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A simple numerical method of cycle jumps for 
cyclically loaded structures 

D. Cojocaru, A.M. Karlsson .. 
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I. Introduction 

Failu res of structures subjected to cyclic load ing are 
orten influenced by a slow evolution of malcrial properties. 
For example. over the lifetime of the struct ure, yicld
strengt h or clastic modulus may change and eigen-strains 
may develop due to phase transformation. Factors stich 
as thermal exposure (e.g. thermal barrier coatings [1 - 3]), 
humidity (e.g. fuel cells [4], silica gtass [5]). and environ
mental attacks (e.g. corrosio n [6-8], irradiation (9]) ca n 
cause a change in material properties. Design agai nst fail
ure for this class of structures is associated with many cha l
lenges, including determining the material properties as 
they evolve wi th time and how the stress state of the struc
ture change withi n each load cycle and with long term 
exposure. Finite element analysis (FEA) is a conven ient 
tool that readily gives a stress and st rain distribution as a 
funct ion of time when individual load cycles are simulated , 
and where material properties from experi mental results 
ca n easily be incorporated, e.g., [10- 12]. However, due to 
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the intrinsic non-linearities associated with complex sys
tems - such as non-linea r, temperature dependent material 
properties - a single load cycle in FEA normally consist of 
many numerical increments and iterations. Thus, simulat
ing each cycle a structure goes through before fatigue fail
ure occurs is many times not feasible. 

In this paper, we will focus on model ing aspects of struc
tures with evolving propert ies subjected to cyclic loading. 
In particular, we will invest igate a method of accelerated 
FEA, where not a ll individual cycles need to be modeled. 
We aim 10 develop a numerical technique that shortens 
the simulations, by utilizing the general concept of 
"cycle-jump" . Thi s will eliminate the need of sim ulat ing 
each individual cycle and signi ficant ly reduce the need for 
extensive experimental investigations. The method assumes 
knowledge of the evolvi ng properties. However, if these 
properties are not known. the model ca n instead be used 
ror reverse analysis, i.e. , determin ing properties rrom 
experimental observations. 

Here, a class of strUClUres with slowly evolving struc
tural properties will be considered . An example of st ructure 
with such features relates to thermal barrier coatings d is
cussed below. However. the model is not limited to thermal 
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barrier coatings but can be used for any structure with 
evolving material properties or slowly changing boundary 
conditions. 

The concept of cycle jumps has been investigated by sev
eral authors. The ‘‘Large Time Increments Method’’ 
(LATIN Method) was introduced in the early 1990’s by 
Ladevèze and co-workers [13,14]. This method separates 
the equations of the initial boundary value problem into 
two groups: (i) linear equations, global in space; and (ii) 
non-linear equations, which are local in space. Even 
though the theory behind the ‘‘LATIN method’’ is interest
ing, the implementation into commercial FEA software 
tends to be too cumbersome in its current form to be of 
practical interest. Fish and coworkers [15,16] have devel
oped an alternative method for cycle jumps where the time 
is decomposed into two time scales: one micro-chronolog
ical (fast time scale) and one macro-chronological (slow 
time scale). Thus, the micro-chronological time corre
sponds to the cyclic behavior, and the macro-chronological 
to the overall trend of the structure. Even though the con
cept is sound, there are some challenges with implementing 
the method into commercial finite element programs. Kie
wel et al. [17] developed a method to extrapolate the com
plete set of internal variables over a certain range of cycles. 
The extrapolation is based on piecewise polynomial or 
spline functions that are formed for each integration point 
in the finite element model. As for the previous models 
mentioned, the method is customized for viscoplastic mate
rial. A simple cycle-jump scheme was proposed in [18] by 
Van Paepegem et al. based on extrapolation of the damage 
parameter by using the explicit Euler integration formula. 
This method performs automatic computations of the 
jump length. A local computation (at each integration 
point) is accomplished by imposing a user supplied maxi
mum allowed increment/jump for the damage variable. 
The global jump length is then obtained as the abscisae 
value for which the cumulative statistical distribution of 
locally determined jump length reached a certain percent 
(10%) which is empirically provided by the user. 

All of the above methods are based on some variant of 
damage theory, whereas our method is based on evolving 
properties. This could include damage theory but in this fea
sibility study, we study the effect of transformation strains, 
discussed below. The proposed method allows for both time 
and/or temperature dependent structural changes such as 
increasing elastic modulus due to high-temperature sinter
ing; geometry changes due to oxidation, or permanent 
non-linear deformation; changing yield strength due to high 
temperature diffusion or eigen-strain due to phase transfor
mations. Needless to say, the cyclic nature of this set of 
problems results in a completely different state than if the 
structure was subjected to a static load [10,19]. 

The typical evolution with time of either a primary or a 
secondary dependent variable (such as a displacement, 
strain or stress component) is shown in Fig. 1. As the struc
ture is cyclically loaded (where ‘‘load’’ can be force, dis
placement, temperature or any other external parameter 
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Fig. 1. A schematic of an evolving state parameter, y(t), for a structure 
subjected to cyclic loading. 

that will affect the state variables), the state variables will 
change slightly after each full cycle, Fig. 1. Thus, a local 
and a global change in the variable occur, where the local 
is the high frequency variation and the global correspond
ing to the general, long term trend. If the general trend can 
be expressed as a mathematical function, this function can 
be used to extrapolate the state variable. We will refer to 
this function as the ‘‘global evolution function.’’ Thus, uti
lizing the global evolution function, the long-term response 
of the structure can be determined, or at least approxi
mated, without having to model the details of all cycles. 

