
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

2005

Power Analysis and Optimization Techniques for Energy Efficient Power Analysis and Optimization Techniques for Energy Efficient

Computer Systems Computer Systems

Wissam Chedid
Cleveland State University, wissam@chedid.com

Chansu Yu
Cleveland State University, c.yu91@csuohio.edu

Ben Lee
Oregon State University, benl@eecs.oregonstate.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Computer and Systems Architecture Commons, and the Power and Energy Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
Chedid, W., Yu, C., & Lee, B. (2005). Power Analysis and Optimization Techniques for Energy Efficient
Computer Systems. Advances in Computers, 63, 130-164.

Repository Citation
Chedid, Wissam; Yu, Chansu; and Lee, Ben, "Power Analysis and Optimization Techniques for Energy Efficient
Computer Systems" (2005). Electrical Engineering and Computer Science Faculty Publications. 118.
https://engagedscholarship.csuohio.edu/enece_facpub/118

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/118?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Power Analysis and Optimization
Techniques for Energy Efficient Computer
Systems

WISSAM CHEDID AND CHANSU YU

Department of Electrical and Computer Engineering
Cleveland State University
2121 Euclid Avenue
Stilwell Hall 340
Cleveland, OH 44115
USA
wissam@chedid.com
c.yu91@csuohio.edu

BEN LEE

School of Electrical Engineering and Computer Science
Oregon State University
Owen Hall 302
Corvallis, OR 97331
USA
benl@eecs.orst.edu

Abstract
Reducing power consumption has become a major challenge in the design and
operation of today's computer systems. This chapter describes different tech-
niques addressing this challenge at different levels of system hardware, such
as CPU, memory, and internal interconnection network, as well as at different
levels of software components, such as compiler, operating system and user ap-
plications. These techniques can be broadly categorized into two types: Design
time power analysis versus run-time dynamic power management. Mechanisms
in the first category use analytical energy models that are integrated into existing
simulators to measure the system's power consumption and thus help engineers
to test power-conscious hardware and software during design time. On the other
hand, dynamic power management techniques are applied during run-time, and

are used to monitor system workload and adapt the system's behavior dynami-
cally to save energy.

1. Introduction . 130
2. Power Analysis and Optimization Using Energy Models 132

2.1. CPU-Level Energy Models . 132
2.2. Complete System-Level Energy Models . 136
2.3. Interconnect-Level Energy Models in Parallel Systems 139

3. Dynamic Power Management (DPM) Techniques 140
3.1. CPU-Level DPM . 141
3.2. Complete System-Level DPM 151
3.3. Parallel System-Level DPM 157

4. Conclusion 160
References. 160

1. Introduction

Information processing engines are really seen as
just "heat engines."

C. Mead and L. Conway, "Introduction to VLSI Systems," 1980

Innovations and improvements have long been made in computer and system ar-
chitectures to essentially increase the computing power truly observing the Moore's
Law for more than three decades. Improvements in semiconductor technology make
it possible to incorporate millions of transistors on a very small die and to clock
them at very high speeds. Architecture and system software technology also of-
fer tremendous performance improvements by exploiting parallelism in a variety of
forms. While the demand for even more powerful computers would be hindered by
the physics of computational systems such as the limits on voltage and switching
speed [39], a more critical and imminent obstacle is the power consumption and the
corresponding thermal and reliability concerns [27]. This applies not only to low-end
portable systems but also to high-end system designs.

Since portable systems such as laptop computers and cell phones draw power from
batteries, reducing power consumption to extend their operating times is one of the
most critical product specifications. This is also a challenge for high-end system de-
signers because high power consumption raises temperature, which deteriorates per-
formance and reliability. In some extreme cases, this requires an expensive, separate

Abbreviations

ACPI: Advanced Configuration and Flops: Floating-point Operation Per
Power Interface Second

APM: Advanced Power Management GOP: Group Of Pictures
AVS: Automatic Voltage Scaler I/O: Input/Output
BIOS: Basic Input/Output Services IVS: Independent Voltage Scaling
CMOS: Complementary Metal Oxide JVM: Java Virtual Machine

Semiconductor LCD: Liquid-Crystal Display
COPPER: Compiler-controlled MPEG: Moving Pictures Expert Group

continuous Power-Performance OS: Operating System
CPU: Central Processing Unit PLL: Phase-Locked Loop
CVS: Coordinated Voltage Scaling POSE: Palm Operating System
DLS: Dynamic Link Shutdown Emulator
DPM: Dynamic Power Management RTL: Register Transfer Language
DVS: Dynamic Voltage Scaling RWEC: Remaining Worst-case
DVS-DM: DVS with Delay and Drop Execution Cycles

rate Minimizing SPEC: Standard Performance
DVS-PD: DVS with Predicting Evaluation Corporation

Decoding time VOVO: Varry-OnIVarry-Off

power facility, as in the Earth Simulator [18], which achieves a peak performance of
40 Tflops but dissipates 5 MWatts of power.

This chapter provides a comprehensive survey of power analysis and optimiza-
tion techniques proposed in the literature. Techniques for power efficient computer
systems can be broadly categorized into two types: Offline power analysis and dy­
namic power management techniques. Offline power analysis techniques are based
on analytical energy models that are incorporated into existing performance-oriented
simulators to obtain power and performance information and help system architects
select the best system parameters during design time. Dynamic power management
(DPM) schemes monitor system workload and adapt the system's behavior to save
energy. These techniques are dynamic, run-time schemes operating at different lev-
els of a computer system. They include Dynamic Voltage Scaling (DVS) schemes
that adjust the supply voltage and operating frequency of a processor to save power
when it is idle [27,68]. A similar idea can be applied to I/O devices by monitoring
their activities and turning them off or slowing them down when the demand on these
devices is low [7,14,28]. Another possibility to conserve energy at run-time is when
a system has more than one resource of the same kind, which is typically found in
parallel and networked cluster systems. In this case, applying a DPM scheme in a
coordinated way rather than applying it to individual resources independently can

better manage the entire system. For instance, the DVS technique can be extended to
a cluster system of multiple nodes by coordinating multiple DVS decisions [19].

This chapter is organized as follows. Section 2 discusses several energy models
and the corresponding power analysis and optimization techniques integrated into
existing simulation environments. These energy models cover various levels of a
system with a varying degree of granularity and accuracy, which includes CPU-level,
system-level, and parallel system-level power analysis techniques. Section 3 presents
various hardware and software DPM techniques that also differ in granularity as well
as accuracy. Fine-grained monitoring and power management is possible at a smaller
scale but it may not be feasible at a larger scale because of the corresponding over-
head of gathering information and making power-related decisions. Therefore, this
section presents the various CPU-level, system-level, and parallel system-level DPM
techniques. Section 4 provides a conclusion and discusses possible future research.

2. Power Analysis and Optimization Using Energy Models

Power dissipation has emerged as a major constraint in the design of processors
and computer systems. Power optimization, just as with performance, requires care-
ful design at several levels of the system architecture. The first step toward optimizing
power consumption is to understand the sources of energy consumption at different
levels. Various energy models have been developed and integrated with existing sim-
ulators or measurement tools to provide accurate power estimation, which can be
used to optimize the system design.

Section 2.1 describes processor-based energy models that estimate power con-
sumption at cycle- or instruction-level. Section 2.2 discusses system-based energy
models that study power consumption of both hardware and software components.
Finally, Section 2.3 targets multiprocessor-based or cluster-based energy models.
These studies in particular focus on the system interconnect since energy perfor-
mance of individual processors or nodes can be estimated based on techniques
described in Sections 2.1 and 2.2. Table I summarizes these energy model-based
offline approaches.

