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Abstract 
Reducing power consumption has become a major challenge in the design and 
operation of today's computer systems. This chapter describes different tech-
niques addressing this challenge at different levels of system hardware, such 
as CPU, memory, and internal interconnection network, as well as at different 
levels of software components, such as compiler, operating system and user ap-
plications. These techniques can be broadly categorized into two types: Design 
time power analysis versus run-time dynamic power management. Mechanisms 
in the first category use analytical energy models that are integrated into existing 
simulators to measure the system's power consumption and thus help engineers 
to test power-conscious hardware and software during design time. On the other 
hand, dynamic power management techniques are applied during run-time, and 



are used to monitor system workload and adapt the system's behavior dynami-
cally to save energy. 
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1. Introduction 

Information processing engines are really seen as 
just "heat engines." 

C. Mead and L. Conway, "Introduction to VLSI Systems," 1980 

Innovations and improvements have long been made in computer and system ar-
chitectures to essentially increase the computing power truly observing the Moore's 
Law for more than three decades. Improvements in semiconductor technology make 
it possible to incorporate millions of transistors on a very small die and to clock 
them at very high speeds. Architecture and system software technology also of-
fer tremendous performance improvements by exploiting parallelism in a variety of 
forms. While the demand for even more powerful computers would be hindered by 
the physics of computational systems such as the limits on voltage and switching 
speed [39], a more critical and imminent obstacle is the power consumption and the 
corresponding thermal and reliability concerns [27]. This applies not only to low-end 
portable systems but also to high-end system designs. 

Since portable systems such as laptop computers and cell phones draw power from 
batteries, reducing power consumption to extend their operating times is one of the 
most critical product specifications. This is also a challenge for high-end system de-
signers because high power consumption raises temperature, which deteriorates per-
formance and reliability. In some extreme cases, this requires an expensive, separate 
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power facility, as in the Earth Simulator [18], which achieves a peak performance of 
40 Tflops but dissipates 5 MWatts of power. 

This chapter provides a comprehensive survey of power analysis and optimiza-
tion techniques proposed in the literature. Techniques for power efficient computer 
systems can be broadly categorized into two types: Offline power analysis and dy
namic power management techniques. Offline power analysis techniques are based 
on analytical energy models that are incorporated into existing performance-oriented 
simulators to obtain power and performance information and help system architects 
select the best system parameters during design time. Dynamic power management 
(DPM) schemes monitor system workload and adapt the system's behavior to save 
energy. These techniques are dynamic, run-time schemes operating at different lev-
els of a computer system. They include Dynamic Voltage Scaling (DVS) schemes 
that adjust the supply voltage and operating frequency of a processor to save power 
when it is idle [27,68]. A similar idea can be applied to I/O devices by monitoring 
their activities and turning them off or slowing them down when the demand on these 
devices is low [7,14,28]. Another possibility to conserve energy at run-time is when 
a system has more than one resource of the same kind, which is typically found in 
parallel and networked cluster systems. In this case, applying a DPM scheme in a 
coordinated way rather than applying it to individual resources independently can 



better manage the entire system. For instance, the DVS technique can be extended to 
a cluster system of multiple nodes by coordinating multiple DVS decisions [19]. 

This chapter is organized as follows. Section 2 discusses several energy models 
and the corresponding power analysis and optimization techniques integrated into 
existing simulation environments. These energy models cover various levels of a 
system with a varying degree of granularity and accuracy, which includes CPU-level, 
system-level, and parallel system-level power analysis techniques. Section 3 presents 
various hardware and software DPM techniques that also differ in granularity as well 
as accuracy. Fine-grained monitoring and power management is possible at a smaller 
scale but it may not be feasible at a larger scale because of the corresponding over-
head of gathering information and making power-related decisions. Therefore, this 
section presents the various CPU-level, system-level, and parallel system-level DPM 
techniques. Section 4 provides a conclusion and discusses possible future research. 

2. Power Analysis and Optimization Using Energy Models 

Power dissipation has emerged as a major constraint in the design of processors 
and computer systems. Power optimization, just as with performance, requires care-
ful design at several levels of the system architecture. The first step toward optimizing 
power consumption is to understand the sources of energy consumption at different 
levels. Various energy models have been developed and integrated with existing sim-
ulators or measurement tools to provide accurate power estimation, which can be 
used to optimize the system design. 

Section 2.1 describes processor-based energy models that estimate power con-
sumption at cycle- or instruction-level. Section 2.2 discusses system-based energy 
models that study power consumption of both hardware and software components. 
Finally, Section 2.3 targets multiprocessor-based or cluster-based energy models. 
These studies in particular focus on the system interconnect since energy perfor-
mance of individual processors or nodes can be estimated based on techniques 
described in Sections 2.1 and 2.2. Table I summarizes these energy model-based 
offline approaches. 

2.1 CPU-Level Energy Models 
Power consumed by the CPU is a major part of the total power consumption of 

a computer system and thus has been the main target of power consumption analy-
sis [9,10,49,65,70]. Several power models have been developed and integrated into 
existing performance simulators in order to investigate power consumption of CPU 
either on a functional unit basis or processor as a whole. These analyses are based on 



TABLE I  
TAXONOMY OF POWER ANALYSIS TECHNIQUES USING ENERGY MODELS  

Type Level of detai I Energy models Simulation tools Section 
CPU Cycle level or Power density-based or ca- PowerTimer [9], Watlch 2.1.1 

RTL pacitance-based model for [10] and Simple Power [70] 
cycle-level simulation 

Instruction level Instruction-based energy Power profiles for Intel 2.1.2 
model with the measurement 486DX2, Fujitsu SPAR-
of instruction counts Clite'934 [65] and 

PowerPC [49] 

System Hardware com- State-based model (e.g., POSE (Palm as Emulator) 2.2.1 
ponent level sleep/doze/ [16] 

busy) for functional simulation 

Software com- Process-based model with Time driven sampling, 2.2.2 
ponent level time-driven and energy-driven PowerScope [20], and en-

sampling ergy driven sampling [12] 

Hardware and Component-specific energy SoftWatl built upon SimOS 2.2.3 
software compo- models for complete system system simulator [27] 
nent level simulation 

Parallel Interconnection Bit energy model for bit-level Simulink-based tool [71] 2.3 
system network archi- simulation 

tecture level Message-based energy model Orion, the simulator for 2.3 
for simulating interconnection power-performance inter-
network connection networks [67] 

two abstraction levels; cycle-level (or register-transfer level) and instruction-level as 
described in the following two subsections, respectively. 

2. 1. 1 Cycle-Level CPU Energy Model 
Energy consumption of a processor can be estimated by using cycle-level archi-

tecture simulators. This is done by identifying the active (or busy) microarchitecture-
level units or blocks during every execution cycle of the simulated processor [9,10, 
70]. These cycle-by-cycle resource usage statistics can then be used to estimate the 
power consumption. An energy model describing how each unit or block consumes 
energy is a key component in any power-aware cycle-level simulators. Figure I il-
lustrates a high-level block diagram of power-aware cycle-level simulators. 

Brooks et al. presented two types of energy models for their PowerTimer simulator 
[9]: 

(i) Power density-based energy model is used for components when detailed 
power and area measurements are available; and 

(ii) analytical energy models are used for the rest of the components in a CPU. 
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FIG. 1. Block diagram of a power-aware, cycle-level simulator. 

Analytical equations fonnulate the energy characteristics in tenns of microarchitec-
ture-level design parameters such as cache size, pipeline length, number of registers, 
etc. These two types of energy models were used in conjunction with a generic, para-
meterized, out-of-order superscalar processor simulator called Turandot [44]. Using 
PowerTimer, it is possible to study the power-perfonnance trade-offs for different 
system configurations with varying resource sizes of caches, issue queues, rename 
registers, and branch predictor tables, which will help in building power-aware mi-
croarchitectures. 