The overall goal of this work is to develop a method that 
can reduce the computational effort by performing cycle 
jumps along the global evolution of structural properties. 
To achieve this, our general approach is: 

1. Conduct a set of cycles in FEA to establish the trend 
line, i.e., the global evolution function for each struc
tural variable; 

2. Extrapolate	 the state using the global evolution 
functions; 

3. Impose the extrapolated state as the initial state for a 
new finite element analysis after the cycle jump. 

A major challenge is to judge the success of the cycle jump. 
We will see later that convergence of the FEA is not guaran
tee for a correct solution. Therefore, an extrapolation 
scheme including a ‘‘control function’’ is needed to enhance 
the accuracy of the calculation, controlling the length of the 
cycle jumps. This will be explored in the following. 



2. Concept and modeling of cycle jumps 

The system that has inspired us in this investigation, 
thermal barrier coatings, will be used to illustrate the con
cept of cycle jumps. However, the method developed can be 
applied to any system with evolving structural properties. 

2.1. Example of a system with evolving material properties 

In this section, we will describe some of the pertinent 
details of the materials systems considered: Thermal Barrier 
Coatings (TBCs), used in the hot part of gas turbine engines. 
Extensive reviews of these systems can be found for example 
in [20–23], and some of the key aspects of TBCs will be sum
marized in the following (as it pertains to this work). 

TBCs enable higher operating temperatures, thus 
increased fuel efficiency. Through active internal cooling 
of the gas turbine blades and vanes, a thermal gradient is 
sustained over the TBC. The TBC consist of two layers 
(Fig. 2) deposited on the super alloy: (i) A metallic, alumi
num rich, bond coat providing oxidation resistance; and 
(ii) a ceramic topcoat (typically yttria stabilized zirconia, 
YZT) providing thermal protection. Depending on the 
application, each layer is typically 75–200 lm thick. The 
bond coat oxidizes during exposure to the high operating 
temperatures, forming a thin oxide scale (predominantly 
alumina, Al2O3) in the interface between the bond coat 
and the top coat. The thermally grown oxide (TGO) is ini
tially less than 0.5 lm and grows up to 7–10 lm before fail
ure. As the TGO grows – depleting the bond coat on 
aluminum – the structure evolves: interfacial cracks initi
ate, grow and coalesce, leading to final spallation of the 
coating. Moreover, due to the aluminum depletion, the 
properties in the bond coat changes with time. Thus, fati
gue failures of TBCs are typically associated with thermal 
cycling, inelasticity (e.g., creep and plasticity), and material 
evolution, finally leading to spallation of the coating. 

Fig. 2. A cross section of a thermal barrier coating before thermal 
exposures (courtesy Jin Yan, University of Delaware and Marion Bartsch, 
the German Aerospace Center). 

One particular failure evolution in TBCs is related to 
morphological instability of the TGO, characterized by 
local imperfections in the TGO that grow on a cyclic basis, 
eventually causing crack propagation in, and spallation of, 
the top coat, e.g. [1,19,24–28]. The morphological instabil
ities develop during thermal cycling and not during isother
mal conditions. Thus, the cyclic response is critical to 
simulate. This failure mechanism is driven by a combina
tion of three non-linear constitutive behaviors in the coat
ing: (1) high temperature inelasticity in the TGO, (2) 
growth strain in the TGO, and (3) cyclic yielding in the 
bond coat. The growth strain is induced due to the oxida
tion process when the new alumina is formed. The high 
temperature inelastic strength of the TGO is often referred 
to as ‘‘growth stress.’’ The lateral component of the growth 
strain is limited by the growth stress and once the TGO 
stress reached the level of the growth stress, the lengthening 
strain is reallocated into thickening strain. The growth 
stress can be measured experimentally [29–31]. 

In this paper, we will use morphological instabilities as a 
sample problem since this failure mode is fairly well devel
oped. However, the method we describe can be employed 
to any situation with evolving structure or properties. 

2.2. Basic finite element model 

In this feasibility study, we will investigate a two-dimen
sional finite element model, simulating a cylindrical geo
metry, Fig. 3A. The commercially available program 
ABAQUS [12] is used. The model is a variant of the model 
that was previously investigated by Karlsson and co-workers 
[10,19] to explore and explain morphological instabilities in 
TBCs. In this simplified model – designed to capture the nec
essary and sufficient parameters for morphological instabil
ities – only two of the coating’s layers are present: the TGO in 
shape of a center ring, surrounded by the bond coat. To 
reduce the model size, only 1/4 of the circular cross section 
is meshed, and appropriate boundary conditions are applied, 
as indicated in Fig. 3A. In the current simulations, we assume 
generalized plane strain elements. When the morphological 
instabilities are considered, the radial change of the TGO-
bond coat interface is monitored. 