2.1 CPU-Level Energy Models
Power consumed by the CPU is a major part of the total power consumption of

a computer system and thus has been the main target of power consumption analy-
sis [9,10,49,65,70]. Several power models have been developed and integrated into
existing performance simulators in order to investigate power consumption of CPU
either on a functional unit basis or processor as a whole. These analyses are based on

TABLE I
TAXONOMY OF POWER ANALYSIS TECHNIQUES USING ENERGY MODELS

Type Level of detai I Energy models Simulation tools Section
CPU Cycle level or Power density-based or ca- PowerTimer [9], Watlch 2.1.1

RTL pacitance-based model for [10] and Simple Power [70]
cycle-level simulation

Instruction level Instruction-based energy Power profiles for Intel 2.1.2
model with the measurement 486DX2, Fujitsu SPAR-
of instruction counts Clite'934 [65] and

PowerPC [49]

System Hardware com- State-based model (e.g., POSE (Palm as Emulator) 2.2.1
ponent level sleep/doze/ [16]

busy) for functional simulation

Software com- Process-based model with Time driven sampling, 2.2.2
ponent level time-driven and energy-driven PowerScope [20], and en-

sampling ergy driven sampling [12]

Hardware and Component-specific energy SoftWatl built upon SimOS 2.2.3
software compo- models for complete system system simulator [27]
nent level simulation

Parallel Interconnection Bit energy model for bit-level Simulink-based tool [71] 2.3
system network archi- simulation

tecture level Message-based energy model Orion, the simulator for 2.3
for simulating interconnection power-performance inter-
network connection networks [67]

two abstraction levels; cycle-level (or register-transfer level) and instruction-level as
described in the following two subsections, respectively.

2. 1. 1 Cycle-Level CPU Energy Model
Energy consumption of a processor can be estimated by using cycle-level archi-

tecture simulators. This is done by identifying the active (or busy) microarchitecture-
level units or blocks during every execution cycle of the simulated processor [9,10,
70]. These cycle-by-cycle resource usage statistics can then be used to estimate the
power consumption. An energy model describing how each unit or block consumes
energy is a key component in any power-aware cycle-level simulators. Figure I il-
lustrates a high-level block diagram of power-aware cycle-level simulators.

Brooks et al. presented two types of energy models for their PowerTimer simulator
[9]:

(i) Power density-based energy model is used for components when detailed
power and area measurements are available; and

(ii) analytical energy models are used for the rest of the components in a CPU.

r--:
Hardware

rsparamete 1 1

e-~
Program

executabl
or Trace

Cycle-level
performance

simulator
(Turandot [84] or

Cycle-by-cycle
access count
for each unit

Energy model
(PowerTimer [I],

Watlch [2], or
SimplePower [3])

~ Power
estimation

SimpleScalar [18]) Perfonnance
estimation

,t . :

FIG. 1. Block diagram of a power-aware, cycle-level simulator.

Analytical equations fonnulate the energy characteristics in tenns of microarchitec-
ture-level design parameters such as cache size, pipeline length, number of registers,
etc. These two types of energy models were used in conjunction with a generic, para-
meterized, out-of-order superscalar processor simulator called Turandot [44]. Using
PowerTimer, it is possible to study the power-perfonnance trade-offs for different
system configurations with varying resource sizes of caches, issue queues, rename
registers, and branch predictor tables, which will help in building power-aware mi-
croarchitectures.

Wauch [10] and SimplePower [70] are two other CPU-level power-monitoring
tools based on SimpleScalar [11], which is the most popular microarchitecture simu-
lator. In Wauch, the energy models depend on the internal capacitances of the circuits
that make up each unit of the processor. Each modeled unit falls into one of the fol-
lowing four categories: Array structures, memories, combinational logic and wires,
and the clocking network. A different power model is used for each category and in-
tegrated in the SimpleScalar simulator to provide a variety of metrics such as power,
perfonnance, energy, and energy-delay product. Table II shows the energy expendi-
ture of various components from measurements as well as from the Wauch simulator.

SimplePower, on the other hand, is based on transition-sensitive energy model,
where each modeled functional unit has its own switch capacitance for every pos-
sible input transition [70]. This is then used to calculate the power consumed in
a particular functional unit based on the input transition while executing a given
instruction. SimplePower is used to evaluate the impact of an architectural modifica-
tion as well as the effect of a high-level compiler optimization technique on system
power. Example uses of SimplePower include selective gated pipeline technique to
reduce the datapath switch capacitance, loop and data transfonnation to reduce the
memory system power, and register relabeling to conserve power on the data buses
[70].

TABLE II
COMPARISON OF POWER BREAKDOWNS BETWEEN MEASUREMENT

(ALPHA 21264) AND ANALYTICAL ENERGY MODEL IN THE WATTCH
SIMULATOR [101

Hardware structure Measurement Analytical model
(Alpha 21264) (Wattch)

Caches 16.1% 15.3%
Out-of-order issue logic 19.3% 20.6%
Memory 8.6% 11.7%
Memory management unit 10.8% 11.0%
Floating point execution unit 10.8% 11.0%
Clocking network 34.4% 30.4%

2. 1.2 Instruction-Level CPU Energy Model

In contrast to the fine-grain cycle-level techniques, coarse-grain instruction-level
power analysis techniques estimate the total energy cost of a program by adding the
energy consumed while executing instructions of a program [65,9]. Instruction-by-
instruction energy costs, called base costs, can be measured for individual instruc-
tions for a target processor. However, there is extra power consumption due to "inter-
action" between successive instructions caused mainly by pipeline and cache effects.
The base costs of individual instructions and the power cost of inter-instruction
effects are determined based on the experimental procedure using a program con-
taining several instances of the targeted instruction (for base cost measurement) and
an alternating sequence of instructions (for inter-instruction effects costs). Table III
illustrates a subset of the base costs for Intel 486DX2 and Fujitsu SPARClite'934
[65]. A similar study has also been conducted for PowerPC microprocessor [49].

Once the instruction-by-instruction energy model is constructed for a particular
processor, the total energy cost, Ep, of any given program, P, is given by:

Ep = L(Base; * N;) + L(Inter;,j * N;,j) + L Ek (1)
;,j k

where Base; is the base cost of instruction i and N; is the number of executions of
instruction i. Inter;,j is the inter-instruction power overhead when instruction i is
followed by instruction j, and N;,j is the number of times the (i, j) pair is executed.
Finally, Ek is the energy contribution of other inter-instruction effects due to pipeline
stalls and cache misses.

TABLE III
BASE COSTS FOR [NTEL 486DX2 AND FUJITSU SPARCLITE '934 PROCESSORS [65]. (CYCLES

AND ENERGY NUMBERS IN THE TABLE ARE PER-INSTRUCTION VALUES)

[ntel 486DX2 Fujitsu SPARClite '934

Instruction Current Cycles Energy Instruction Current Cycles Energy
(rnA) (]0-8 J) (rnA) ([0-8 J)

nop 276 I 2.27 nop 198 I 3.26

mov dX,[bx] 428 I 3.53 Id [1O],iO 213 I 3.51

mov dX,bx 302 1 2.49 or gO,iO,1O 198 I 3.26

mov [bx],dx 522 I 4.30 st iO,[IO] 346 2 11.4

add dX,bx 3[4 1 2.59 add iO,oO,IO 199 I 3.28

add dX,[bx] 400 2 6.60 mul gO,r29,r27 198 1 3.26

jmp 373 3 9.23 sri iO),1O 197 I 3.25

2.2 Complete System-Level Energy Models
There is little benefit in studying and optimizing only the CPU core if other

components have significant effect on or even dominate the energy consumption.
Therefore, it is necessary to consider other critical components to reduce the overall
system energy. Section 2.2.1 discusses the hardware state-level models, where the
total energy consumption of the entire system is estimated based on the state each
device is in or transitioning to/from. Here, it is assumed that each device is capable
of switching into one of several power-saving states, such as sleep state, depend-
ing on the demand on that particular device [16]. This capability is usually provided
in portable systems to extend their lifetimes as longer as possible. Software-based
approaches presented in Section 2.2.2 identify energy hotspots in applications and
operating system procedures and thus allow software programmers to remove bot-
tlenecks or modify the software to be energy-aware. Finally, a complete system level
simulation tool, which models the hardware components, such as CPU, memory hi-
erarchy, and a low power disk subsystem as well as software components, such as
OS and application, is presented in Section 2.2.3.