Wauch [10] and SimplePower [70] are two other CPU-level power-monitoring 
tools based on SimpleScalar [11], which is the most popular microarchitecture simu-
lator. In Wauch, the energy models depend on the internal capacitances of the circuits 
that make up each unit of the processor. Each modeled unit falls into one of the fol-
lowing four categories: Array structures, memories, combinational logic and wires, 
and the clocking network. A different power model is used for each category and in-
tegrated in the SimpleScalar simulator to provide a variety of metrics such as power, 
perfonnance, energy, and energy-delay product. Table II shows the energy expendi-
ture of various components from measurements as well as from the Wauch simulator. 

SimplePower, on the other hand, is based on transition-sensitive energy model, 
where each modeled functional unit has its own switch capacitance for every pos-
sible input transition [70]. This is then used to calculate the power consumed in 
a particular functional unit based on the input transition while executing a given 
instruction. SimplePower is used to evaluate the impact of an architectural modifica-
tion as well as the effect of a high-level compiler optimization technique on system 
power. Example uses of SimplePower include selective gated pipeline technique to 
reduce the datapath switch capacitance, loop and data transfonnation to reduce the 
memory system power, and register relabeling to conserve power on the data buses 
[70]. 



TABLE II  
COMPARISON OF POWER BREAKDOWNS BETWEEN MEASUREMENT  

(ALPHA 21264) AND ANALYTICAL ENERGY MODEL IN THE WATTCH  
SIMULATOR [101 

Hardware structure Measurement Analytical model 
(Alpha 21264) (Wattch) 

Caches 16.1% 15.3% 
Out-of-order issue logic 19.3% 20.6% 
Memory 8.6% 11.7% 
Memory management unit 10.8% 11.0% 
Floating point execution unit 10.8% 11.0% 
Clocking network 34.4% 30.4% 

2. 1.2 Instruction-Level CPU Energy Model 

In contrast to the fine-grain cycle-level techniques, coarse-grain instruction-level 
power analysis techniques estimate the total energy cost of a program by adding the 
energy consumed while executing instructions of a program [65,9]. Instruction-by-
instruction energy costs, called base costs, can be measured for individual instruc-
tions for a target processor. However, there is extra power consumption due to "inter-
action" between successive instructions caused mainly by pipeline and cache effects. 
The base costs of individual instructions and the power cost of inter-instruction 
effects are determined based on the experimental procedure using a program con-
taining several instances of the targeted instruction (for base cost measurement) and 
an alternating sequence of instructions (for inter-instruction effects costs). Table III 
illustrates a subset of the base costs for Intel 486DX2 and Fujitsu SPARClite'934 
[65]. A similar study has also been conducted for PowerPC microprocessor [49]. 

Once the instruction-by-instruction energy model is constructed for a particular 
processor, the total energy cost, Ep, of any given program, P, is given by: 

Ep = L(Base; * N;) + L(Inter;,j * N;,j) + L Ek (1) 
;,j k 

where Base; is the base cost of instruction i and N; is the number of executions of 
instruction i. Inter;,j is the inter-instruction power overhead when instruction i is 
followed by instruction j, and N;,j is the number of times the (i, j) pair is executed. 
Finally, Ek is the energy contribution of other inter-instruction effects due to pipeline 
stalls and cache misses. 



TABLE III  
BASE COSTS FOR [NTEL 486DX2 AND FUJITSU SPARCLITE '934 PROCESSORS [65]. (CYCLES  

AND ENERGY NUMBERS IN THE TABLE ARE PER-INSTRUCTION VALUES)  

[ntel 486DX2 Fujitsu SPARClite '934 

Instruction Current Cycles Energy Instruction Current Cycles Energy 
(rnA) (]0-8 J) (rnA) ([0-8 J) 

nop 276 I 2.27 nop 198 I 3.26 

mov dX,[bx] 428 I 3.53 Id [1O],iO 213 I 3.51 

mov dX,bx 302 1 2.49 or gO,iO,1O 198 I 3.26 

mov [bx],dx 522 I 4.30 st iO,[IO] 346 2 11.4 

add dX,bx 3[4 1 2.59 add iO,oO,IO 199 I 3.28 

add dX,[bx] 400 2 6.60 mul gO,r29,r27 198 1 3.26 

jmp 373 3 9.23 sri iO),1O 197 I 3.25 

2.2 Complete System-Level Energy Models 
There is little benefit in studying and optimizing only the CPU core if other 

components have significant effect on or even dominate the energy consumption. 
Therefore, it is necessary to consider other critical components to reduce the overall 
system energy. Section 2.2.1 discusses the hardware state-level models, where the 
total energy consumption of the entire system is estimated based on the state each 
device is in or transitioning to/from. Here, it is assumed that each device is capable 
of switching into one of several power-saving states, such as sleep state, depend-
ing on the demand on that particular device [16]. This capability is usually provided 
in portable systems to extend their lifetimes as longer as possible. Software-based 
approaches presented in Section 2.2.2 identify energy hotspots in applications and 
operating system procedures and thus allow software programmers to remove bot-
tlenecks or modify the software to be energy-aware. Finally, a complete system level 
simulation tool, which models the hardware components, such as CPU, memory hi-
erarchy, and a low power disk subsystem as well as software components, such as 
OS and application, is presented in Section 2.2.3. 

2.2. 1 Hardware State-Based Energy Model 
Cignetti et al. presented a system-wide energy optimization technique with a hard-

ware state-based energy model [16]. This power model encapsulates low-level details 
of each hardware subsystem by defining a set of power states (e.g., sleep, doze or 
busy for CPU) for each device. Each power state is characterized by the power 
consumption of the hardware during the state, which is called steady state power. 
In addition, each transition between states is assigned an energy consumption cost, 



TABLE IV  
STEADY STATE AND TRANSIENT POWER OF A PALM DEVICE FROM IBM. (STEADY  

STATE POWER SHOWN IS THE RELATIVE VALUE TO THE DEFAULT STATE; CPU  
DOZE, LCD ON, BACKLIGHT OFF, PEN AND BUTTON UP. STATE TRANSITION IS  
CAUSED BY SYSTEM CALLS, WHICH ARE SHOWN ON THE RIGHT-HAND SIDE)  

Steady state power Transient energy 
Device State Power (mW) System Call Transient energy (mJ) 
CPU Busy 104.502 CPU Sleep 2.025 

Idle 0.0 CPU Wake ll.170 
Sleep -44.377 LCD Wake 11.727 

LCD On 0.0 Key Sleep 2.974 
Off -20.961 Pen Open 1.935 

Backlight On 94.262 
Off 0.0 

Button Pushed 45.796 
Pen On Screen 82.952 

Graffitti 86.029 

called transient energy. Since transitions between states occur as a result of system 
calls, the corresponding energy can be measured by keeping track of system calls. 
The total energy consumed by the system is then determined by adding the power 
of each device state multiplied by the time spent in that state plus the total energy 
consumption for all the transitions. 

The above mentioned state-based energy model was implemented as an exten-
sion to the Palm OS Emulator (POSE) [48], which is a Windows based application 
that simulates the functionalities of a Palm device. POSE emulates Palm OS and in-
struction execution of the Motorola Dragonball microprocessor [43]. To quantify the 
power consumption of a device and to provide parameters to the simulator, measure-
ments were taken in order to capture transient energy consumption as well as steady 
state power consumption as presented in Table IV [16]. A Palm device from IBM 
was connected to a power supply with an oscilloscope measuring the voltage across 
a small resistor. The power consumption of the basic hardware subsystems, such as 
CPU, LCD, backlight, buttons, pen, and serial link, was measured using measure-
ment programs called Power and Millywatt [40]. 