As described above, a key feature in the failure of TBCs 
is the formation and growth of the TGO. Thus, it is critical 
to model this behavior in a satisfactory manner, while 
maintaining a tractable numerical scheme. Here, we adapt 
a method developed previously [19,24,25]. In this model, 
the TGO is considered linear-elastic, ideal-plastic at 
growth, with yield strength rTGO corresponding to theY 

growth stress. Even though the real mechanism in the 
TGO is creep, the simplification serves to accumulate 
inelastic strain during each cycle [24,25]. The growth strain 
in the TGO, eg, is imposed as stress-free strain through the 
user subroutine UEXPAN [12]. The accumulation of 
growth strain is the component that drives this system. 
For simplicity, we will assume constant growth strain rate 
in each simulation. 
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Fig. 3. (A) Finite element model used as a sample structure. State variables will be monitored along the line A–A. (B) Illustration of one load cycle. (C) 
Schematic of the general behavior of the Mises stresses in the bond coat during a cooling-heating cycle where r = 0  () original inner TGO surface. 

To maintain a tractable numerical scheme, we only Of particular interest is to explore the sensitivity for the 
assign evolving properties to the TGO in this feasibility heating-cooling sequence, which is approached in the fol
study. However, as will be evident in the following, the lowing manner: The structure is initially stress-free at 
method can incorporate any type of evolving material prop- 1000 �C. Each thermal cycle consists of three parts: (1) 
erties in multiple layers of the structure. Factors such as cyc- cooling to 0 �C, (2) reheat to 1000 �C and (3) high temper
lic phase transformations [32] could also be incorporated. ature exposure at 1000 �C, where the TGO grows by 



            
    

           
     

 

Table 1 
Materials properties 

Layer Behavior E (GPa) m rY (MPa)a Thermal expansion 10-6 · 1/DC 

Bond coat Linear elastic–ideal plastic 190 0.3	 200 14 

TGO Linear elastic–ideal plastic 380 0.2	 10,000; T 6 900 DC 8 
1000; T P 1000 DC 

a The yield strength for the TGO varies linearly in between the two temperature intervals. This property distribution allows the TGO to respond inelastic 
at elevated temperatures but elastic at all other temperature intervals. 
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Fig. 4. A schematic of the implementation of cycle jumps. 
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imposing the stress-free strain. The loading sequence is 
illustrated in Fig. 3B. The material properties used are 
summarized in Table 1. We note that the system is driven 
by the sequence of cooling–heating–growth strain. Each 
cooling-heating cycle resets the system, allowing more 
growth strain to be imposed at high temperature [10,19]. 
A system subjected to isothermal conditions with the same 
accumulated time at temperature will not see a significant 
radial increase. The typical structural response is visualized 
in Fig. 3C, where the stresses according to von Mises is 
shown for the bond coat at 0 DC and 1000 DC. The yielding 
during cooling results in residual stresses after reheating. 
The TGO stresses are closed to 1 GPa (not shown for 
simplicity). 

2.3. Implementation of cycle jumps to FEM-model 

The basic FE-model is created using ABQUS/CAE and 
ABAQUS Scripting Interface (an extension to ‘‘Python’’ 
programming language)[12]. A schematic of the implemen
tation and interaction between the various routines used is 
shown in Fig. 4. A set of cycles (including all necessary incre

mental steps) is conducted in ABAQUS. 1 Based on this solu
tion, the ‘‘global evolution function’’ can be approximated. 
The ‘‘global evolution function’’ describes the extrapolation 
and the cycle jump is based on this function. All variables are 
extrapolated (stress, strain, displacement). 

Since we cannot modify the information in the files con
taining the FEA results (e.g. the file ‘‘*.res’’), the insertion 
of the extrapolated values into the FEA model by perform
ing a ‘‘RESTART’’ command cannot be considered. Thus, 
we input the extrapolated values by utilizing the user-sub
routine UMAT and prescribed displacements in user-sub
routine DISP. The extrapolated displacements are applied 
at each node during the first step after extrapolation. These 
displacements are imposed incrementally (as if a displace
ment controlled loading was considered). During the last 

1 We note here that ABAQUS has a routine called ‘‘Direct Cyclic 
Analysis.’’ This method predicts the steady state condition for transient 
problems, where the stresses eventually will cycle between constant values. 
The method presented in this paper, deals with a problem with evolving 
stress field, where stresses and strains (in general) will continue to change 
throughout the life. 



increment in this step (at where the nodal displacements 
have reached the extrapolated displacements), the extrapo
lated stress and strain are imposed in the integration 
points. If a poor extrapolation was conducted, leading 
‘‘too far away’’ from the equilibrium position, the analysis 
will fail to converge. This is the first indicator on how well 
the global evolution function extrapolated the cycles that 
were spanned. However, as will be seen later, convergence 
is not an indicator that a true solution is obtained. Indeed, 
an extrapolation scheme including a control function is 
needed to control the extrapolation function – both 
‘‘slope’’ and ‘‘length.’’ The formulation and behavior of 
the control function will be discussed next. 