2.2. 1 Hardware State-Based Energy Model
Cignetti et al. presented a system-wide energy optimization technique with a hard-

ware state-based energy model [16]. This power model encapsulates low-level details
of each hardware subsystem by defining a set of power states (e.g., sleep, doze or
busy for CPU) for each device. Each power state is characterized by the power
consumption of the hardware during the state, which is called steady state power.
In addition, each transition between states is assigned an energy consumption cost,

TABLE IV
STEADY STATE AND TRANSIENT POWER OF A PALM DEVICE FROM IBM. (STEADY

STATE POWER SHOWN IS THE RELATIVE VALUE TO THE DEFAULT STATE; CPU
DOZE, LCD ON, BACKLIGHT OFF, PEN AND BUTTON UP. STATE TRANSITION IS
CAUSED BY SYSTEM CALLS, WHICH ARE SHOWN ON THE RIGHT-HAND SIDE)

Steady state power Transient energy
Device State Power (mW) System Call Transient energy (mJ)
CPU Busy 104.502 CPU Sleep 2.025

Idle 0.0 CPU Wake ll.170
Sleep -44.377 LCD Wake 11.727

LCD On 0.0 Key Sleep 2.974
Off -20.961 Pen Open 1.935

Backlight On 94.262
Off 0.0

Button Pushed 45.796
Pen On Screen 82.952

Graffitti 86.029

called transient energy. Since transitions between states occur as a result of system
calls, the corresponding energy can be measured by keeping track of system calls.
The total energy consumed by the system is then determined by adding the power
of each device state multiplied by the time spent in that state plus the total energy
consumption for all the transitions.

The above mentioned state-based energy model was implemented as an exten-
sion to the Palm OS Emulator (POSE) [48], which is a Windows based application
that simulates the functionalities of a Palm device. POSE emulates Palm OS and in-
struction execution of the Motorola Dragonball microprocessor [43]. To quantify the
power consumption of a device and to provide parameters to the simulator, measure-
ments were taken in order to capture transient energy consumption as well as steady
state power consumption as presented in Table IV [16]. A Palm device from IBM
was connected to a power supply with an oscilloscope measuring the voltage across
a small resistor. The power consumption of the basic hardware subsystems, such as
CPU, LCD, backlight, buttons, pen, and serial link, was measured using measure-
ment programs called Power and Millywatt [40].

2.2.2 Process-Based Energy Model
Since software is the main determinant for the activities of hardware components,

such as the processor core, memory system and buses, there is a need for inves-
tigating energy-oriented software techniques and their interaction and integration
with performance-oriented software design. This subsection presents process-based

power measurement techniques for system optimization [12,20]. Using specially
designed monitoring tools, these measurement-based techniques target the power
consumption of the entire system and try to point out the hotspots in applications
and operating system procedures. It is noted that these techniques are process-based
in the sense that they assume different processes consume different amount of energy
not only because they execute for different amount of time or different number of in-
structions but also because they use different sets of resources in different sequences.

In PowerScope [20], a time-driven statistical sampler is used to determine what
fraction of the total energy is consumed, during a certain time period, due to specific
processes in the system. This technique can be further extended to determine the
energy consumption of different procedures within a process. By providing such a
fine-grained feedback, PowerScope helps focus on those system components respon-
sible for the bulk of energy consumption. Chang et al. presented a similar tool but
it is based on energy-driven statistical sampling, which uses energy consumption to
drive sample collection [12]. The multimeter [20] (or the energy counter [12]) mon-
itors the power consumption of the system and the software under test by generating
an interrupt for each time interval [20] (or each energy quanta [12]). This interrupt
will prompt the system to record the process ID of the currently running process
as well as to collect a current [20] (or energy [12]) sample. After the experiment,
the collected data, i.e., process IDs and current/energy sample, is analyzed offline to
match the processes with the energy samples to create the energy profile.

The result from this study showed that a non-trivial amount of energy was spent by
the operating system compared to other user processes. In addition, there are often
significant differences between time-driven and energy-driven profiles and therefore,
it is necessary to carefully combine both sampling methods to obtain more accurate
energy profile information.

2.2.3 Component-Specific Energy Model
Power profiling techniques mentioned above provide energy cost for executing a

certain program but without understanding the overall system behaviors in sufficient
detail to capture the interactions among all the system components. A complete sys-
tem power simulator, SoftWatt [27] overcomes this problem by modeling hardware
components such as CPU, memory hierarchy, and disk subsystem, and quantifying
the power behavior of both application software and operating system. SoftWatt was
built on top of SimOS infrastructure [55], which provides detailed simulation of both
the hardware and software including the IRIX operating system [30]. In order to
capture the complete system power behavior, SoftWatt integrates different analytical
power models available from other studies into the different hardware components
of SimOS. The modeled units in Softwatt include cache-structure, datapath, clock
generation and distribution network, memory, and hard drive.

Experience with Softwatt running JVM98 benchmark suite [59] from SPEC (Stan­
dard Performance Evaluation Corporation) [62] emphasized the importance of a
complete system simulation to analyze the power impact of both architecture and
OS on the execution of applications. From a system hardware perspective, the disk is
the single largest power consumer of the entire system. However, with the adoption
of a low-power disk, the power hotspot was shifted to the CPU clock distribution and
generation network (similar results are shown in Table II). Also, the cache subsys-
tem was found to consume more power than the processor core. From the software
point of view, the user mode consumes more power than the kernel mode. However,
certain kernel services are called so frequently that they accounted for significant en-
ergy consumption in the processor and memory hierarchy. Thus, taking into account
the energy consumption of the kernel code is critical for reducing the overall energy
cost. Finally, transitioning the CPU and memory subsystem to a low-power mode or
even halting the processor when executing an idle process can considerably reduce
power consumption.

2.3 Interconnect-Level Energy Models in Parallel Systems
After presenting energy models at the CPU-level (Section 2.1) and the system-

level (Section 2.2), this section describes energy models at the parallel system-level
with the focus on interconnection networks. With the ever-increasing demand for
computing power, processors are becoming more and more interconnected to create
large clusters of computers communicating through interconnection networks. Wang
et al. showed that the power consumption of these communication components is
becoming more critical, especially with increase in network bandwidth and capacity
to the gigabit and terabit domains [67]. Thus, power analysis in this area usually
targets the building blocks inside a network router and a switch fabric.

Bit energy model [71] considers the energy consumed for each bit, moving inside
the switch fabric from the input to the output ports, as the summation of the bit
energy consumed on each of the following three components:

(i) the internal node switches that direct a packet from one intermediate stage to
the next until it reaches the destination port;

(ii) the internal buffer queues that store packets with lower priorities when con-
tention occurs; and

(iii) the interconnect wires that dissipate power when the bit transmitted on the
wire flips polarity from the previous bit.

Different models were employed for each one of these components based on their
characteristics. For example, the bit energy of a node switch is state-dependent; it
depends on the presence or absence of packets on other input ports. On the other

hand, power consumption of the internal buffer can be expressed as the sum of data
access energy (read and write) and the memory refreshing operation. Finally, the bit
energy of interconnect wires depends on the wire capacitance, length, and coupling
between adjacent wires. The bit energy model was incorporated into a Simulink [56]
based bit-level simulation platform to trace the dataflow of every packet in the net-
work to summarize the total energy consumption in the interconnect.

As opposed to the bit-level approach mentioned above, an architecture-level net-
work power-performance simulator, Orion, was presented in [67]. Orion models an
interconnection network as comprising of message generating (such as sources),
transporting (router buffers, crossbars, arbiters, and link components), and consum-
ing (sinks) agents. Each of these agents is a building block of the interconnection
network, and is represented by an architecture-level energy model. This energy
model is based on the switch capacitance of each component including both gate
and wire capacitances. These capacitance equations are combined with the switch-
ing activity estimation to compute the energy consumption per component operation.
Orion can be used to plug-and-play router and link components to form different
network fabric architectures, run varying communication workloads, and study their
impact on overall network power and performance.

3. Dynamic Power Management (DPM) Techniques

While the simulation and measurement techniques described in Section 2 aim to
optimize power performance at design time, DPM techniques target energy con-
sumption reduction at run-time by selectively turning off or slowing down compo-
nents when the systems is idle or serving light workloads. As in Section 2, DPM tech-
niques are applied in different ways and at different levels. For example, Dynamic
Voltage Scaling (DVS) technique operates at the CPU-level and changes processor's
supply voltage and operating frequency at run-time as a method of power manage-
ment [68]. A similar technique, called Dynamic Link Shutdown (DLS), operates at
the interconnect-level and puts communication switches in a cluster system into a
low-power mode to save energy [32]. DPM techniques can also be used for shutting
down idle I/O devices [49], or even nodes of server clusters [19,50].