2.2.2 Process-Based Energy Model 
Since software is the main determinant for the activities of hardware components, 

such as the processor core, memory system and buses, there is a need for inves-
tigating energy-oriented software techniques and their interaction and integration 
with performance-oriented software design. This subsection presents process-based 



power measurement techniques for system optimization [12,20]. Using specially 
designed monitoring tools, these measurement-based techniques target the power 
consumption of the entire system and try to point out the hotspots in applications 
and operating system procedures. It is noted that these techniques are process-based 
in the sense that they assume different processes consume different amount of energy 
not only because they execute for different amount of time or different number of in-
structions but also because they use different sets of resources in different sequences. 

In PowerScope [20], a time-driven statistical sampler is used to determine what 
fraction of the total energy is consumed, during a certain time period, due to specific 
processes in the system. This technique can be further extended to determine the 
energy consumption of different procedures within a process. By providing such a 
fine-grained feedback, PowerScope helps focus on those system components respon-
sible for the bulk of energy consumption. Chang et al. presented a similar tool but 
it is based on energy-driven statistical sampling, which uses energy consumption to 
drive sample collection [12]. The multimeter [20] (or the energy counter [12]) mon-
itors the power consumption of the system and the software under test by generating 
an interrupt for each time interval [20] (or each energy quanta [12]). This interrupt 
will prompt the system to record the process ID of the currently running process 
as well as to collect a current [20] (or energy [12]) sample. After the experiment, 
the collected data, i.e., process IDs and current/energy sample, is analyzed offline to 
match the processes with the energy samples to create the energy profile. 

The result from this study showed that a non-trivial amount of energy was spent by 
the operating system compared to other user processes. In addition, there are often 
significant differences between time-driven and energy-driven profiles and therefore, 
it is necessary to carefully combine both sampling methods to obtain more accurate 
energy profile information. 

2.2.3 Component-Specific Energy Model 
Power profiling techniques mentioned above provide energy cost for executing a 

certain program but without understanding the overall system behaviors in sufficient 
detail to capture the interactions among all the system components. A complete sys-
tem power simulator, SoftWatt [27] overcomes this problem by modeling hardware 
components such as CPU, memory hierarchy, and disk subsystem, and quantifying 
the power behavior of both application software and operating system. SoftWatt was 
built on top of SimOS infrastructure [55], which provides detailed simulation of both 
the hardware and software including the IRIX operating system [30]. In order to 
capture the complete system power behavior, SoftWatt integrates different analytical 
power models available from other studies into the different hardware components 
of SimOS. The modeled units in Softwatt include cache-structure, datapath, clock 
generation and distribution network, memory, and hard drive. 



Experience with Softwatt running JVM98 benchmark suite [59] from SPEC (Stan
dard Performance Evaluation Corporation) [62] emphasized the importance of a 
complete system simulation to analyze the power impact of both architecture and 
OS on the execution of applications. From a system hardware perspective, the disk is 
the single largest power consumer of the entire system. However, with the adoption 
of a low-power disk, the power hotspot was shifted to the CPU clock distribution and 
generation network (similar results are shown in Table II). Also, the cache subsys-
tem was found to consume more power than the processor core. From the software 
point of view, the user mode consumes more power than the kernel mode. However, 
certain kernel services are called so frequently that they accounted for significant en-
ergy consumption in the processor and memory hierarchy. Thus, taking into account 
the energy consumption of the kernel code is critical for reducing the overall energy 
cost. Finally, transitioning the CPU and memory subsystem to a low-power mode or 
even halting the processor when executing an idle process can considerably reduce 
power consumption. 

2.3 Interconnect-Level Energy Models in Parallel Systems 
After presenting energy models at the CPU-level (Section 2.1) and the system-

level (Section 2.2), this section describes energy models at the parallel system-level 
with the focus on interconnection networks. With the ever-increasing demand for 
computing power, processors are becoming more and more interconnected to create 
large clusters of computers communicating through interconnection networks. Wang 
et al. showed that the power consumption of these communication components is 
becoming more critical, especially with increase in network bandwidth and capacity 
to the gigabit and terabit domains [67]. Thus, power analysis in this area usually 
targets the building blocks inside a network router and a switch fabric. 

Bit energy model [71] considers the energy consumed for each bit, moving inside 
the switch fabric from the input to the output ports, as the summation of the bit 
energy consumed on each of the following three components: 

(i) the internal node switches that direct a packet from one intermediate stage to 
the next until it reaches the destination port; 

(ii) the internal buffer queues that store packets with lower priorities when con-
tention occurs; and 

(iii) the interconnect wires that dissipate power when the bit transmitted on the 
wire flips polarity from the previous bit. 

Different models were employed for each one of these components based on their 
characteristics. For example, the bit energy of a node switch is state-dependent; it 
depends on the presence or absence of packets on other input ports. On the other 



hand, power consumption of the internal buffer can be expressed as the sum of data 
access energy (read and write) and the memory refreshing operation. Finally, the bit 
energy of interconnect wires depends on the wire capacitance, length, and coupling 
between adjacent wires. The bit energy model was incorporated into a Simulink [56] 
based bit-level simulation platform to trace the dataflow of every packet in the net-
work to summarize the total energy consumption in the interconnect. 

As opposed to the bit-level approach mentioned above, an architecture-level net-
work power-performance simulator, Orion, was presented in [67]. Orion models an 
interconnection network as comprising of message generating (such as sources), 
transporting (router buffers, crossbars, arbiters, and link components), and consum-
ing (sinks) agents. Each of these agents is a building block of the interconnection 
network, and is represented by an architecture-level energy model. This energy 
model is based on the switch capacitance of each component including both gate 
and wire capacitances. These capacitance equations are combined with the switch-
ing activity estimation to compute the energy consumption per component operation. 
Orion can be used to plug-and-play router and link components to form different 
network fabric architectures, run varying communication workloads, and study their 
impact on overall network power and performance. 

3. Dynamic Power Management (DPM) Techniques 

While the simulation and measurement techniques described in Section 2 aim to 
optimize power performance at design time, DPM techniques target energy con-
sumption reduction at run-time by selectively turning off or slowing down compo-
nents when the systems is idle or serving light workloads. As in Section 2, DPM tech-
niques are applied in different ways and at different levels. For example, Dynamic 
Voltage Scaling (DVS) technique operates at the CPU-level and changes processor's 
supply voltage and operating frequency at run-time as a method of power manage-
ment [68]. A similar technique, called Dynamic Link Shutdown (DLS), operates at 
the interconnect-level and puts communication switches in a cluster system into a 
low-power mode to save energy [32]. DPM techniques can also be used for shutting 
down idle I/O devices [49], or even nodes of server clusters [19,50]. 

As summarized in Table V, this section discusses DPM techniques that are clas-
sified based on the implementation level. Section 3.1 discusses DPM techniques 
applied at the CPU-level. In Section 3.2, system-level DPM approaches that consider 
other system components (memory, hard drive, I/O devices, display, etc.) than CPU 
are discussed. Finally, Section 3.3 presents DPM techniques proposed for parallel 
systems, where multiple nodes collaborate to save the overall power while collec-
tively performing a given parallel task. 