2.4. Extrapolation scheme 

We present here a simple approach for an extrapolation 
scheme with a ‘‘control function,’’ allowing the program to 
determine automatically a suitable length of the cycle jump. 
The method discussed here is most suitable for systems 
evolving in a quasi-linear manner. However, we will see 
that the extrapolation scheme will capture highly non-lin
ear behavior of the evolving structure by automatically 
conducting shorter or no jumps. Thus, the extrapolation 
scheme compromises between the computational efficiency 
and the accuracy of the solution. The method described in 
the following will guide the program to automatically 
determine the length of the cycle jump, perform multiple 
jumps and – which will be seen in the result section – will 
stay close to the cycle-by-cycle solution. The control func
tion developed here computes first the allowed jump-length 
for each variable in a control set at each integration point 
or/and node. The control set may contain all or a part of 
the variables involved in finite element analysis. The 
allowed jump length is computed based on an ‘‘accuracy 
control value,’’ which has to be specified by the user for 
each variable used in the control set. The minimum of all 
the allowed jump length values is selected as the common 
jump length and is used to perform the jump. Details of 
the procedures are described in the following. 

Let us consider the method for computing the jump 
length for each variable extrapolated. Assume that a FE-
based solution has been obtained such that it contains at 
least two, up to Nc, computed loading cycles. For each var
iable, y, of interest (e.g. components of stress, strain, dis
placement), y = y(t,M), where t is the time and M is any 
material point in the structure, at least three consecutive 
characteristic values are available. By characteristic values, 
we understand that those values are taken from the same 
relative position in time within the loading cycle. 

For simplicity, we assume that the three values are 
extracted at the end of three consecutive cycles, and are 
defined by the points P1(t1,y1), P2(t2,y 2), P3(t3,y3), Fig. 1.2 

2 The minimum required number of consecutive cycles computed by 
finite element analysis is two, since P3 (t3,y3) can be taken at beginning of 
the first FEA computed cycle. 

From these values, information pertaining to the global evo
lution of variable y can be extracted. The increments by 
which the variable y changed during the last two cycles are 
Dy(t1) =  y1 - y2 and Dy(t2) =  y2 - y3, respectively. Alterna
tively, expressed in terms of discrete slopes, we have 
s12(t1) =  Dy(t1)/Dtcycle and s23(t2) =  Dy(t2)/Dtcycle respec
tively, where Dtcycle = t1 - t2 = t2 - t3 represents the cycle 
length.3 

The allowed jump length for each extrapolated parame
ter is dictated by the following criterion: 

jspðt1 þ DtM Þ - s12ðt1Þjy;jump
6 qy ; ð1Þ js12ðt1Þj 

where qy is a relative error ðq > 0Þ; DtM is the timey y;jump 

spanned by the jump for material particle M, and  
spðt1 þ DtM Þ is the predicted slope at the moment after y;jump

the jump, obtained by linear extrapolation as: 

s12ðt1Þ - s23ðt2Þ spðt1 þ DtM Þ ¼ s12ðt1Þ þ  DtM ð2Þy;jump y;jump. 
Dtcycle 

Thus, the algorithm, by means of relation (1), ensures that 
the predicted slope at the time after the jump will be ‘‘close 
enough’’ to value of the slope before the attempted jump. 

The value of qy is a user specified input parameter and 
may be different for each variable in the control set. In 
our approach, we consider qy as a constant, but it could 
also be a time dependent and automatically controlled 
parameter. The appropriate values of qy can be obtained 
by comparing cycle-by-cycle analysis to a jump analysis 
for the initial portion of simulation (i.e. a reasonable num
ber of cycles). 

The value of allowed jump length is now easily obtained 
by substituting Eq. (2) into Eq. (1), and considering that 
the time-increments can have only positive values: 

js12ðt1ÞjDtM ¼ q . ð3Þy;jump y Dtcycle js12ðt1Þ - s23ðt2Þj 
So far, we have considered the computation of the 

allowed jump length for each variable in the control set, 
at each material point (integration point). However, the 
cycle jump length computed at each point will not be the 
same for all parameters considered. Since qy is supplied 
by the user, the most simple and efficient way to determine 
the common jump length, Dtjump, is to set it as the mini
mum of the computed allowed jump length for each 
variable4 

Dtjump ¼ DtcyclebminfDtM 
y;jumpg=Dtcyclec; ð4Þ 

3 For simplicity, in examples presented in this work, the cycle length is 
considered constant although this is not a restriction for the method as 
long as the cycle length Dtcycle(t) is much smaller than the life time of the 
structure. 

4 We mention here that in [18] a statistical approach is used to calculate 
the global jump length once the local computation has been done. This 
might be seen redundant in the context of the criterion proposed in this 
paper. 



 
 

where bgc denotes the floor function (thus, returning the 
greatest integer less than or equal to g) and Dtjump is the 
global jump length. 

Finally, the algorithm uses the Heun integrator to per
form the extrapolation of all the variables necessary for 
the next finite element analysis (after the cycle jump): 

1 
yðt1 þ DtjumpÞ ¼ yðt1Þ þ  ½s12ðt1Þ þ spðt1 þ DtjumpÞ�Dtjump

2 
ð5Þ 

or, by substituting Eq. (2) (where now DtM is replaced y;jump 

by Dtjump) into (5), we get: 

ðDtjump Þ2 

yðt1 þDtjumpÞ¼ yðt1Þþ s12ðt1ÞDtjump þ½s12ðt1Þ- s23ðt2Þ� . 
2Dtcycle 

ð6Þ 

Higher order formulas can be used as well in order to per
form the extrapolation, but they require more consecutive 
computed cycles by finite element analysis. In addition, 
the cycle length must be sufficiently small compared to the 
total time covered by the analysis, such that the approxima
tion of the derivatives involved in describing the global evo
lution by using the per-cycle incremental information 
provided by finite element analysis to remain accurate. 