As summarized in Table V, this section discusses DPM techniques that are clas-
sified based on the implementation level. Section 3.1 discusses DPM techniques
applied at the CPU-level. In Section 3.2, system-level DPM approaches that consider
other system components (memory, hard drive, I/O devices, display, etc.) than CPU
are discussed. Finally, Section 3.3 presents DPM techniques proposed for parallel
systems, where multiple nodes collaborate to save the overall power while collec-
tively performing a given parallel task.

TABLE V
TAXONOMY OF DYNAMIC POWER MANAGEMENT TECHNIQUES

Type Implemen-
tation level

CPU CPU-level

HardwareSystem
device-based

Software-
based

Parallel Hardware-
system based

Software-
based

Monitoring mechanism

Monitor internal bus activity to
reduce switching activity

Monitor CPU instruction in exe-
cution to control clock supply to
each component

Monitor CPU workload to adjust
supply voltage to CPU

Monitor device activities to shut
it or slow it down

Monitor device activity via ap-
plication or system software to
shut it or slow it down

Monitor multiple CPU's work-
loads to cooperatively adjust
supply voltages

Monitor switch/router activity to
rearrange connectivity or put
into reduced power mode

Monitor synchronization activi-
ties to power down spinning
nodes

Monitor workload distribution to
shut off some nodes

Control mechanism Section

Different encoding schemes 3.1.1
[29,61,69], compiler-based
scheduling [31,63,66]

Clock gating for CPU compo- 3.1.2
nents [21 ,26]

DVS with interval-based or 3.1.3
history-based scheduler
[25,52,58,68], compiler-based
scheduler [4,5,22,54]

Timeout, predictive or 3.2.1
stochastic policies
[7,8,14,15,17,24,28,51,57,60]

Prediction of future utilization 3.2.2
of device [24,35,36,38], ACPI
[1,2,47]

CVS (Coordinated DVS) [19] 3.3.1

History-based DVS on 3.3.1
switch/router [53], Dynamic
Link Shutdown [32]

Thrifty barrier [34] 3.3.2

Load unbalancing [50] 3.3.2

3.1 CPU-Level DPM
The intuition behind power saving at the CPU-level comes from the basic energy

consumption characteristics of digital static CMOS circuits, which is given by

(2)

where Ceff is the effective switching capacitance of the operation, V is the supply
voltage, and !eLK is the clock frequency [25]. The DPM techniques presented in this
section reduce the power consumption by targeting one or more of these parameters.

Section 3.1.1 discusses techniques to reduce the switching activity of the processor,
mainly at the datapath and buses. In Section 3.1.2, clock gating techniques are dis-
cussed, which reduce power consumption by turning off the idle component's clock,
i.e., !eLK = O. Finally, Section 3.1.3 presents one of the most promising, and also the
most complicated, CPU-level DPM technique based on DVS. DVS scales both V and
fCLK to serve the processor workload with the minimum required power. If applied
properly, DVS allows substantial energy saving without affecting performance.

3. 1. 1 Reducing Switching Activity
As discussed earlier, reducing switching activity plays a major role in reducing

power consumption. A number of such optimization techniques have been proposed
to reduce switching activity of internal buses [29,61,69] and functional units [31,63,
66] of a processor. In case of buses, energy is consumed when wires change states
(between 0 and I). Different techniques are used to reduce the switching activity
on buses by reducing the number of wire transitions. Stan and Burleson proposed
bus-invert coding where the bus value is inverted when more than half the wires are
changing state [61]. In other words, when the new value to be transmitted on the
bus differs by more than half of its bits from the previous value, then all the bits are
inverted before transmission. This reduces the number of state changes on the wire,
and thus, saves energy.

Henkel and Lekatsas proposed a more complicated approach where cache tables
are used on the sending and receiving sides of the channel to further reduce transi-
tions [29]. That is, when a value "hit" is observed at the input of the channel, the
system will only send the index of the cache entry instead of the whole data value,
which will reduce the number of transitions. Finally, Wen et al. used bus transcoding
to reduce bus traffic and thus power based on data compression on bus wires [69].
As an enhancement to this technique, transition coding was also proposed where the
encoding of data represents the wire changes rather than the absolute value, which
simplifies the energy optimization problem.

On the other hand, the processor's switching activity can also be reduced by us-
ing power-aware compiler techniques. Although applied at compile time, these are
considered as DPM techniques because their effect is closely tied to the system's run-
time behavior. For example, in instruction scheduling technique [63,66], instructions
are reordered to reduce the switching activity between successive instructions. More
specifically, it minimizes the switching activity of a data bus between the on-chip
cache and main memory when instruction cache misses occur [66]. Cold scheduling
[63] prioritizes the selection of the next instruction to execute based on the energy
cost of placing that instruction into the schedule. Another compiler based technique
called register assignment [31] focuses on reducing the switching activity on the bus

by re-Iabeling the register fields of the compiler-generated instructions. A simulator,
such as SimplePower [70], is used to parameterize the compiler with sample traces.
In other words, it records the transition frequencies between register labels in the in-
structions executed in consecutive cycles and this information is then used to obtain
a better encodings for the registers such that the switching activity and consequently
the energy consumption on the bus is reduced.

3. 1.2 Clock Gating
Clock gating involves freezing the clock of an idle component. Energy is saved

because no signal or data will propagate in these frozen units. Clock gating is widely
used because it is conceptually simple; the clock can be restarted by simply de-
asserting the clock-freezing signal. Therefore, only a small overhead in terms of
additional circuitry is needed, and the component can transit from an idle to an active
state in only a few cycles. This technique has been implemented in several commer-
cial processors such as Alpha 21264 [26] and PowerPC 603 [21]. The Alpha 21264
uses a hierarchical clocking architecture with gated clocks. Depending on the in-
struction to be executed, each CPU unit (e.g., floating point unit) is able to freeze the
clock to its subcomponents (e.g., adder, divider and multiplier in floating point unit).

The PowerPC 603 processor supports several sleep modes based on clock gating.
For this purpose, it has two types of clock controllers: global and local. Clocks to
some components are globally controlled while others are locally controlled. For ex-
ample, consider PLL (Phase Locked Loop) that acts mainly as a frequency stabilizer
and does not depend on global clock. Even though clocks to all units are globally
disabled and the processor is in sleep state, the PLL can continue to function which
makes a quick wake-up (within ten clock cycles) possible. On the other hand, if the
PLL is also turned off, maximum power saving would be achieved but the wake-up
time could be as long as 100 IlS, to allow the PLL to relock to the external clock.

3.1.3 Dynamic Voltage Scaling (DVS)
In contrast to clock gating, which can only be applied to idle components, DVS

targets components that are in active state, but serving a light workload. It has been
proposed as a means for a processor to deliver high performance when required,
while significantly reducing power consumption during low workload periods. The
advantage of DVS can be observed from the power consumption characteristics of
digital static CMOS circuits (2) and the clock frequency equation:

V
delay ex ---- and (3)

(V - Vk)(¥

where V is the supply voltage, and !eLK is the clock frequency. a ranges from 1 to 2,
and Vk depends on threshold voltage at which velocity saturation I occurs [25].

Decreasing the power supply voltage would reduce power consumption quadrati-
cally as shown in equation (2). However, this would create a higher propagation delay
and at the same time force a reduction in clock frequency as shown in equation (3).
While it is generally desirable to have the frequency set as high as possible for faster
instruction execution, the clock frequency and supply voltage can be reduced for
some tasks where maximum execution speed is not required. Since processor activity
is variable, there are idle periods when no useful work is being performed and DVS
can be used to eliminate these power-wasting idle times by lowering the processor's
voltage and frequency.

In order to clearly show the advantage of DVS techniques, Figure 2 compares DVS
with the simple On/Off scheme, where the processor simply shuts down when it is
idle (during time 2-4, 5-7 and 8.5-11 in the figure). DVS reduces the voltage and
frequency, spreading the workload to a longer period, but more than quadratically
reducing energy consumption. A quick calculation from Figure 2 shows about 82%
reduction in power based on equation (2) because

EDVS/ EOn/Off = (4 X (0.5)3 + 3 X (0.33)3 + 4 X (0.375)3)

/(2 X 13 +1 X 13 +(1.5) X 13)
= 0.82/4.5 = 0.18.

Note that each task workload, which is represented by the area inside the rectangle
in Figure 2, remains the same for both the simple On/Off and DVS mechanisms.