TABLE V  
TAXONOMY OF DYNAMIC POWER MANAGEMENT TECHNIQUES  

Type Implemen-
tation level 

CPU CPU-level 

HardwareSystem 
device-based 

Software-
based 

Parallel Hardware-
system based 

Software-
based 

Monitoring mechanism 

Monitor internal bus activity to 
reduce switching activity 

Monitor CPU instruction in exe-
cution to control clock supply to 
each component 

Monitor CPU workload to adjust 
supply voltage to CPU 

Monitor device activities to shut 
it or slow it down 

Monitor device activity via ap-
plication or system software to 
shut it or slow it down 

Monitor multiple CPU's work-
loads to cooperatively adjust 
supply voltages 

Monitor switch/router activity to 
rearrange connectivity or put 
into reduced power mode 

Monitor synchronization activi-
ties to power down spinning 
nodes 
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Load unbalancing [50] 3.3.2 

3.1 CPU-Level DPM 
The intuition behind power saving at the CPU-level comes from the basic energy 

consumption characteristics of digital static CMOS circuits, which is given by 

(2) 

where Ceff is the effective switching capacitance of the operation, V is the supply 
voltage, and !eLK is the clock frequency [25]. The DPM techniques presented in this 
section reduce the power consumption by targeting one or more of these parameters. 



Section 3.1.1 discusses techniques to reduce the switching activity of the processor, 
mainly at the datapath and buses. In Section 3.1.2, clock gating techniques are dis-
cussed, which reduce power consumption by turning off the idle component's clock, 
i.e., !eLK = O. Finally, Section 3.1.3 presents one of the most promising, and also the 
most complicated, CPU-level DPM technique based on DVS. DVS scales both V and 
fCLK to serve the processor workload with the minimum required power. If applied 
properly, DVS allows substantial energy saving without affecting performance. 

3. 1. 1 Reducing Switching Activity 
As discussed earlier, reducing switching activity plays a major role in reducing 

power consumption. A number of such optimization techniques have been proposed 
to reduce switching activity of internal buses [29,61,69] and functional units [31,63, 
66] of a processor. In case of buses, energy is consumed when wires change states 
(between 0 and I). Different techniques are used to reduce the switching activity 
on buses by reducing the number of wire transitions. Stan and Burleson proposed 
bus-invert coding where the bus value is inverted when more than half the wires are 
changing state [61]. In other words, when the new value to be transmitted on the 
bus differs by more than half of its bits from the previous value, then all the bits are 
inverted before transmission. This reduces the number of state changes on the wire, 
and thus, saves energy. 

Henkel and Lekatsas proposed a more complicated approach where cache tables 
are used on the sending and receiving sides of the channel to further reduce transi-
tions [29]. That is, when a value "hit" is observed at the input of the channel, the 
system will only send the index of the cache entry instead of the whole data value, 
which will reduce the number of transitions. Finally, Wen et al. used bus transcoding 
to reduce bus traffic and thus power based on data compression on bus wires [69]. 
As an enhancement to this technique, transition coding was also proposed where the 
encoding of data represents the wire changes rather than the absolute value, which 
simplifies the energy optimization problem. 

On the other hand, the processor's switching activity can also be reduced by us-
ing power-aware compiler techniques. Although applied at compile time, these are 
considered as DPM techniques because their effect is closely tied to the system's run-
time behavior. For example, in instruction scheduling technique [63,66], instructions 
are reordered to reduce the switching activity between successive instructions. More 
specifically, it minimizes the switching activity of a data bus between the on-chip 
cache and main memory when instruction cache misses occur [66]. Cold scheduling 
[63] prioritizes the selection of the next instruction to execute based on the energy 
cost of placing that instruction into the schedule. Another compiler based technique 
called register assignment [31] focuses on reducing the switching activity on the bus 



by re-Iabeling the register fields of the compiler-generated instructions. A simulator, 
such as SimplePower [70], is used to parameterize the compiler with sample traces. 
In other words, it records the transition frequencies between register labels in the in-
structions executed in consecutive cycles and this information is then used to obtain 
a better encodings for the registers such that the switching activity and consequently 
the energy consumption on the bus is reduced. 

3. 1.2 Clock Gating 
Clock gating involves freezing the clock of an idle component. Energy is saved 

because no signal or data will propagate in these frozen units. Clock gating is widely 
used because it is conceptually simple; the clock can be restarted by simply de-
asserting the clock-freezing signal. Therefore, only a small overhead in terms of 
additional circuitry is needed, and the component can transit from an idle to an active 
state in only a few cycles. This technique has been implemented in several commer-
cial processors such as Alpha 21264 [26] and PowerPC 603 [21]. The Alpha 21264 
uses a hierarchical clocking architecture with gated clocks. Depending on the in-
struction to be executed, each CPU unit (e.g., floating point unit) is able to freeze the 
clock to its subcomponents (e.g., adder, divider and multiplier in floating point unit). 

The PowerPC 603 processor supports several sleep modes based on clock gating. 
For this purpose, it has two types of clock controllers: global and local. Clocks to 
some components are globally controlled while others are locally controlled. For ex-
ample, consider PLL (Phase Locked Loop) that acts mainly as a frequency stabilizer 
and does not depend on global clock. Even though clocks to all units are globally 
disabled and the processor is in sleep state, the PLL can continue to function which 
makes a quick wake-up (within ten clock cycles) possible. On the other hand, if the 
PLL is also turned off, maximum power saving would be achieved but the wake-up 
time could be as long as 100 IlS, to allow the PLL to relock to the external clock. 

3.1.3 Dynamic Voltage Scaling (DVS) 
In contrast to clock gating, which can only be applied to idle components, DVS 

targets components that are in active state, but serving a light workload. It has been 
proposed as a means for a processor to deliver high performance when required, 
while significantly reducing power consumption during low workload periods. The 
advantage of DVS can be observed from the power consumption characteristics of 
digital static CMOS circuits (2) and the clock frequency equation: 

V 
delay ex ---- and (3)

(V - Vk)(¥ 



where V is the supply voltage, and !eLK is the clock frequency. a ranges from 1 to 2, 
and Vk depends on threshold voltage at which velocity saturation I occurs [25]. 

Decreasing the power supply voltage would reduce power consumption quadrati-
cally as shown in equation (2). However, this would create a higher propagation delay 
and at the same time force a reduction in clock frequency as shown in equation (3). 
While it is generally desirable to have the frequency set as high as possible for faster 
instruction execution, the clock frequency and supply voltage can be reduced for 
some tasks where maximum execution speed is not required. Since processor activity 
is variable, there are idle periods when no useful work is being performed and DVS 
can be used to eliminate these power-wasting idle times by lowering the processor's 
voltage and frequency. 

In order to clearly show the advantage of DVS techniques, Figure 2 compares DVS 
with the simple On/Off scheme, where the processor simply shuts down when it is 
idle (during time 2-4, 5-7 and 8.5-11 in the figure). DVS reduces the voltage and 
frequency, spreading the workload to a longer period, but more than quadratically 
reducing energy consumption. A quick calculation from Figure 2 shows about 82% 
reduction in power based on equation (2) because 

EDVS/ EOn/Off = (4 X (0.5)3 + 3 X (0.33)3 + 4 X (0.375)3) 

/(2 X 13 +1 X 13 +(1.5) X 13) 
= 0.82/4.5 = 0.18. 

Note that each task workload, which is represented by the area inside the rectangle 
in Figure 2, remains the same for both the simple On/Off and DVS mechanisms. 
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FIG. 2. Voltage scheduling graph with On/Off and DVS mechanisms. 

I Velocity saturation is related to the semiconductor voltage threshold after which saturation occurs 
and the transistor's behavior becomes non-linear. 