The number of intermediate full cycles simulated by FEA 
(after one jump, before the next), NFEA,j, is adjusted auto
matically based on the previously computed jump length. 
This adjustment is empirical and can be expressed as 

NFEA;j ¼ N FEA;j-1 þ Dþ; if ðDtjump;j=DtcycleÞ 6 1; 

NFEA;j ¼ N FEA;j-1 - D-; 

if ðDtjump;j=DtcycleÞP NFEA;j-1 and NFEA;j-1 - D- P N min ; 

NFEA;j ¼ N FEA;j-1; otherwise. 

ð7Þ 
where j is jump that was just performed. D+ and D- are user 
supplied parameters, representing the increase and de
crease, respectively, in the number of FE computed cycles, 
and Nmin represents the minimum allowed NFEA,j (j = 1,  
2, . . .). This approach aims to minimize unnecessary jump 
computation when the global evolution is highly non-linear. 

Having established the controlled cycle-jump procedure, 
it is now of interest to investigate how various factors 
might influence the extrapolation accuracy and the compu
tational efficiency. These issues together with the impor
tance of having a reasonable procedure for determining 
the jump length are addressed and presented in the follow
ing section. 

3. Results 

3.1. Reference simulation 

Two reference simulations were conducted which 
include all individual cycle increments and steps required 
to reach the targeted time (or number of cycles). The refer
ence calculations are used for comparison of the cycle jump 

simulations, to access the accuracy of the technique. None 
of the results from the reference simulations were used 
when conducting the cycle jump simulations. 

In both simulations, 500 cycles (i.e., 1500 Abaqus steps: 
one load cycle constituting three Abaqus steps, Fig. 3B) 
were calculated. The two cases considered are ‘‘low growth 
strain rate,’’ eg = 10  -4 and ‘‘high growth strain rate,’’ 
eg = 10  -3, where the growth strain rate corresponds to 
the amount of growth strain applied during each cycle. 
The lengthening and thickening component of the growth 
strain are assumed to equality, for simplicity. The eigen
strain imposed in the TGO drives the system, making the 
state parameters evolve with each cycle. 

Consider the evolution of stresses and plastic strain in a 
material element (integration point) on the bond coat, close 
to the TGO, Fig. 5. For both low and high growth strain 
rate, the effective stress according to von Mises, ‘‘Mises 
stress,’’ starts at zero stress, reaches a maximum when 
the low temperature is reached (0 DC), decreases as the 
structure is reheated (back to 1000 DC), and increases when 
the growth strain is applied during the first cycle (Fig. 5A). 
This is the local response for the structure, repeated for 
each cycle. However, the values of the maximum and min
imum stresses change as the structure is cycled. This behav
ior corresponds to the global evolution of the structure. In 
particular, we see that the Mises stress increases on a cyclic 
basis until yield is reached after about seven cycles for the 
case of low growth strain rate (Fig. 5A). When high growth 
strain rate is considered, the material element reaches yield 
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equivalent plastic strain, in a bond coat element next to the TGO interface. 



 

 

 
 

during the second cycle. For both cases, the stress at the 
lower temperature is constant after yielding has occurred, 

High Growth Strain Rate 

at 200 MPa corresponding to the yield strength of the 1000 
material, whereas the stresses at the higher temperature 
continue to change slightly with each cycle. 

The non-linear constitutive response can easiest be mon
itored by considering the plastic strain. To this end, we will 
monitor the equivalent plastic strain eeq

p , for classic plasticity 
theory defined as [33] 

ep 
eq ¼ 

Z 
dep 

eq = 
Z 

2 

3 
dep 

ijdep 
ij

[ ]1=2 

ð8Þ 

pwhere dep is the equivalent plastic strain increment and deeq ij 

are the individual components. (The equivalent plastic 
strain should not be confused with current plastic strain 
which takes the sign of deformation into consideration 
[19]). For the case considered, the equivalent plastic strain 
accumulates with each cycle after yielding has occurred 
(Fig. 5B). Significant more equivalent plastic strain accu
mulates for the high growth strain rate. 

The long term behavior is illustrated in Figs. 6–8, where 
the states after the high-temperature growth strain applica
tion steps are shown. Again, let us consider the evolution of 
the Mises stress and the equivalent plastic strain, but this 
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simulation: (A) evolution of Mises stresses and (B) evolution of equivalent 
plastic strain; up to 500 cycles. State shown after high temperature 
exposure (1000 DC), along the line A–A in Fig. 3. r = 0  () original inner 
TGO surface. 

time we will view it as a function of the radius along the 
45D line (as indicated in Fig. 3). For low growth strain rate, 
Fig. 6A, a stress maximum is seen close to r = 10  lm. The 
location of maximum stress corresponds to the location of 
the plastic zone during the cooling step. The yield zone 
moves toward higher radii with each cycle (Fig. 6A and  
B). Thus, most of the structure remains elastic during the 
500 cycles. The scenario for the high growth strain rate 
changes somewhat (Fig. 7A and B). In this case, the plastic 
zone moves rapidly towards the edge of bond coat as the 
structure is cycled, resulting in overall yielding after 283 
cycles. After this time, overall yielding will occur at each 
cycle (at low temperature).5 