Voltage/frequency On/Off

DVS

-·-----------1,,,
I
I
I
I

0.5 I

0.375
0.33

Time
2 4 5 7 8.5 11

FIG. 2. Voltage scheduling graph with On/Off and DVS mechanisms.

I Velocity saturation is related to the semiconductor voltage threshold after which saturation occurs
and the transistor's behavior becomes non-linear.

TABLE VI
CLOCK FREQUENCY VERSUS SUPPLY VOLTAGE FOR THE MOBILE I TEL PENTIUM III PROCESSOR

[41]

Maximum performance mode Battery optimized mode
Frequency Voltage Max. power con- Frequency Voltage (V) Max. power con-
(MHz) (V) sumption (Watt) (MHz) sumption (Watt)

500 1.10 8.1 300 .975 4.5
600 1.10 9.7 300 .975 4.5
600 1.35 14.4 500 1.10 8.1
600 1.60 20.0 500 1.35 12.2
650 1.60 21.5 500 1.35 12.2
700 1.60 23.0 550 1.35 13.2
750 1.35 17.2 500 1.10 8.1
750 1.60 24.6 550 1.35 13.2
800 1.60 25.9 650 1.35 15.1

850 1.60 27.5 700 1.35 16.1
900 1.70 30.7 700 1.35 16.1

1000 1.70 34.0 700 1.35 16.1

Current custom and commercial CMOS chips are capable of operating reliably
over a range of supply voltages [46,64] and there are a number of commercially
available processors that support DVS mechanisms. Table VI shows the Mobile Intel
Pentium III processor with 11 frequency levels and 6 voltage levels with two per-
formance modes: Maximum peiformance mode and battery optimized peiformance
mode [41]. The maximum performance mode is designed to provide the best perfor-
mance while the battery optimized performance mode provides the balance between
performance and battery lifetime. Crusoe processor from Transmeta, Inc. also has
variable voltage and frequency as presented in Table VII.

TABLE VII
CLOCK FREQUENCY VERSUS SUPPLY VOLTAGE FOR

THE TRANSMETA CRUSOE PROCESSOR [33]

Frequency Voltage (V) Power consumption
(MHz) (Watt)

667 1.6 5.3
600 1.5 4.2

533 1.35 3.0

400 1.225 1.9
300 1.2 1.3

The main challenge in applying DVS is to know when and how to scale the voltage
and frequency. In the following discussion, three different voltage schedulers are pre-
sented: Interval-based, inter-task, and intra-task scheduler. Interval-based scheduler
is a time-based voltage scheduler that predicts the future workload using the work-
load history. Inter-task and intra-task schedulers target real-time applications with
deadlines to meet for tasks. Inter-task scheduler changes speed at each task bound-
ary, while intra-task scheduler changes speed within a single task with the help from
compilers. Inter-task approaches make use of a prior knowledge of the application to
produce predictions for the given task, while intra-task approaches try to take advan-
tage of slack time that results from the difference in program execution path caused
by conditional statements.

3. 1.3. 1 Interval-Based Scheduler. Interval-based voltage schedulers
[25,68] divide time into uniform length intervals and analyze CPU utilization of the
previous intervals to determine the voltage/frequency of the next interval. Govil et
al. discussed and compared seven such algorithms [25]:

(i) PAST uses the recent past as a predictor of the future.
(ii) FLAT simply tries to smooth the processor speed to a global average.

(iii) LONG_SHORT attempts to find a golden mean between the most recent be-
havior and a more long-term average.

(iv) AGED_AVERAGES employs an exponential-smoothing method, attempting
to predict via a weighted average.

(v) CYCLE is a more sophisticated prediction algorithm that tries to take ad-
vantage of previous runyercent values that have cyclical behavior, where
runyercent is the fraction of cycles in an interval during which the CPU is
active.

(vi) PATTERN is a generalized form of CYCLE that attempts to identify the most
recent runyercent values as a repeating pattern.

(vii) PEAK is a more specialized version of PATTERN and uses the following
heuristics based on observation on narrow peaks: Increasing runyercents
would fall but decreasing runyercents would continue falling [25].

According to their simulation studies, simple algorithms based on rational smooth-
ing rather than complicated prediction schemes showed better performance. Their
study also shows that further possibilities exist by improving predictions, such as
sorting past information by process-type or providing useful information by applica-
tions [25].

3. 1.3.2 Inter-Task Techniques for Real-Time Applications.
Interval-based scheduler is simple and easy to implement but it often incorrectly

predicts future workloads and degrades the quality of service. In non-real-time ap-
plications, unfinished task from the previous interval would be completed in later
intervals and does not cause any serious problems. However, in real-time applica-
tions, tasks are specified by the task start time, the computational resources required,
and the task deadline. Therefore, the voltage/frequency scaling must be carried out
under the constraint that no deadlines are missed. An optimal schedule is defined to
be the one for which all tasks complete on or before deadlines and the total energy
consumed is minimized.

For a set of tasks with the given timing parameters, such as deadlines, constructing
the optimal voltage schedule requires super-linear algorithmic complexity. One sim-
ple heuristic algorithm is to identify the task with the earliest deadline and find the
minimum constant speed needed to complete the task within the time interval before
deadline. Repeating the same procedure for all tasks provides a voltage schedule.
Quan and Fu suggested a more efficient inter-task scheduling algorithm for real-time
applications [52]. This approach tries to find the critical intervals using the given
timing parameters, such as start times and deadlines, which can be bottlenecks in
executing a set of tasks. Then, a voltage schedule is produced for the set of critical
intervals, and a complete low-energy voltage schedule is constructed based on the
minimum constant speed found during any critical interval. Although this greedy ap-
proach guarantees minimum peak power consumption, it may not always produce
the minimum-energy schedule.

Another inter-task DVS technique has been proposed for a specific real-time appli-
cation, MPEG player [13,58]. The task here is to decode an MPEG frame or a group
ofpictures (GOP) [45]. Since different frames require an order of different computa-
tional overhead for decoding, it is more beneficial to change the supply voltage and
operating frequency depending on frames rather than GOP. The main difficulty is to
predict the next workload (e.g., decoding the next frame) in order to assign a proper
voltage and frequency setting. If the next workload (frame decoding time) is under-
estimated, a voltage/frequency will be assigned that is lower than required, and the
job will not meet its deadline causing either jitters or frames to be dropped and the
video quality will degrade. On the other hand, if the next workload is overestimated,
a voltage/frequency that is higher than required will be assigned, leading to more
power consumption than necessary.

Son et al. proposed two heuristic DVS algorithms for MPEG decoding [58]: DVS­
DM CDVS with delay and drop rate minimizing algorithm) and DVS-PD CDVS with
decoding time prediction). DVS-DM is an interval-based DVS in the sense that it
schedules voltage at every GOP boundary based on parameters (mainly delay and
drop rate) obtained from previous decoding history. DVS-PD determines the voltage
based on information from the next GOP (like frame sizes and frame types) as well
as previous history. Since frames exhibit different characteristics depending on the

40000000

35000000

1/1 30000000
ell
U >- 25000000
0
0 20000000...
ell
.Q 15000000E :s z 10000000

5000000

0
0 200000 400000 600000 800000

Frame size

FIG. 3. Decode time as a function of frame size (based on the movie, "Undersiege").

frame type, DVS-PD offers higher prediction accuracy for future workload compared
to DVS-DM [58].

Chedid proposed another set of techniques for power aware MPEG decoding [13]:
regression, range-avg and range-max. The regression technique is based on the ob-
servation that the frame-size/decoding-time distribution follows a linear regression
model [6] with high accuracy as shown in Figure 3. The regression line is built
dynamically at run-time by calculating the slope of the frame-size/decoding-time
relationship based on past history. The other two techniques, range-avg and range-
max, alleviate the computational overhead found in the regression algorithm. These
approaches divide the decoding-time/frame-size distribution into several ranges as in
Figure 3 and make estimation decision based on the average decoding time (range-
avg) or the maximum decoding time (range-max) in each range. The accuracy of
these two techniques is only slightly worse than regression, but has the advantages
of lower complexity and being able to dynamically increase or decrease the range
size in order to better respond to any system requirement such as more power reduc-
tion or better video quality [13].

Table VIII summarizes the different inter-task DVS techniques for MPEG decod-
ing discussed in the previous paragraphs.

