital signatures of correct coordinator replicas. 

4 Byzantine Fault Tolerance Mechanisms 

4.1 Activation 

Figure 2 shows the mechanisms for the activation process. Upon receiving a 
request from a client, the initiator starts a distributed transaction and sends an 
activation request to the activation service. The client’s request has the form 
<creq, o, t, c >σc , where  o is the operation to be executed by the initiator, t is 
a monotonically increasing timestamp, c is the client id, and σc is the client’s 
digital signature for the request. A correct client sends the request to all initiator 
replicas. An initiator accepts the request if it is properly signed by the client, and 
it has not accepted a request with equal or larger timestamp from the same client. 
If the request carries an obsolete timestamp, the cached reply is retransmitted 
if one is found in the reply log. 

The activation request has the form <activation, v, c, t, k>σk 
, where  v is 

the current view, k is the initiator replica id. The request is sent to the primary 
replica of the activation service. The primary initially logs the activation request 
if the message is correctly signed by the initiator replica and it has not accepted 
a request with equal or larger timestamp from the initiator in view v. Only  
when f + 1 such messages are received from different initiator replicas with 
matching c and t, does the primary accept the activation request. This is to 
ensure the request comes from a correct initiator replica. The primary then 
sends a ba-pre-prepare message to the backup replicas. The ba-prepare message 
has the form <ba-pre-prepare, v, r, uuidp, p>σp , where  r is the content of the 
activation request, p is the primary id, uuidp is a universally unique identifier 
(uuid) proposed by the primary. 

The uuid is used to generate the transaction id, which will be used to identify 
the transaction and its coordinator object. To maximize security, the uuid should 
be generated from a high entropy source, which means the activation operation 
is inherently nondeterministic, and the uuid proposed by one replica cannot be 
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Fig. 2. Byzantine fault tolerance mechanisms for the activation of a transaction 

verified by another. This calls for the collective determination of the uuid for 
the transaction.2 This is achieved during the ba-pre-prepare phase. 

A backup activation replica accepts the ba-prepare message if it is in view v, 
the message is properly signed, r is a correct activation request, and it has not 
accepted the same message before. The backup then sends a ba-pre-prepare-reply 
message in the form <ba-pre-prepare-reply, v, d, uuidi, i>σi to all replicas, 
where d is the digest of the ba-prepare message, i is the replica id and uuidi is 
i’s uuid proposal. When the primary collects 2f ba-prepare-reply messages from 
different backups, it sends a ba-prepare-update message in the form <ba-pre­

prepare-update, v, d, U, p>σp to the backup replicas, where U is the collection 
of the digests of the 2f ba-pre-prepare-reply messages. 

A backup accepts a ba-pre-prepare-reply message if it is in view v, the  mes­
sage is properly signed and d matches the digest of the ba-pre-prepare message. 
It accepts the ba-pre-prepare-update message if it is in view v, d matches that 
of the ba-pre-prepare message, and the digests in U match that of the ba-pre­
prepare-reply messages. It is possible that a backup has not received a particular 
ba-pre-prepare-reply message, in which case, the backup asks for a retransmis­
sion from the primary. Upon accepting the ba-pre-prepare-update message, a 
backup sends a ba-prepare message to all replicas. The message has the form 
<ba-prepare, v, d, uuid, i>σi , where  uuid is the final uuid computed determin­
istically based on the proposals from the primary and 2f backups (we choose to 
use the average of the group of uuids as the final uuid, but other computation 
method is possible). A replica accepts a ba-prepare message if it is in view v, the  

2 One might attempt to replace the high entropy source with a deterministic source to 
ensure the replica consistency. However, doing so might result in an easy-to-predict 
transaction identifier, which opens the door for replay attacks. An alternative to our 
approach is the coin-tossing scheme [7], however, it requires an additional phase to 
securely distribute the private key shares to the replicas. 
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message is properly signed, d is the digest of the ba-pre-prepare message, and 
uuid matches its own. 

When an activation replica has accepted 2f ba-prepare messages from differ­
ent replicas (including the message it sent), in addition to the ba-pre-prepare 
and ba-pre-prepare-update messages it has accepted or has sent (if it is the pri­
mary), it sends a ba-commit message in the form <ba-commit, v, d, uuid, i>σi 

to all other replicas. The verification of the ba-commit message is similar to that 
of the ba-prepare message. When a replica accepts 2f + 1 matching ba-commit 
messages from different replicas (including the message it has sent), it calculates 
(deterministically) the transaction id tid based on uuid, creates a coordinator 
object with the tid, and sends the activation response to the initiator replicas. 
The response  has  the form  <activation-response, c, t, C, i>σi , where  c and t 
are the client id and the timestamp included in the activation request, C is the 
transaction context. Note that if the primary is faulty, it can prevent a correct 
replica from completing the three phases, in which case, the replica suspects the 
primary and initiates a view change. 