The development of the plastic zone directly influences 
the radial displacement of the boundaries, elucidated in 
Fig. 8. In this Figure, the evolution of the inner TGO sur
face and the TGO/BC interface are monitored as a function 
of time. For the case of low growth strain rate, the location 

5 We note that this model does not give a true behavior of the TBC 
Fig. 6. For low growth strain rate, example of results from reference system. Overall yielding in the bond coat is frequently observed, e.g. 
simulation: (A) evolution of Mises stresses and (B) evolution of equivalent [27,28]. However, this is associated with a driving force from the 
plastic strain; up to 500 cycles. State shown after high temperature constraint the substrate imposes or due to a thermal gradient, which is 
exposure (1000 DC), along the line A–A in Fig. 3. r = 0  () original inner not included in the current model. In the present case, overall yielding 
TGO surface. occurs due to small size of the bond coat modeled. 



  

  

 

 

 

 

274 long cycle jump, six additional full cycles are con
ducted. (We will later see that complete cycles after a cycle 
jump tend to bring the solutions closer to the true solu
tion.) Thus, 300 cycles are simulated with one cycle jump, 
and 20 initial and 6 final FEA calculated cycles. Comparing 
the results from the cycle jump to the reference calculation, 
Fig. 9, it is evident that the Mises stress is not correct for 
larger coordinates (r > 32  lm), and that the plastic strain 
in the bond coat is off by a factor of about three for all 
locations. Obviously, the cycle jump does not capture the 
larger region of yielding that has evolved in the bond coat. 
Thus, convergence after a cycle jump does not guarantee a 
true solution. 

3.3. Cycle jumps with control 

Next, we will discuss the results achieved when imple
menting the extrapolation scheme containing control func
tion as described in Section 2. In all cases, 500 cycles are 
simulated and compared with the reference simulations. 
Tables 2 and 3 summarizes the simulations conducted for 
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0 100 200 300 400 500 control set includes only the displacements components, 

Cycles u1 and u2, i.e., deformation in the (global) x- and  y-direc-
Fig. 8. Radial displacement as a function of time for (A) low growth tion, respectively. However, the set could contain any state 
strain rate and (B) high growth strain rate. variable, such as stress and/or strain tensors components. 

of the TGO/bond coat moves slightly outwards, whereas 
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the inner surface moves towards the center of the cylinder.
 
The case of high growth strain rate initially replicates the 

1000
 

behavior of low growth strain rate. However, as the struc
ture is cycled, both surfaces displace significantly, including 
a direction reversal of the inner surface. The direction rever
sal is associated with the onset of overall yielding and this 
non-linear behavior may cause a challenge for the cycle 
jump simulations. In both cases, the thickness of the TGO 
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increases, manifested as the difference between the two lines 50 

shown in the Figure. After 500 cycles, the TGO has 
increased in thickness with 0.163 lm and 2.842 lm (hence, 0 

the final TGO-thickness of 1.163 lm and 3.842 lm) for 
4.0 

low and high growth strain rate, respectively. 

3.2. Accuracy of results without control 

We will now investigate cycle jumps conducted without 
a control function and compare the results to the reference 
simulations. This will show that even if the finite element 
analysis converges after the cycle jump, it does not neces

3.0 

2.0 

1.0 
sarily mean that an acceptable solution is achieved (that 
is, a solution that is close to the true solution). 

To this end, we will study the case of the higher growth 
strain rate and conduct an uncontrolled jump. The global 
extrapolation function in this case is based on 20 initial 
‘‘complete cycles.’’ (‘‘Complete cycles’’ refers to that all 
increment and all three steps are computed through regular 
FEA.) The extrapolation is performed using relation (5), 
with the jump length set to Dtjump = 274 cycles. After the 

0.0 
0  10  20  30  40  50  

Fig. 9. For high growth strain rate, an uncontrolled jump compared to the 
reference simulations: (A) Mises stress and (B) equivalent plastic strain; 
300 cycles, one jump spanning 274 cycles. State shown after high 
temperature exposure (1000 DC), along the line A–A in Fig. 3. 
r = 0  () original inner TGO surface. 



� - � � � � � 

Table 2 
For low growth strain rate, computational efficiency of various control parameters and requirement of minimum number of cycles after cycle jump 

Control Min. FEA Average of Standard deviation Average of Standard deviation Jump computed Number of R 
parameters length Nmin MISES relative of MISES relative EQPL relative of EQPL relative life Ljumps (cycles) jumps occurred 
qu1 
¼ qu2 