TABLE VI  
CLOCK FREQUENCY VERSUS SUPPLY VOLTAGE FOR THE MOBILE I TEL PENTIUM III PROCESSOR  

[41]  

Maximum performance mode Battery optimized mode 
Frequency Voltage Max. power con- Frequency Voltage (V) Max. power con-
(MHz) (V) sumption (Watt) (MHz) sumption (Watt) 

500 1.10 8.1 300 .975 4.5 
600 1.10 9.7 300 .975 4.5 
600 1.35 14.4 500 1.10 8.1 
600 1.60 20.0 500 1.35 12.2 
650 1.60 21.5 500 1.35 12.2 
700 1.60 23.0 550 1.35 13.2 
750 1.35 17.2 500 1.10 8.1 
750 1.60 24.6 550 1.35 13.2 
800 1.60 25.9 650 1.35 15.1 

850 1.60 27.5 700 1.35 16.1 
900 1.70 30.7 700 1.35 16.1 

1000 1.70 34.0 700 1.35 16.1 

Current custom and commercial CMOS chips are capable of operating reliably 
over a range of supply voltages [46,64] and there are a number of commercially 
available processors that support DVS mechanisms. Table VI shows the Mobile Intel 
Pentium III processor with 11 frequency levels and 6 voltage levels with two per-
formance modes: Maximum peiformance mode and battery optimized peiformance 
mode [41]. The maximum performance mode is designed to provide the best perfor-
mance while the battery optimized performance mode provides the balance between 
performance and battery lifetime. Crusoe processor from Transmeta, Inc. also has 
variable voltage and frequency as presented in Table VII. 

TABLE VII  
CLOCK FREQUENCY VERSUS SUPPLY VOLTAGE FOR  

THE TRANSMETA CRUSOE PROCESSOR [33]  

Frequency Voltage (V) Power consumption 
(MHz) (Watt) 

667 1.6 5.3 
600 1.5 4.2 

533 1.35 3.0 

400 1.225 1.9 
300 1.2 1.3 



The main challenge in applying DVS is to know when and how to scale the voltage 
and frequency. In the following discussion, three different voltage schedulers are pre-
sented: Interval-based, inter-task, and intra-task scheduler. Interval-based scheduler 
is a time-based voltage scheduler that predicts the future workload using the work-
load history. Inter-task and intra-task schedulers target real-time applications with 
deadlines to meet for tasks. Inter-task scheduler changes speed at each task bound-
ary, while intra-task scheduler changes speed within a single task with the help from 
compilers. Inter-task approaches make use of a prior knowledge of the application to 
produce predictions for the given task, while intra-task approaches try to take advan-
tage of slack time that results from the difference in program execution path caused 
by conditional statements. 

3. 1.3. 1 Interval-Based Scheduler. Interval-based voltage schedulers 
[25,68] divide time into uniform length intervals and analyze CPU utilization of the 
previous intervals to determine the voltage/frequency of the next interval. Govil et 
al. discussed and compared seven such algorithms [25]: 

(i) PAST uses the recent past as a predictor of the future. 
(ii) FLAT simply tries to smooth the processor speed to a global average. 

(iii) LONG_SHORT attempts to find a golden mean between the most recent be-
havior and a more long-term average. 

(iv) AGED_AVERAGES employs an exponential-smoothing method, attempting 
to predict via a weighted average. 

(v) CYCLE is a more sophisticated prediction algorithm that tries to take ad-
vantage of previous runyercent values that have cyclical behavior, where 
runyercent is the fraction of cycles in an interval during which the CPU is 
active. 

(vi) PATTERN is a generalized form of CYCLE that attempts to identify the most 
recent runyercent values as a repeating pattern. 

(vii) PEAK is a more specialized version of PATTERN and uses the following 
heuristics based on observation on narrow peaks: Increasing runyercents 
would fall but decreasing runyercents would continue falling [25]. 

According to their simulation studies, simple algorithms based on rational smooth-
ing rather than complicated prediction schemes showed better performance. Their 
study also shows that further possibilities exist by improving predictions, such as 
sorting past information by process-type or providing useful information by applica-
tions [25]. 

3. 1.3.2 Inter-Task Techniques for Real-Time Applications. 
Interval-based scheduler is simple and easy to implement but it often incorrectly 



predicts future workloads and degrades the quality of service. In non-real-time ap-
plications, unfinished task from the previous interval would be completed in later 
intervals and does not cause any serious problems. However, in real-time applica-
tions, tasks are specified by the task start time, the computational resources required, 
and the task deadline. Therefore, the voltage/frequency scaling must be carried out 
under the constraint that no deadlines are missed. An optimal schedule is defined to 
be the one for which all tasks complete on or before deadlines and the total energy 
consumed is minimized. 

For a set of tasks with the given timing parameters, such as deadlines, constructing 
the optimal voltage schedule requires super-linear algorithmic complexity. One sim-
ple heuristic algorithm is to identify the task with the earliest deadline and find the 
minimum constant speed needed to complete the task within the time interval before 
deadline. Repeating the same procedure for all tasks provides a voltage schedule. 
Quan and Fu suggested a more efficient inter-task scheduling algorithm for real-time 
applications [52]. This approach tries to find the critical intervals using the given 
timing parameters, such as start times and deadlines, which can be bottlenecks in 
executing a set of tasks. Then, a voltage schedule is produced for the set of critical 
intervals, and a complete low-energy voltage schedule is constructed based on the 
minimum constant speed found during any critical interval. Although this greedy ap-
proach guarantees minimum peak power consumption, it may not always produce 
the minimum-energy schedule. 

Another inter-task DVS technique has been proposed for a specific real-time appli-
cation, MPEG player [13,58]. The task here is to decode an MPEG frame or a group 
ofpictures (GOP) [45]. Since different frames require an order of different computa-
tional overhead for decoding, it is more beneficial to change the supply voltage and 
operating frequency depending on frames rather than GOP. The main difficulty is to 
predict the next workload (e.g., decoding the next frame) in order to assign a proper 
voltage and frequency setting. If the next workload (frame decoding time) is under-
estimated, a voltage/frequency will be assigned that is lower than required, and the 
job will not meet its deadline causing either jitters or frames to be dropped and the 
video quality will degrade. On the other hand, if the next workload is overestimated, 
a voltage/frequency that is higher than required will be assigned, leading to more 
power consumption than necessary. 

Son et al. proposed two heuristic DVS algorithms for MPEG decoding [58]: DVS
DM CDVS with delay and drop rate minimizing algorithm) and DVS-PD CDVS with 
decoding time prediction). DVS-DM is an interval-based DVS in the sense that it 
schedules voltage at every GOP boundary based on parameters (mainly delay and 
drop rate) obtained from previous decoding history. DVS-PD determines the voltage 
based on information from the next GOP (like frame sizes and frame types) as well 
as previous history. Since frames exhibit different characteristics depending on the 
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FIG. 3. Decode time as a function of frame size (based on the movie, "Undersiege"). 

frame type, DVS-PD offers higher prediction accuracy for future workload compared 
to DVS-DM [58]. 

Chedid proposed another set of techniques for power aware MPEG decoding [13]: 
regression, range-avg and range-max. The regression technique is based on the ob-
servation that the frame-size/decoding-time distribution follows a linear regression 
model [6] with high accuracy as shown in Figure 3. The regression line is built 
dynamically at run-time by calculating the slope of the frame-size/decoding-time 
relationship based on past history. The other two techniques, range-avg and range-
max, alleviate the computational overhead found in the regression algorithm. These 
approaches divide the decoding-time/frame-size distribution into several ranges as in 
Figure 3 and make estimation decision based on the average decoding time (range-
avg) or the maximum decoding time (range-max) in each range. The accuracy of 
these two techniques is only slightly worse than regression, but has the advantages 
of lower complexity and being able to dynamically increase or decrease the range 
size in order to better respond to any system requirement such as more power reduc-
tion or better video quality [13]. 

Table VIII summarizes the different inter-task DVS techniques for MPEG decod-
ing discussed in the previous paragraphs. 