3.1.3.3 Intra-Task Techniques for Real-Time Applications. As
opposed to the inter-task DVS techniques mentioned above, where voltage/frequency

TABLE VIII
INTER-TASK DVS TECHNIQUES FOR A REAL-TIME ApPLICATION (MPEG PLAYER)

Technique Implementation Method used to pre- Advantages Disadvantages
level dict future workload

DVS-DM GOP (Group of Previous history of Easy to implement Inaccurate if decod-
Pictures) delay and drop rate ing workload fluc-

tuates
DVS-PD GOP (Group of Weighted average of More accurate and less Vulnerable to f1uc-

Pictures) previous history and vulnerable to f1uctua- tuations between
next GOP information tions than DVS-DM frames within each

GOP
Regression Picture frame	 Dynamic regression Highly accurate predic- Computationally

of previous history tion expensive
and next frame in-
formation

Range-avg Picture frame	 Average workload of Easy to implement and Less accurate than
past picture frames flexible in balancing Regression

with similar frame between power saving
type and size and video quality

Range-max Picture frame	 Maximum workload Easy to implement and Less accurate than
of past picture frames more flexible than Regression and
with similar frame Range-avg Range-avg

type and size

changes occur between consecutive tasks, intra-task DVS techniques are applied dur-
ing the execution of a task with the help of a power-aware compiler. The compiler
identifies different possible execution paths within a task, each requiring a different
amount of work and thus different voltage/frequency setting. Consider an example of
a real-time task and its flow graph in Figure 4. In Figure 4(b), each node represents
a basic block, Bi, of this task and the number in each node denotes the number of
execution cycles required to complete the block. The total number of cycles varies
for the same task depending on the chosen path and the resultant slack time is the
target of optimization in the following intra-task techniques.

Azevedo et al. introduced an intra-task DVS technique using program check­
points under compiler control [5]. Checkpoints indicate places in a program where
the processor voltage/frequency should be re-calculated and scaled. The program
is profiled, using a representative input data set, and information about mini-
mum/maximum energy dissipated and cycle count between checkpoints is collected.
This information is used in a run-time voltage scheduler to adjust the voltage in an
energy efficient way, while meeting the deadline.

BI;
if(condl) B2;
else

{ B3;
while (cond2)

{ if (cond3) B4;
B5;

}
if (cond4) B6;
else B7;
B8;

(a) (b)

FIG. 4. Intra-task paths. (a) Example program and (b) its flow graph (each circle representing a basic
block of a task and the number representing the cycles to execute the block).

Similarly, Shin and Kim proposed a compiler-based conversion tool, called Auto­
matic Voltage Scaler (AVS), that converts DVS-unaware programs into DVS-aware
ones [54]. The compiler profiles a program during compile-time and annotates the
Remaining Worst-case Execution Cycles (RWEC) information, which represents the
remaining worst-case execution cycles among all the execution paths that start from
each corresponding checkpoint. It automates the development of real-time power-
aware programs on a variable-voltage processor in a way completely transparent to
software developers.

In the previously discussed approaches, voltage/frequency scaling must be com-
puted and executed at every checkpoint, which may introduce an uncontrollable
overhead at run-time. Ghazaleh et al. reported a similar compiler-based approach but
requires collaboration between the compiler and the operating system [22]. As be-
fore, the compiler annotates the checkpoints with the RWEC temporal information.
During program execution, the operating system periodically adapts the processor's
voltage and frequency based on this temporal information. Therefore, this approach
separates the checkpoints into two categories: The first one is only used to compute
the temporal information and adjust the dynamic run-time information. The second
one is used by the OS (which has more information on the overall application behav-

iar) to execute the voltage/frequency change. This approach relies on the strengths
of both the compiler and OS to obtain fine-grain information about an application's
execution to optimally apply DVS.

COPPER (Compiler-Controlled Continuous Power-Performance) [4] is another
compiler-based approach that also relies on the characteristics of the microarchi-
tecture to optimize the power performance of the application. Among many pos-
sibilities, it focuses on combining dynamic register file reconfiguration with volt-
age/frequency scaling. During compile time, different versions of the given program
code are produced under varying architectural parameters, mainly the number of
available registers, and the corresponding power profiles are evaluated using energy
simulator such as Wattch presented in Section 2.1.1. Since running a code version
compiled for less number of registers may lead to lower energy consumption but
higher execution delay, it is possible to tradeoff between the average power con-
sumption and the execution time with code versioning. The run-time system selects
a code version to help achieve performance goals within a given energy constraints.

3.2 Complete System-Level DPM

As discussed before, the CPU does not dominate the power consumption of the en-
tire system. Other system components, such as disk drives and displays, have a much
larger contribution. Therefore, it is necessary to consider all of the critical compo-
nents of the system to effectively optimize power. A well-known system-level power
management technique is shutting down hard drives and displays when they are idle.
A similar idea can also be applied to other I/O devices to save energy. However,
changing power states of hardware components incurs not only time delay but also
energy overhead. Consequently, a device should be put to sleep only if the energy
saved justifies the overhead. Thus, the main challenge in successfully applying this
technique is to know when to shut down the devices and to wake them up.

A straightforward method is to have individual devices make such decisions by
monitoring their own utilization. One clear advantage of this device-based scheme
(Section 3.2.1) is transparency, i.e., energy saving is achieved without involving or
changing application or system software. On the contrary, this scheme may per-
form poorly because it is unaware of the tasks requesting the service of the device.
Software-based DPM techniques (Section 3.2.2) have been proposed to alleviate this
problem. Application or system software takes full responsibility on power-related
decisions assuming that devices can operate in several low power modes using con-
trol interfaces such as Advanced Configuration and Power Interface (ACPl) [2].

3.2. 1 Hardware Device-Based DPM Policies
Hardware device-based policies observe hardware activities and workloads of the

target device and change power states accordingly. They are usually implemented
in hardware or device drivers without direct interaction with application or system
software as illustrated in Figure 5. Based on prediction mechanisms for future device
usage, these methods can be classified into three categories: Time-out, Predictive, and
Stochastic policies [7,37].

For time-out policies, break-even time, TBE, is defined as the minimum time length
of an idle period during which shutting down a particular device will save power.
When transition power, Pm, and transition time, hR, (required when changing
power states of the device) are negligible, TBE is zero because there is no delay
and energy overhead for shutting down and waking up the device. In practice, TBE is
calculated based on Pm and TTR as in Figure 6. Time-out policies work as follows:
When an idle period begins, a timer is started with a predefined duration Ttimeou(,

which is usually set as a certain fraction of TBE. If the device remains idle after
Ttimeou(, then the power manager makes the transition to the low-power or off state
because it assumes that the device will remain idle for at least another TBE seconds.
These policies are relatively easy to implement but they have two major drawbacks.
First, a large amount of energy is wasted waiting for the timeout to expire, during
which the device is idle but still fully powered. Second, there is always a perfor-
mance penalty to wakeup devices upon receiving a request signal. Devices typically
have a long wakeup time, and thus the request to wake up may incur significant
delays.

88
Request Request

I ~.

Device driver I I
I Power Manager I

u " I Hardware device I
FIG.5. Hardware device-based DPM.

hR: transition time required to enter (TOn,Orr) and exit (TOrr,On) the inactive state;
PTR: transition power;
POn, POfr: power when device is On and Off;
TBE: break-even time, the minimum length of an idle period during which shutting down the

device wiU save power.

TTR = TOn,Off + TOff,On,

PrR = (TOn,OrrPOn,Orr + TOff,OnPOrr,On)/TTR,

TTR, if PrR ::;; POn,

TBE = { TTR + TTRCPrR - POn)/(POn - Porr) if PrR > POn,

where "hRCPrR - POn)/CPOn - Porr)" represents the additional time needed to spend in the Off state
to compensate the excess power consumed during state transition.

FIG. 6. Calculation of break-even time, TBE [7].

Predictive policies counter the drawbacks of the time-out policies using techniques
such as predictive shutdown [15,17,24,60] and predictive wakeup [28]. The predic-
tive shutdown policy eliminates the time-out period by predicting the length of an
idle period beforehand. Srivastava et al. suggested that the length of an idle period
can be predicted by the length of the previous busy period [60]. Chung et al. ob-
served the pattern of idle periods, and then the length of the current idle period is
predicted by matching the current sequence that led to this idle period with the ob-
served history of idle periods [15]. In [17,24], researchers suggested dynamically
adjusting 7limeout based on whether the previous predictions were correct or not. The
predictive wakeup policy reduces the performance penalty by waking up the device
on time so that it becomes ready when the next request arrives. Hwang et al. em-
ployed the exponential-average (weighted-average with exponential weight values)
approach to predict the wake-up time based on past history [28]. This policy may
increase power consumption but will decrease the delay for serving the first request
after an idle period.