(cycles) error (%) error error (%) error 

– 500 – – – – 0 0 0 
0.1 6 0.010889 0.015444 0.019135 0.044932 327 16 0.654 
0.05 6 0.008663 0.010715 0.015371 0.036293 308 16 0.616 
0.25 6 0.02559 0.028599 0.065686 0.117517 360 16 0.72 
0.5 6 0.064814 0.0759 0.170201 0.414964 365 17 0.73 
2.0 6 2.484124 12.23857 9.962509 75.90268 358 17 0.716 
0.1 2 0.04128 0.034898 0.02924 0.094727 339 19 0.678 
0.1 4 0.041064 0.036803 0.028876 0.1893 344 20 0.688 
0.1 8 0.009359 0.013736 0.017445 0.038351 309 14 0.618 
0.1 10 0.011699 0.011691 0.021022 0.050742 320 13 0.64 
1.0 6 0.359965 2.261973 3.25676 16.38999 347 19 0.694 

Table 3 
For high growth strain rate, computational efficiency of various control parameters and requirement of minimum number of cycles after cycle jump 

Control Minimum FEA Average of Standard deviation Average of Standard deviation Jump computed Number of R 
parameters length Nmin MISES relative of MISES relative EQPL relative of EQPL relative life Ljumps (cycles) jumps 
qu1 
¼ qu2 

(cycles) error (%) error error (%) error occurred 

– 500 – – – – 0 0 0 
0.1 6 0.056103 0.052195 0.17492 0.085305 164 24 0.328 
0.25 6 0.154843 0.136927 0.441524 0.308594 313 19 0.626 
0.5 6 0.477505 0.729945 0.386546 0.490643 338 20 0.676 
1 6 1.691285 2.853201 0.908853 0.661796 380 13 0.760 
2.0 6 3.57598 3.739328 3.691796 2.266767 412 9 0.824 
0.5 2 0.379698 0.379698 0.408386 0.534336 322 28 0.644 
0.5 10 0.185574 0.242929 0.728369 0.419562 356 12 0.712 
0.1 2 0.075744 0.07138 0.21694 0.08928 189 29 0.378 
0.25 2 0.12242 0.108115 0.275301 0.174854 263 30 0.526 

In the following, for each growth strain rate, the control 
parameters q and q are varied to investigate the sensitivu1 u2 

ity for these parameters on the solution. The influence of 
minimum number of intermediate full cycles, Nmin, is also 
investigated. To this end, the following values (for Eq. 
(7)) in cycles, have been used throughout: D+ = 2,  D- = 1.  

The evolution of the structure during the simulation when 
subjected to high growth strain rate is illustrated in Fig. 10, 
where the radial component of the interface between the 
TGO and the bond coat is monitored as a function of time 
(cycles). The results from the simulations using the cycle 
jump technique are compared to the reference configuration 
in this graph. Fig. 10 shows that the surface moves inwards 
(negative displacements) during the first part of the simula
tions, but will move outwards (positive displacements) after 
about 300 cycles, a behavior observed earlier in Fig. 8. The 
transition induces a strong non-linear response. The cycle 
jump technique captures this behavior well by conducting 
shorter cycle jumps or no jumps during the mostly non-linear 
part of the sequence and automatically making longer jumps 
during the mostly linear sequence. 

In addition to monitoring the displacement, as in 
Fig. 10, we can study state variables such as stress and 
strain. For example, from the Mises stress and equivalent 
plastic strain along the 45D line of the structure (Figs. 11 
and 12), it is evident that these state parameters are ‘‘close’’ 
to the reference simulations. In fact, all solutions listed in 

Tables 2 and 3 overlap the reference simulations except 
the case of q ¼ q ¼ 2:0, thus we only display two cases u1 u2 

in Figs. 11 and 12. For q ¼ q ¼ 2:0 the solution u1 u2 

obtained from the jump simulation deviates from the refer
ence simulation. 

To quantify the computational efficiency from the cycle 
jump technique, we introduce the ratio: 

R ¼ Ljumps =Ltot ; ð9Þ 
where Ljumps is the total time covered by the jumps and Ltot 

is the total time considered for the analysis. Thus, the more 
efficient (e.g., longer jumps) a calculation is, the higher va
lue of R. Generally, the computational efficiency increases 
with increasing value of the control parameters (Tables 2 
and 3). However, the accuracy of the calculation based 
on cycle jumps compared to the reference calculation, de
creases with increasing value of the control parameters. 

The accuracy, or errors, of the cycle jump simulations 
can be determined by comparing the results to the reference 
simulations. The errors can be quantified by considering 
the relative error of the state variables. The relative error, 
dE, is defined by 

yref y jumpdE ¼ � 100 ð%Þ; ð10Þ � yref 
� 

where y is the value of the state parameter at the integra
tion point, and indexes ref and jump indicate reference 
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Fig. 10. Displacement of inner TGO surface as a function of cycles for 
high growth strain rate, reference case compared to the cycle jump 
technique, after (equivalent of) 500 cycles. Requirement of minimum cycle 
jumps as (A) 6 and (B) 2. q ¼ q ¼ 0:5, high growth strain rate. u1 u2 

and cycle-jump based simulation, respectively. One way to 
represent the overall error of the jump model is to consider 
the average relative error, P 

dE 
dE ¼ N ð11Þ

N 

and the standard deviation of the relative error vffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uP u ðdE - dEÞ2 t 
s ¼ N 

; ð12Þ
N 

where N = 16207 is the total number of integration points 
in the model. From Tables 2 and 3, we see that both the 
average and the standard deviation of the relative error in
crease for both Mises stresses and equivalent plastic strain, 
for both growth strain rates, as the control parameters 
increase. 