An initiator replica logs the activation response if it is properly signed, and c 
and t match those in its activation request. The replica accepts the message if it 
has collected f + 1 matching responses from different activation service replicas. 

4.2 Registration and Transaction Propagation 

To ensure atomic termination of a distributed transaction, it is essential that 
all correct coordinator replicas agree on the set of participants involved in the 
transaction. This can be achieved by running a Byzantine agreement algorithm 
among the coordinator replicas whenever a participant registers itself. However, 
doing so might incur too much overhead for the coordination service to be prac­
tical. In this work, we defer the Byzantine agreement on the participants set 
until the distributed commit stage and combine it with that for the transac­
tion outcome. This optimization is made possible by the mechanisms shown in 
Fig. 3. In addition, we assume that there is proper authentication mechanism in 
place to prevent a Byzantine faulty process from illegally registering itself as a 
participant at correct coordinator replicas. 



A participant does not accept a request until it has collected f + 1 matching 
requests from different initiator replicas. This is to prevent a faulty initiator 
replica from excluding a participant from joining the transaction (e.g., by not 
including the transaction context in the request), or from including a process 
that should not participate the transaction. Since at most f initiator replicas 
are faulty, one of the messages must have been sent by a correct initiator replica. 

To register, a participant sends its registration request to all coordinator repli­
cas and  waits until  2f + 1 acknowledgments from different replicas have been col­
lected. Since at most f replicas are faulty, at least f +1 correct replicas must have 
accepted the registration request. If the participant can register successfully and 
complete its execution of the initiator’s request, it sends a normal reply to the ini­
tiator replicas. Otherwise, it sends an exception back (possibly after recovery from 
a transient failure). If an initiator replica receives an exception from a participant, 
or times out a participant, it should choose to abort the transaction. 

The initiator replicas also register with the coordinator replicas prior to the 
termination of the transaction. It follows a similar mechanism as that of the 
participants. Because at most f initiator replicas are faulty, at least f +1 replicas 
can finish the registration successfully. 

4.3 Completion and Distributed Commit 

The Byzantine fault tolerant transaction completion and distributed commit 
mechanisms are illustrated in Fig. 4. When an initiator replica completes all 
the operations successfully within a transaction, it sends a commit request to 
the coordinator replicas. Otherwise, it sends a rollback request. A coordinator 
replica does not accept the commit or rollback request until it has received f +1 
matching requests from different initiator replicas. 

Upon accepting a commit request, a coordinator replica starts the first phase 
of the standard 2PC protocol. However, at the end of the first phase, a Byzantine 
agreement phase is conducted so that all correct coordinator replicas agree on the 
same outcome and the participants set for the transaction. This will be followed 
by the second phase of the 2PC protocol. If a rollback request is received, the 
first phase of 2PC is skipped, but the Byzantine agreement phase is still needed 
before the final decision is sent to all participants. When the distributed commit 
is completed, the coordinator replicas inform the transaction outcome to the 
initiator replicas. An initiator replica accepts such a notification only if it has 
collected f + 1 matching messages from different coordinator replicas. Similarly, 
a participant accepts a prepare request, or a commit/rollback notification only if 
it has collected f + 1 matching messages for the same transaction from different 
coordinator replicas. Again, this is to ensure the request or notification comes 
from a correct replica. 

As shown in Fig. 4, the Byzantine agreement algorithm used for distributed 
commit is similar to that in Sect. 4.1, except that no ba-pre-prepare-reply and 
ba-pre-prepare-update messages are involved and the content of the messages 
are different. Due to space limitation, we only describe the format and the veri­
fication criteria for each type of messages used. 
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The ba-pre-prepare message has the form <ba-pre-prepare, v, tid, o, C>σp , 
where o is the proposed transaction outcome (i.e., commit or abort), C is the 
decision certificate, and σp is the primary’s signature for the message. The de­
cision certificate contains a collection of records, one for each participant. The 
record for a participant j contains a signed registration Rj = (tid, j)σj and a 
signed vote Vj = (tid, vote)σj if a vote from j has been received by the primary. 
The tid is included in each registration and vote record so that a faulty pri­
mary cannot reuse an obsolete registration or vote record to force a transaction 
outcome against the will of some correct participants. 

A backup accepts a ba-pre-prepare message provided it is in view v, it is  
handling tid, the message is signed properly, the registration records in C are 
identical to, or form a superset of, the local registration records, and it has not 
accepted another ba-pre-prepare message for tid in view v. It also verifies that 
every vote record in C is properly signed by its sending participant and the tid 
in the record matches that of the current transaction, and the proposed decision 
o is consistent with the registration and vote records. 

The ba-prepare message takes the form <ba-prepare, v, t, d, o, i>σi , where  
d is the digest of the decision certificate C. A coordinator replica accepts a 
ba-prepare message provided it is in view v, it is handling tid, the message is 
correctly signed by replica i, the decision o matches that in the ba-pre-prepare 
message, and the digest d matches that of the decision certificate in the accepted 
ba-pre-prepare message. 