3.1.3.3 Intra-Task Techniques for Real-Time Applications. As 
opposed to the inter-task DVS techniques mentioned above, where voltage/frequency 



TABLE VIII  
INTER-TASK DVS TECHNIQUES FOR A REAL-TIME ApPLICATION (MPEG PLAYER)  

Technique Implementation Method used to pre- Advantages Disadvantages 
level dict future workload 

DVS-DM GOP (Group of Previous history of Easy to implement Inaccurate if decod-
Pictures) delay and drop rate ing workload fluc-

tuates 
DVS-PD GOP (Group of Weighted average of More accurate and less Vulnerable to f1uc-

Pictures) previous history and vulnerable to f1uctua- tuations between 
next GOP information tions than DVS-DM frames within each 

GOP 
Regression Picture frame	 Dynamic regression Highly accurate predic- Computationally  

of previous history tion expensive  
and next frame in-
formation  

Range-avg Picture frame	 Average workload of Easy to implement and Less accurate than  
past picture frames flexible in balancing Regression
 
with similar frame between power saving  
type and size and video quality  

Range-max Picture frame	 Maximum workload Easy to implement and Less accurate than  
of past picture frames more flexible than Regression and  
with similar frame Range-avg Range-avg
 
type and size  

changes occur between consecutive tasks, intra-task DVS techniques are applied dur-
ing the execution of a task with the help of a power-aware compiler. The compiler 
identifies different possible execution paths within a task, each requiring a different 
amount of work and thus different voltage/frequency setting. Consider an example of 
a real-time task and its flow graph in Figure 4. In Figure 4(b), each node represents 
a basic block, Bi, of this task and the number in each node denotes the number of 
execution cycles required to complete the block. The total number of cycles varies 
for the same task depending on the chosen path and the resultant slack time is the 
target of optimization in the following intra-task techniques. 

Azevedo et al. introduced an intra-task DVS technique using program check
points under compiler control [5]. Checkpoints indicate places in a program where 
the processor voltage/frequency should be re-calculated and scaled. The program 
is profiled, using a representative input data set, and information about mini-
mum/maximum energy dissipated and cycle count between checkpoints is collected. 
This information is used in a run-time voltage scheduler to adjust the voltage in an 
energy efficient way, while meeting the deadline. 



BI; 
if(condl) B2; 
else 

{ B3; 
while (cond2) 

{ if (cond3) B4; 
B5; 

} 
if (cond4) B6; 
else B7; 
B8; 

(a) (b) 

FIG. 4. Intra-task paths. (a) Example program and (b) its flow graph (each circle representing a basic 
block of a task and the number representing the cycles to execute the block). 

Similarly, Shin and Kim proposed a compiler-based conversion tool, called Auto
matic Voltage Scaler (AVS), that converts DVS-unaware programs into DVS-aware 
ones [54]. The compiler profiles a program during compile-time and annotates the 
Remaining Worst-case Execution Cycles (RWEC) information, which represents the 
remaining worst-case execution cycles among all the execution paths that start from 
each corresponding checkpoint. It automates the development of real-time power-
aware programs on a variable-voltage processor in a way completely transparent to 
software developers. 

In the previously discussed approaches, voltage/frequency scaling must be com-
puted and executed at every checkpoint, which may introduce an uncontrollable 
overhead at run-time. Ghazaleh et al. reported a similar compiler-based approach but 
requires collaboration between the compiler and the operating system [22]. As be-
fore, the compiler annotates the checkpoints with the RWEC temporal information. 
During program execution, the operating system periodically adapts the processor's 
voltage and frequency based on this temporal information. Therefore, this approach 
separates the checkpoints into two categories: The first one is only used to compute 
the temporal information and adjust the dynamic run-time information. The second 
one is used by the OS (which has more information on the overall application behav-



iar) to execute the voltage/frequency change. This approach relies on the strengths 
of both the compiler and OS to obtain fine-grain information about an application's 
execution to optimally apply DVS. 

COPPER (Compiler-Controlled Continuous Power-Performance) [4] is another 
compiler-based approach that also relies on the characteristics of the microarchi-
tecture to optimize the power performance of the application. Among many pos-
sibilities, it focuses on combining dynamic register file reconfiguration with volt-
age/frequency scaling. During compile time, different versions of the given program 
code are produced under varying architectural parameters, mainly the number of 
available registers, and the corresponding power profiles are evaluated using energy 
simulator such as Wattch presented in Section 2.1.1. Since running a code version 
compiled for less number of registers may lead to lower energy consumption but 
higher execution delay, it is possible to tradeoff between the average power con-
sumption and the execution time with code versioning. The run-time system selects 
a code version to help achieve performance goals within a given energy constraints. 

3.2 Complete System-Level DPM 

As discussed before, the CPU does not dominate the power consumption of the en-
tire system. Other system components, such as disk drives and displays, have a much 
larger contribution. Therefore, it is necessary to consider all of the critical compo-
nents of the system to effectively optimize power. A well-known system-level power 
management technique is shutting down hard drives and displays when they are idle. 
A similar idea can also be applied to other I/O devices to save energy. However, 
changing power states of hardware components incurs not only time delay but also 
energy overhead. Consequently, a device should be put to sleep only if the energy 
saved justifies the overhead. Thus, the main challenge in successfully applying this 
technique is to know when to shut down the devices and to wake them up. 

A straightforward method is to have individual devices make such decisions by 
monitoring their own utilization. One clear advantage of this device-based scheme 
(Section 3.2.1) is transparency, i.e., energy saving is achieved without involving or 
changing application or system software. On the contrary, this scheme may per-
form poorly because it is unaware of the tasks requesting the service of the device. 
Software-based DPM techniques (Section 3.2.2) have been proposed to alleviate this 
problem. Application or system software takes full responsibility on power-related 
decisions assuming that devices can operate in several low power modes using con-
trol interfaces such as Advanced Configuration and Power Interface (ACPl) [2]. 



3.2. 1 Hardware Device-Based DPM Policies 
Hardware device-based policies observe hardware activities and workloads of the 

target device and change power states accordingly. They are usually implemented 
in hardware or device drivers without direct interaction with application or system 
software as illustrated in Figure 5. Based on prediction mechanisms for future device 
usage, these methods can be classified into three categories: Time-out, Predictive, and 
Stochastic policies [7,37]. 

For time-out policies, break-even time, TBE, is defined as the minimum time length 
of an idle period during which shutting down a particular device will save power. 
When transition power, Pm, and transition time, hR, (required when changing 
power states of the device) are negligible, TBE is zero because there is no delay 
and energy overhead for shutting down and waking up the device. In practice, TBE is 
calculated based on Pm and TTR as in Figure 6. Time-out policies work as follows: 
When an idle period begins, a timer is started with a predefined duration Ttimeou(, 

which is usually set as a certain fraction of TBE. If the device remains idle after 
Ttimeou(, then the power manager makes the transition to the low-power or off state 
because it assumes that the device will remain idle for at least another TBE seconds. 
These policies are relatively easy to implement but they have two major drawbacks. 
First, a large amount of energy is wasted waiting for the timeout to expire, during 
which the device is idle but still fully powered. Second, there is always a perfor-
mance penalty to wakeup devices upon receiving a request signal. Devices typically 
have a long wakeup time, and thus the request to wake up may incur significant 
delays. 
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FIG.5. Hardware device-based DPM. 



hR: transition time required to enter (TOn,Orr) and exit (TOrr,On) the inactive state; 
PTR: transition power; 
POn, POfr: power when device is On and Off; 
TBE: break-even time, the minimum length of an idle period during which shutting down the 

device wiU save power. 

TTR = TOn,Off + TOff,On, 

PrR = (TOn,OrrPOn,Orr + TOff,OnPOrr,On)/TTR,  

TTR, if PrR ::;; POn,
 
TBE = { TTR + TTRCPrR - POn)/(POn - Porr) if PrR > POn, 

where "hRCPrR - POn)/CPOn - Porr)" represents the additional time needed to spend in the Off state 
to compensate the excess power consumed during state transition. 