One of the shortcomings of predictive policies is that they assume a deterministic
arrival of device requests. Stochastic policies model the arrival of requests and device
power-state changes as stochastic processes, e.g., Markov processes. Benini et al.
modeled the arrival of VO requests using stationary discrete-time Markov processes
[8]. This model was used to achieve optimal energy saving by shutting down and
waking up a device in the most efficient way in terms of energy as well as perfor-
mance. In this model, time is divided into small intervals with the assumption that the
system can only change its state at the beginning of a time interval. Chung et al. ex-
tended the model by considering non-stationary processes [14]. They pre-computed
the optimal schedule for different VO request patterns, and at run-time these sched-
ules are used to more accurately estimate the next VO request time.

However, for discrete-time Markov models, the power manager needs to send con-
trol signals to the components every time interval, which may result in heavy signal
traffic and therefore more power dissipation. Qiu et al. used continuous-time Markov
models to help prevent this "periodic evaluation" and instead used event-triggered
evaluation [51]. They consider both request arrival and request service events, upon
which the system determines whether or not to shut down a device. Finally, Simunic
et al. suggested adding timeout to continuous-time Markov models so that a device
would be shut down if it has been continuously idle for a predefined timeout duration
[57]. In general, stochastic policies provide better performance than predictive and
time-out policies. In addition, they are capable of managing multiple power states,
making decisions not only when to perform state transition but also which transition
should be made. The main disadvantage of these policies is that they require offline
preprocessing and are more complicated to implement. For a detailed comparison of
above mentioned device-based DPM schemes, please refer to [7,37].

3.2.2 Software-Based DPM Policies
While hardware device-based power management policies can optimize energy-

performance of individual devices, they do not consider system-wide energy con-
sumption due to the absence of global information. Therefore, software-based DPM
policies have been proposed to handle system-level power management. Advanced
Configuration and Power lnteiface (ACP/) [2], proposed as an industrial standard by
Intel, Microsoft and Toshiba, provides a software-hardware interface allowing power
managers to control the power of various system components. Application and op-
erating system-based DPM techniques, which will be discussed later in this section,
utilize such interface to conserve power. Although application-based schemes can
be the most effective because future workloads are best known to applications, OS-
based schemes have a benefit that existing applications do not need to be re-written
for energy savings.

3.2.2. 1 Advanced Configuration and Power Interface (ACPI).
ACPI [2] evolved from the older Advanced Power Management (APM) standard tar-
geting desktop PCs [3]. Implemented at the BIOS (Basic va Services)-level, APM
policies are rather simple and deterministic. Application and as make normal BIOS
calls to access a device and the APM-aware BIOS serve the va requests while con-
serving energy. One advantage of APM is that the whole process is transparent to
application and as software. ACPI is a substitute for APM at the system software
level. Unlike APM, ACPI does not directly deal with power management. Instead,
it exposes the power management interfaces for various hardware devices to the as
and the responsibility of power management is left to application or operating system

as

ACPI
-----------------. ,

I
I
I
I
I
I
I

~_....:::::._-----,: ,,,
'-------,r-----',

_______ 1

Platfonn Hardware

Hardware devices Chipset CPU

FIG.7. Interaction among system components with ACPI [2).

software. Figure 7 overviews the interactions among system components in ACPI
[2]. The front-end of the ACPI is the ACPI-compliant device driver. It maps kernel
requests to ACPI commands and maps ACPI responses to I/O interrupts or kernel
signals. Note that the kernel may also interact with non-ACPI-compliant hardware
through other device drivers.

The ACPI specification defines five global system power states: GO represents the
working state, G1 to G3 represent the sleeping states, and lastly one legacy state
for non-ACPI-compliant devices. The specification also refines the sleeping state
by defining additional four sleeping states (S I-S4) within the state G1 as shown in
Table IX. In addition to the global states, ACPI also defines four device (Do-D3)
and four processor states (CQ-C3). Different states differ in the power they consume
and the time needed for wake up. For example, a deep sleep state, such as S4 state in
Table IX, saves more power but takes longer to wake up.

3.2.2.2 Application-Based DPM. Application-based DPM policies were
made possible by the emergence of the ACPI standard state above. These policies
move the power manager from the device or hardware level to the application level.
The application, which is the source of most requests to the target device, is now in

Hardware device

,,,,,,,,
: as
o,
o,,
o,

TABLE IX
ACPI GLOBAL STATES [21

Global states Description
G3 Mechanical off: no power consumption, system off.
G2 Soft off: full as reboot needed to restore working state.

Sleeping Sleeping: system appears to be Off, and will return to working
states state in an amount of time that increases with the inverse of power

consumption.
S4 Longest wake-up latency and lowest power. All devices are pow-

ered off.
GI S3 Low wake-up latency. All system contexts are lost except system

memory.
S2 Low wake-up latency. Only CPU and system cache context is lost.
SI Lowest wake-up latency. No system context is lost.

GO Working: system On and fully operational.
Legacy Legacy: entered when system is non-ACPI compliant.

charge of commanding the power states of that device. These policies allow applica-
tion programs to put a device in the fully working state, send it to sleep mode, wake it
up, or receive notice about the device power-state changes. For example, Microsoft's
OnNow [47] and ACPI4Linux [1] support power management for ACPI-compliant
devices. Figure 8(a) illustrates the application-based DPM scheme.

Alternatively, Lu et al. proposed a software architecture that exports power man-
agement mechanisms to the application level through a template [38]. This scheme
makes power state decisions based on information about the system parameters such

Request and Request and
Power command Power command

o
\- --

Hardware device

(a) Application-level power management

FIG. 8. Software-based DPM policies.

Device driver

(b) OS-level power management

as power at each state, transition energy, delay, and future workload. This software
architecture differs from the ACPI-based techniques in that the power management
is centralized to one application, which makes it safer and more efficient in a single
application system.

3.2.2.3 Operating System-Based DPM. Application-based power
management has several drawbacks. First, they require modifications to existing ap-
plications, and thus implementing these policies will place additional burden on the
programmers. Second, advances in technology constantly change hardware parame-
ters, which make a policy optimized for a certain environment inefficient after a
device is replaced. Finally, different programs may set the same device to different
power states causing the system become unstable. OS-based DPM techniques use
the operating system's knowledge of all the running processes and their interaction
with the hardware to optimize energy performance. A number of OS-based DPM
schemes have been proposed in the literature [23,35,36]. Figure 8(b) illustrates the
implementation of OS-based power management.

Lu et a1. proposed task-based power management, which uses process IDs at the
OS-level to differentiate tasks that make I/O requests [35,36]. This has a major ad-
vantage over device-based policies in that it offers a better understanding of device
utilization as well its future usage pattern. For example, an OS-based DPM scheme,
called power-oriented process scheduling, schedules tasks by clustering idle periods
to reduce the number of power-state transitions and state-transition overhead [35]. Fi-
nally, Gniady et a1. proposed to use program counters to predict I/O activities in the
operating system [23]. Their program-counter access predictor dynamically learns
the access patterns of an application using path-based correlation to match a partic-
ular sequence of program counters leading to each idle period. This information is
then used to predict future occurrences of this idle period and thus optimize power.

3.3 Parallel System-Level DPM

Most of the power related research topics are devoted to uni-processor systems.
However, due to the co-operative nature of computation in a parallel computing en-
vironment, the most energy-efficient execution for each individual processor may
not necessarily lead to the best overall energy-efficient execution. Reducing power
consumption not only reduces the operation cost for cooling but also increases relia-
bility, which is often critically important for these high-end systems. This section
introduces DPM techniques for parallel systems proposed in the literature. First,
hardware-based power optimization techniques such as coordinated DVS [19] and
low-power interconnection networks [32,53] in cluster systems are presented in

Section 3.3.1. Second, software-based DPM techniques such as energy-aware syn-
chronization for multiprocessors systems [34] are introduced in Section 3.3.2. This
subsection also presents DPM techniques used in server clusters to reduce the en-
ergy consumption of the whole cluster by coordinating and distributing the workload
among all available nodes [50].