The ba-commit message has the form <ba-commit, v, tid, d, o, i>σi . The ba­
commit message is verified using the same criteria as those for ba-prepare mes­
sages. When a replica collects 2f + 1 matching ba-commit messages from dif­
ferent replicas, it sends the decision o to all participants of transaction tid. If  a  
replica i could not reach an agreement, it initiates a view change when a timeout 
occurs. 
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Fig. 5. (a) Various latency measurements under normal operations (with a single 
client). (b) End-to-end throughput under normal operations. 

5 Implementation and Performance Evaluation 

We have implemented the core Byzantine fault tolerance mechanisms (with the 
exception of the view change mechanisms) and integrated them into Kandula [5], 
a Java-based open source implementation of WS-AT. The extended framework 
also uses WSS4J (an implementation of the Web Services Security Specifica­
tion) [8], and Apache Axis (SOAP Engine) 1.1 [9]. Due to space limitation, the 
implementation details are omitted. 

Our experiment is carried out on a testbed consisting of 20 Dell SC1420 servers 
connected by a 100Mbps Ethernet. Each server is equipped with two Intel Xeon 
2.8GHz processors and 1GB memory running SuSE 10.2 Linux. 

The test application is the banking Web services application described in 
Sec. 2.2. The initiator is replicated across 3 nodes, and the coordination services 
are replicated on 4 nodes. The participants and the clients are not replicated, and 
are distributed among the remaining nodes. Each client invokes a fund trans­
fer operation on the banking Web service within a loop without any “think” 
time between two consecutive calls. In each run, 1000 samples are obtained. The 
end-to-end latency for the fund transfer operation is measured at the client. 
The latency for the transaction activation and distributed commit are measured 
at the coordinator replicas. Finally, the throughput of the distributed commit 
service is measured at the initiator for various number of participants and con­
current clients. 

As can be seen in Fig. 5(a), the end-to-end latency for a transaction is in­
creased by about 400-500 ms when the number of participants varies from 2 
to 8. The increase is primary due to the two Byzantine agreement phases in 
our mechanisms (one for activation, the other for 2PC). The latencies for trans­
action activation and for 2PC are also shown in Fig. 5(a). While the latency 
for 2PC increases with the number of participants, the activation latency re­
mains constant because the participants are not involved with activation. As 
shown in Fig. 5(b), the throughput for transactions using our mechanisms is 



about 30% to 40% lower than those without replication protection, which is 
quite moderate considering the complexity of the BFT mechanisms. (To avoid 
cluttering, only the 2-participants case is shown for the no-replication configu­
ration.) 

6 Related Work 

There are a number of system-level work on fault tolerant TP monitors, such as 
[10,11]. However, they all use a benign fault model. Such systems do not work if 
the coordinator is subject to intrusion attacks. We have yet to see other system-
level work on Byzantine fault tolerant TP monitors. The work closest to ours 
is Thema [12], which is a BFT framework for generic multi-tiered Web services. 
Even though some of the mechanisms are identical, our work contains specific 
mechanisms to ensure atomic transaction commitment. 

The problem of BFT distributed commit for atomic transactions has been of 
research interest in the past two decades [13,14]. The first such protocol is pro­
posed by Mohan et al. [13]. In [13], the 2PC protocol is enhanced with a Byzan­
tine agreement phase on the transaction outcome among the coordinator and all 
participants in the root cluster. This approach has several limitations. First, the 
atomicity of a transaction is guaranteed only for participants residing in the root 
cluster under Byzantine faults. Second, it requires every participant within the 
cluster knows the cluster membership, which may not be applicable to Web ser­
vices atomic transactions because a participant is not obligated to know all other 
participants. Our work, on the other hand, requires a Byzantine agreement only 
among the coordinator replicas and hence, allows dynamic propagation of transac­
tions. Rothermel et al. [14] addressed the challenges of ensuring atomic distributed 
commit in open systems where participants may be compromised. However, [14] 
assumes that the root coordinator is trusted. This assumption negates the neces­
sity to replicate the coordinator for Byzantine fault tolerance. Apparently, this 
assumption is not applicable to Web services applications. 

7 Conclusion and Future Work 

In this paper, we presented Byzantine fault tolerance mechanisms for distributed 
coordination of Web services atomic transactions. We focus on the protection of 
the basic services and infrastructures provided by typical TP monitors against 
Byzantine faults. By exploiting the semantics of the distributed coordination 
services, we are able to adapt Castro and Liskov’s BFT algorithm [3] to ensure 
Byzantine agreement on the transaction identifiers and the outcome of trans­
actions fairly efficiently. A working prototype is built on top of an open source 
distributed coordination framework for Web services. The measurement results 
show only moderate runtime overhead considering the complexity of Byzantine 
fault tolerance. We believe that our work is an important step towards a highly 



secure and dependable TP monitor for Web services.3 We are currently working 
on the implementation of the view change mechanisms and conducting experi­
ments in the wide-area network configurations. 
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