FIG. 6. Calculation of break-even time, TBE [7]. 

Predictive policies counter the drawbacks of the time-out policies using techniques 
such as predictive shutdown [15,17,24,60] and predictive wakeup [28]. The predic-
tive shutdown policy eliminates the time-out period by predicting the length of an 
idle period beforehand. Srivastava et al. suggested that the length of an idle period 
can be predicted by the length of the previous busy period [60]. Chung et al. ob-
served the pattern of idle periods, and then the length of the current idle period is 
predicted by matching the current sequence that led to this idle period with the ob-
served history of idle periods [15]. In [17,24], researchers suggested dynamically 
adjusting 7limeout based on whether the previous predictions were correct or not. The 
predictive wakeup policy reduces the performance penalty by waking up the device 
on time so that it becomes ready when the next request arrives. Hwang et al. em-
ployed the exponential-average (weighted-average with exponential weight values) 
approach to predict the wake-up time based on past history [28]. This policy may 
increase power consumption but will decrease the delay for serving the first request 
after an idle period. 

One of the shortcomings of predictive policies is that they assume a deterministic 
arrival of device requests. Stochastic policies model the arrival of requests and device 
power-state changes as stochastic processes, e.g., Markov processes. Benini et al. 
modeled the arrival of VO requests using stationary discrete-time Markov processes 
[8]. This model was used to achieve optimal energy saving by shutting down and 
waking up a device in the most efficient way in terms of energy as well as perfor-
mance. In this model, time is divided into small intervals with the assumption that the 
system can only change its state at the beginning of a time interval. Chung et al. ex-
tended the model by considering non-stationary processes [14]. They pre-computed 
the optimal schedule for different VO request patterns, and at run-time these sched-
ules are used to more accurately estimate the next VO request time. 



However, for discrete-time Markov models, the power manager needs to send con-
trol signals to the components every time interval, which may result in heavy signal 
traffic and therefore more power dissipation. Qiu et al. used continuous-time Markov 
models to help prevent this "periodic evaluation" and instead used event-triggered 
evaluation [51]. They consider both request arrival and request service events, upon 
which the system determines whether or not to shut down a device. Finally, Simunic 
et al. suggested adding timeout to continuous-time Markov models so that a device 
would be shut down if it has been continuously idle for a predefined timeout duration 
[57]. In general, stochastic policies provide better performance than predictive and 
time-out policies. In addition, they are capable of managing multiple power states, 
making decisions not only when to perform state transition but also which transition 
should be made. The main disadvantage of these policies is that they require offline 
preprocessing and are more complicated to implement. For a detailed comparison of 
above mentioned device-based DPM schemes, please refer to [7,37]. 

3.2.2 Software-Based DPM Policies 
While hardware device-based power management policies can optimize energy-

performance of individual devices, they do not consider system-wide energy con-
sumption due to the absence of global information. Therefore, software-based DPM 
policies have been proposed to handle system-level power management. Advanced 
Configuration and Power lnteiface (ACP/) [2], proposed as an industrial standard by 
Intel, Microsoft and Toshiba, provides a software-hardware interface allowing power 
managers to control the power of various system components. Application and op-
erating system-based DPM techniques, which will be discussed later in this section, 
utilize such interface to conserve power. Although application-based schemes can 
be the most effective because future workloads are best known to applications, OS-
based schemes have a benefit that existing applications do not need to be re-written 
for energy savings. 

3.2.2. 1 Advanced Configuration and Power Interface (ACPI). 
ACPI [2] evolved from the older Advanced Power Management (APM) standard tar-
geting desktop PCs [3]. Implemented at the BIOS (Basic va Services)-level, APM 
policies are rather simple and deterministic. Application and as make normal BIOS 
calls to access a device and the APM-aware BIOS serve the va requests while con-
serving energy. One advantage of APM is that the whole process is transparent to 
application and as software. ACPI is a substitute for APM at the system software 
level. Unlike APM, ACPI does not directly deal with power management. Instead, 
it exposes the power management interfaces for various hardware devices to the as 
and the responsibility of power management is left to application or operating system 
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FIG.7. Interaction among system components with ACPI [2). 

software. Figure 7 overviews the interactions among system components in ACPI 
[2]. The front-end of the ACPI is the ACPI-compliant device driver. It maps kernel 
requests to ACPI commands and maps ACPI responses to I/O interrupts or kernel 
signals. Note that the kernel may also interact with non-ACPI-compliant hardware 
through other device drivers. 

The ACPI specification defines five global system power states: GO represents the 
working state, G1 to G3 represent the sleeping states, and lastly one legacy state 
for non-ACPI-compliant devices. The specification also refines the sleeping state 
by defining additional four sleeping states (S I-S4) within the state G1 as shown in 
Table IX. In addition to the global states, ACPI also defines four device (Do-D3) 
and four processor states (CQ-C3). Different states differ in the power they consume 
and the time needed for wake up. For example, a deep sleep state, such as S4 state in 
Table IX, saves more power but takes longer to wake up. 

3.2.2.2 Application-Based DPM. Application-based DPM policies were 
made possible by the emergence of the ACPI standard state above. These policies 
move the power manager from the device or hardware level to the application level. 
The application, which is the source of most requests to the target device, is now in 
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TABLE IX  
ACPI GLOBAL STATES [21  

Global states Description  
G3 Mechanical off: no power consumption, system off.  
G2 Soft off: full as reboot needed to restore working state.  

Sleeping Sleeping: system appears to be Off, and will return to working  
states state in an amount of time that increases with the inverse of power  

consumption.  
S4 Longest wake-up latency and lowest power. All devices are pow-

ered off.  
GI  S3 Low wake-up latency. All system contexts are lost except system  

memory.  
S2 Low wake-up latency. Only CPU and system cache context is lost.  
SI Lowest wake-up latency. No system context is lost.  

GO Working: system On and fully operational.  
Legacy Legacy: entered when system is non-ACPI compliant.  

charge of commanding the power states of that device. These policies allow applica-
tion programs to put a device in the fully working state, send it to sleep mode, wake it 
up, or receive notice about the device power-state changes. For example, Microsoft's 
OnNow [47] and ACPI4Linux [1] support power management for ACPI-compliant 
devices. Figure 8(a) illustrates the application-based DPM scheme. 

Alternatively, Lu et al. proposed a software architecture that exports power man-
agement mechanisms to the application level through a template [38]. This scheme 
makes power state decisions based on information about the system parameters such 
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FIG. 8. Software-based DPM policies. 
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as power at each state, transition energy, delay, and future workload. This software 
architecture differs from the ACPI-based techniques in that the power management 
is centralized to one application, which makes it safer and more efficient in a single 
application system. 

3.2.2.3 Operating System-Based DPM. Application-based power 
management has several drawbacks. First, they require modifications to existing ap-
plications, and thus implementing these policies will place additional burden on the 
programmers. Second, advances in technology constantly change hardware parame-
ters, which make a policy optimized for a certain environment inefficient after a 
device is replaced. Finally, different programs may set the same device to different 
power states causing the system become unstable. OS-based DPM techniques use 
the operating system's knowledge of all the running processes and their interaction 
with the hardware to optimize energy performance. A number of OS-based DPM 
schemes have been proposed in the literature [23,35,36]. Figure 8(b) illustrates the 
implementation of OS-based power management. 