A careful evaluation of Fig. 10 shows that the interme
diate, complete cycles between the jumps tend to bring 
the solution back towards the results from the reference 
simulations. This suggests that conducting more intermedi
ate simulations will in general increase the accuracy of the 

0.02 
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Fig. 11. For low growth strain rate, the cycle jump technique 
(qu1 
¼ qu2 

¼ 0:1 and 2.0) compared to the reference simulation after 
(equivalent of) 500 cycles: (A) Mises stress and (B) equivalent plastic strain 
(insert show an enlargement of the region 0 6 r 6 8 lm). State shown after 
high temperature exposure (1000 DC), along the line A–A in Fig. 3. 
r = 0  () original inner TGO surface. 

simulation. In this case, the accuracy does not compromise 
the computational efficiency, as seen in Tables 2 and 3. 

At present, we have not verified the numerically 
achieved results experimentally. We assume that the solu
tion obtained by the cycle-by-cycle finite element simula
tions is correct (within the context of the physical 
problem defined). Thus, when the cycle-jump scheme gives 
the same solution as the cycle-by-cycle solution, the cycle-
jump technique developed here is considered correct. 

3.4. Cycle jumps beyond the reference simulations 

Last, we present results from a simulation beyond the 
reference simulation. For the case of low growth strain 
rate, a simulation corresponding to 7000 cycles was 
conducted. 

In this case the control parameter values were set to 
q ¼ q ¼ 0:25 for the first 2000 cycles, then tou1 u2 

q ¼ q ¼ 0:15 for the analysis segment between 2000u1 u2 

and 3500 cycles and to q ¼ q ¼ 0:05 for the final poru1 u2 

tion, between 3500 and 7000 cycles. By studying the equiv
alent plastic strain (Fig. 13B), it is seen that the structure 
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Fig. 12. For high growth strain rate for a controlled jump (q ¼ q ¼ 0:1u1 u2 

and 2.0) compared to the reference simulations for (equivalent of) 500 
cycles. (A) Mises stress and (B) equivalent plastic strain. State shown after 
high temperature exposure (1000 DC), along the line A–A in Fig. 3. 
r = 0  () original inner TGO surface. 

slowly moves from elastic–plastic state, to experience over
all yielding after about 3000 cycles. The evolution of the 
Mises stresses (Fig. 13A) concur with this, showing similar 
response as when the higher growth strain rate was used in 
which case overall yielding was observed. In this case, we 
cannot access the accuracy of the results, since no reference 
simulation exists. 

The modification of control parameters was required 
since in a long analysis the selected values of the control 
parameters became too large, leading to inaccurate extrap
olation at the end of very long cycle jumps. This situation 
is easy correctable in our extrapolation scheme. We 
selected to reduce the values of the control-parameters 
and restarting the analysis from a moment when the solu
tion still was considered accurate. Alternatively, a maxi
mum allowed jump length could be imposed. Both 
methods may be performed automatically by the code, 
analyzing the FEA response immediately after a jump. 
By studying the finite element solution in the first cycle 
after a jump, the jump accuracy validation can be per
formed and the jump computation procedure can be 
restarted with modified control parameters, this procedure 
being the subject of our in-progress work. We are cur
rently extending the code to incorporate an automatic 
adjustment of the control parameters. 
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Fig. 13. For low growth strain rate, simulation of up to 7000 cycles: (A) 
evolution of Mises stresses and (B) evolution of equivalent plastic strain. 
State shown after high temperature exposure (1000 DC), along the line A– 
A in  Fig. 3. r = 0  () original inner TGO surface. 

4. Concluding remarks 

A method for accelerated numerical simulations of 
structures subjected to cyclic loading has been developed 
and is presented in this paper. Of particular interest is a 
class of structures where the properties evolve with time. 
As inspiration for the work, we have used a common fail
ure evolution seen in thermal barrier coatings, referred to 
as morphological instabilities or ‘‘ratcheting,’’ even though 
the proposed method is applicable to a range of systems 
where the structural properties evolve, including incorpo
rating damage parameters. 

The method discussed and developed in this work is 
based on combining a cycle jump technique with finite ele
ment simulations. A key part of the technique is an extrap
olation scheme, containing a control function, allowing the 
program to automatically determine a suitable length of 
the cycle jump, performing multiple jumps and ensuring 
that the solution is accurate. By user-input, the control 
function can be controlled through a parameter that 
defines an allowable error. Thus, the extrapolations scheme 
compromises between computational efficiency and accu
racy of the solution. To visualize the accuracy of the pro
posed method, a reference simulation is conducted, 
containing all increments and steps. However, knowledge 
from this simulation is only used to verify the results. 



The method discussed here is most suitable for systems 
evolving in a quasi-linear manner. However, it is seen that 
the extrapolation scheme will capture highly non-linear 
behavior of the evolving structure by automatically con
ducting shorter or no jumps. Thus, the method stays close 
to the solution obtained from the cycle-by-cycle simulation 
even with high non-linear evolution, however compromis
ing the computational efficiency. 

In all, we show that this relatively simple approach to 
accelerated numerical simulations, capturing the develop
ment and evolution of structures subjected to cyclic load
ing, can give reliable solutions while saving significant 
computational efforts. 
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