Lu et a1. proposed task-based power management, which uses process IDs at the 
OS-level to differentiate tasks that make I/O requests [35,36]. This has a major ad-
vantage over device-based policies in that it offers a better understanding of device 
utilization as well its future usage pattern. For example, an OS-based DPM scheme, 
called power-oriented process scheduling, schedules tasks by clustering idle periods 
to reduce the number of power-state transitions and state-transition overhead [35]. Fi-
nally, Gniady et a1. proposed to use program counters to predict I/O activities in the 
operating system [23]. Their program-counter access predictor dynamically learns 
the access patterns of an application using path-based correlation to match a partic-
ular sequence of program counters leading to each idle period. This information is 
then used to predict future occurrences of this idle period and thus optimize power. 

3.3 Parallel System-Level DPM 

Most of the power related research topics are devoted to uni-processor systems. 
However, due to the co-operative nature of computation in a parallel computing en-
vironment, the most energy-efficient execution for each individual processor may 
not necessarily lead to the best overall energy-efficient execution. Reducing power 
consumption not only reduces the operation cost for cooling but also increases relia-
bility, which is often critically important for these high-end systems. This section 
introduces DPM techniques for parallel systems proposed in the literature. First, 
hardware-based power optimization techniques such as coordinated DVS [19] and 
low-power interconnection networks [32,53] in cluster systems are presented in 



Section 3.3.1. Second, software-based DPM techniques such as energy-aware syn-
chronization for multiprocessors systems [34] are introduced in Section 3.3.2. This 
subsection also presents DPM techniques used in server clusters to reduce the en-
ergy consumption of the whole cluster by coordinating and distributing the workload 
among all available nodes [50]. 

3.3.1 Hardware-Based DPM Techniques 
3.3.1.1 Coordinated Dynamic Voltage Scaling (CVS). Elnozahy 
et al. also proposed to use the DVS scheme discussed in Section 3.1.3 in a cluster 
system [19]. They presented five such policies for comparison. The first policy, In
dependent Voltage Scaling (/VS) simply uses voltage scaled processors, where each 
node independently manages its own power consumption. The second policy, called 
Coordinated Voltage Scaling (CVS), uses DVS in a coordinated manner so that all 
cluster nodes operate very close to the average frequency setting across the cluster 
in order to reduce the overall energy cost. This can be achieved by periodically com-
puting the average frequency setting of all active nodes by a centralized monitor and 
broadcasting it to all the nodes in the cluster. The third policy, called vary-on/vary-off 
(VOVO), turns off some nodes so that only the minimum number of nodes required 
to support the workload are kept alive. The fourth policy, called Combined Policy, 
combines IVS and VOVO, while the fifth policy, called Coordinated Policy, uses a 
combination of CVS and VOVO. According to their evaluation, the last two policies 
offer the most energy savings. Among the two, the Coordinated Policy (CVS-VOVO) 
saves more energy at the expense of a more complicated implementation. 

3.3. 1.2 Network Interconnect-Based DPM. One of the most critical 
power drains in parallel systems is the communication links between nodes, which 
is an important differentiating factor compared to uni-processor systems. The com-
munication facilities (switches, buses, network cards, etc.) consume a large amount 
of the power budget of a cluster system [32,53], which is particularly true with the 
increasing demand for network bandwidth in such systems. Shang et al. proposed to 
apply DVS to the intemetworking links [53]. The intuition is that if network band-
width could be tuned accurately to follow the link usage, huge power saving can 
be achieved. A history-based DVS policy uses past network traffic in terms of link 
utilization and receiver input buffer utilization to predict future traffic. It then dy-
namically adjusts the voltage and frequency of the communication links to minimize 
the network power consumption while maintaining high performance. 

An alternative DPM scheme applied to interconnection links was suggested by 
Kim et al. [32]. They addressed the potential problem of performance degrada-
tion, particularly in low to medium workload situations. This may result in more 



buffer utilization which also increases the overall leakage energy consumption. Their 
method called Dynamic Link Shutdown (DLS) scheme attempts to alleviate the prob-
lem based on the fact that a subset of under-utilized links (with utilization under a 
certain threshold) could be completely shut down assuming another subset of highly 
used links can be found to provide connectivity in the network. 

3.3.2 Software-Based DPM Techniques 
3.3.2.1 Barrier Operation-Based DPM. As discussed in the previous 
subsection, interconnection links may be the most critical bottleneck in parallel sys-
tems with respect to energy consumption as well as computing performance. From 
the perspective of application software, collective communications such as barriers 
are often considered the most critical bottleneck during the execution of a parallel 
application [42]. In a conventional multiprocessor system, an early arriving thread 
stops (typically by spin-waiting) at the barrier and waits for all slower threads to ar-
rive before proceeding with the execution past the barrier. This barrier spin-waiting 
is highly inefficient since power is wasted performing unproductive computations. 

Li et al. proposed thrifty barrier [34], where an early arriving thread tries to put 
its processor into a low power state instead of just spinning. When the last thread ar-
rives, dormant processors are woken up and all the threads proceed past the barrier. 
However, as discussed earlier in Section 3.2.1, power state transitions should jus-
tify the power saving versus the delay time incurred in the process. Therefore, each 
thread that arrives early should predict the length of the pending stall time and de-
cide whether to transit to low power state or not, and if so, choose the best low power 
state. At the same time, the wake up time must also be predicted to tradeoff power 
saving versus performance degradation. To tackle these problems, the thrifty barrier 
uses the past history of interval time between two consecutive barriers to predict the 
stall time at the barrier [34]. The main objective is to wake up dormant threads just 
in time for the proceeding execution, thereby achieving significant energy savings 
without causing performance degradation. 

3.3.2.2 DPM with Load Balancing. In a cluster system, load balancing 
is a technique used to evenly distribute the workload over all available nodes in a 
way that all idle nodes are efficiently utilized. Pinheiro et al. used the concept of 
load unbalancing to reduce power consumption of a cluster system [50]. Unlike load 
balancing, it concentrates work in fewer nodes while idling others that can be turned 
off, which will lead to power saving but at the same time may degrade performance. 
Their algorithm periodically evaluates whether some nodes should be removed from 
or added to the cluster based on the predicted power consumption and the given total 
workload imposed on the cluster with different cluster configurations. If nodes are 



underutilized, some of them will be removed, and if nodes are overused, new nodes 
should be added. In both cases, the algorithm redistributes the existing workload to 
the active nodes in the cluster. Significant power reduction was reported with only 
negligible performance degradation [50]. 

4. Conclusion 

The need for robust power-performance modeling and optimization at all system 
levels will continue to grow with tomorrow's workload and performance require-
ments for both low-end and high-end systems. Such models, providing design-time 
or run-time optimizations, will enable designers to make the right choices in defining 
the future generation of energy efficient systems. 

This chapter discussed different ideas and techniques proposed in the literature 
with the goal of developing power-aware computer systems. The various methods 
surveyed were differentiated by design time power analysis and run-time dynamic 
power management techniques. Power analysis techniques are mainly based on sim-
ulation, sometimes assisted by measurements. These techniques integrate various 
energy models into existing simulation tools and analyze and profile the power con-
sumption on different levels of a computer system at design time in order to help 
build power efficient hardware and software systems. On the other hand, dynamic 
power management techniques are applied during run-time. They monitor the system 
workload to predict the future computational requirements and try to dynamically 
adapt the system behavior accordingly. 

Successful design and evaluation of power management and optimization tech-
niques are highly dependent on the availability of a broad and accurate set of power 
analysis tools, which will be crucial in any future study. While the focus should 
be more on the overall system behavior capturing the interaction between different 
system components, it is also important to have a better and more accurate un-
derstanding of particular hardware components or software programs with respect 
to power consumption. While power efficient system design is important in low-
end portable systems, this is also true in high-end parallel and clustered systems. 
This is because high power consumption raises temperature and thus deteriorates 
performance and reliability. Therefore, a holistic approach that considers all the com-
ponents in such systems will need to be further investigated. 
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