3.3.1 Hardware-Based DPM Techniques
3.3.1.1 Coordinated Dynamic Voltage Scaling (CVS). Elnozahy
et al. also proposed to use the DVS scheme discussed in Section 3.1.3 in a cluster
system [19]. They presented five such policies for comparison. The first policy, In­
dependent Voltage Scaling (/VS) simply uses voltage scaled processors, where each
node independently manages its own power consumption. The second policy, called
Coordinated Voltage Scaling (CVS), uses DVS in a coordinated manner so that all
cluster nodes operate very close to the average frequency setting across the cluster
in order to reduce the overall energy cost. This can be achieved by periodically com-
puting the average frequency setting of all active nodes by a centralized monitor and
broadcasting it to all the nodes in the cluster. The third policy, called vary-on/vary-off
(VOVO), turns off some nodes so that only the minimum number of nodes required
to support the workload are kept alive. The fourth policy, called Combined Policy,
combines IVS and VOVO, while the fifth policy, called Coordinated Policy, uses a
combination of CVS and VOVO. According to their evaluation, the last two policies
offer the most energy savings. Among the two, the Coordinated Policy (CVS-VOVO)
saves more energy at the expense of a more complicated implementation.

3.3. 1.2 Network Interconnect-Based DPM. One of the most critical
power drains in parallel systems is the communication links between nodes, which
is an important differentiating factor compared to uni-processor systems. The com-
munication facilities (switches, buses, network cards, etc.) consume a large amount
of the power budget of a cluster system [32,53], which is particularly true with the
increasing demand for network bandwidth in such systems. Shang et al. proposed to
apply DVS to the intemetworking links [53]. The intuition is that if network band-
width could be tuned accurately to follow the link usage, huge power saving can
be achieved. A history-based DVS policy uses past network traffic in terms of link
utilization and receiver input buffer utilization to predict future traffic. It then dy-
namically adjusts the voltage and frequency of the communication links to minimize
the network power consumption while maintaining high performance.

An alternative DPM scheme applied to interconnection links was suggested by
Kim et al. [32]. They addressed the potential problem of performance degrada-
tion, particularly in low to medium workload situations. This may result in more

buffer utilization which also increases the overall leakage energy consumption. Their
method called Dynamic Link Shutdown (DLS) scheme attempts to alleviate the prob-
lem based on the fact that a subset of under-utilized links (with utilization under a
certain threshold) could be completely shut down assuming another subset of highly
used links can be found to provide connectivity in the network.

3.3.2 Software-Based DPM Techniques
3.3.2.1 Barrier Operation-Based DPM. As discussed in the previous
subsection, interconnection links may be the most critical bottleneck in parallel sys-
tems with respect to energy consumption as well as computing performance. From
the perspective of application software, collective communications such as barriers
are often considered the most critical bottleneck during the execution of a parallel
application [42]. In a conventional multiprocessor system, an early arriving thread
stops (typically by spin-waiting) at the barrier and waits for all slower threads to ar-
rive before proceeding with the execution past the barrier. This barrier spin-waiting
is highly inefficient since power is wasted performing unproductive computations.

Li et al. proposed thrifty barrier [34], where an early arriving thread tries to put
its processor into a low power state instead of just spinning. When the last thread ar-
rives, dormant processors are woken up and all the threads proceed past the barrier.
However, as discussed earlier in Section 3.2.1, power state transitions should jus-
tify the power saving versus the delay time incurred in the process. Therefore, each
thread that arrives early should predict the length of the pending stall time and de-
cide whether to transit to low power state or not, and if so, choose the best low power
state. At the same time, the wake up time must also be predicted to tradeoff power
saving versus performance degradation. To tackle these problems, the thrifty barrier
uses the past history of interval time between two consecutive barriers to predict the
stall time at the barrier [34]. The main objective is to wake up dormant threads just
in time for the proceeding execution, thereby achieving significant energy savings
without causing performance degradation.

3.3.2.2 DPM with Load Balancing. In a cluster system, load balancing
is a technique used to evenly distribute the workload over all available nodes in a
way that all idle nodes are efficiently utilized. Pinheiro et al. used the concept of
load unbalancing to reduce power consumption of a cluster system [50]. Unlike load
balancing, it concentrates work in fewer nodes while idling others that can be turned
off, which will lead to power saving but at the same time may degrade performance.
Their algorithm periodically evaluates whether some nodes should be removed from
or added to the cluster based on the predicted power consumption and the given total
workload imposed on the cluster with different cluster configurations. If nodes are

underutilized, some of them will be removed, and if nodes are overused, new nodes
should be added. In both cases, the algorithm redistributes the existing workload to
the active nodes in the cluster. Significant power reduction was reported with only
negligible performance degradation [50].

4. Conclusion

The need for robust power-performance modeling and optimization at all system
levels will continue to grow with tomorrow's workload and performance require-
ments for both low-end and high-end systems. Such models, providing design-time
or run-time optimizations, will enable designers to make the right choices in defining
the future generation of energy efficient systems.

This chapter discussed different ideas and techniques proposed in the literature
with the goal of developing power-aware computer systems. The various methods
surveyed were differentiated by design time power analysis and run-time dynamic
power management techniques. Power analysis techniques are mainly based on sim-
ulation, sometimes assisted by measurements. These techniques integrate various
energy models into existing simulation tools and analyze and profile the power con-
sumption on different levels of a computer system at design time in order to help
build power efficient hardware and software systems. On the other hand, dynamic
power management techniques are applied during run-time. They monitor the system
workload to predict the future computational requirements and try to dynamically
adapt the system behavior accordingly.

Successful design and evaluation of power management and optimization tech-
niques are highly dependent on the availability of a broad and accurate set of power
analysis tools, which will be crucial in any future study. While the focus should
be more on the overall system behavior capturing the interaction between different
system components, it is also important to have a better and more accurate un-
derstanding of particular hardware components or software programs with respect
to power consumption. While power efficient system design is important in low-
end portable systems, this is also true in high-end parallel and clustered systems.
This is because high power consumption raises temperature and thus deteriorates
performance and reliability. Therefore, a holistic approach that considers all the com-
ponents in such systems will need to be further investigated.

REFERENCES

[1] "ACPI4Linux", http://phobos.fs.tum.de/acpi/.
[2] "Advanced Configuration and Power Interface (ACPI)", http://www.acpi.info.

[3] "Advanced	 Power Management (APM)", http://www.microsoft.comlwhdc/archive/
amp_12.mspx, Microsoft Corporation.

[4] Azevedo A., Cornea R., Issenin I., Gupta R., Dutt N., Nicolau A., Veidenbaum A., "Archi-
tectural and compiler strategies for dynamic power management in the COPPER project",
in: IWIA 2001 International Workshop on Innovative Architecture, 200 I.

[5] Azevedo A., Cornea R., Issenin	 I., Gupta R., Dutt N., Nicolau A., Veidenbaum A.,
"Profile-based dynamic voltage scheduling using program checkpoints", in: Design, Au­
tomation and Test in Europe Conference and Exhibition (DATE'02), 2002.

[6] Bavier A., Montz A., Peterson L., "Predicting MPEG execution times", in:	 Proceedings
ofSIGMETRICS '98IPERFORMANCE '98,1998.

[7] Benini L., Bogliolo A., De Micheli G., "A survey	 of design techniques for system-
level dynamic power management", IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 8 (3) (June 2000).

[8] Benini L., Bogliolo A., Paleologo G.A., De Micheli G., "Policy optimization for dynamic
power management", IEEE Transactions on Computer-Aided Design of Integrated Cir­
cuits and Systems 18 (6) (June 1999) 813-833.

[9] Brooks D., Bose P., Schuster S., Jacobson H., Kudva P., Buyuktosunoglu A., Wellman J.,
Zyuban v., Gupta M., Cook P., "Power aware microarchitecture: design and modeling
challenges for next-generation microprocessors", IEEE Micro (December 2000) 26-44.

[10] Brooks D., Tiwari v., Martonosi M., "Wattch: a framework for architectural-level power
analysis and optimizations", in: Proceedings of the 27th International Symposium on
Computer Architecture (ISCA), June 2000.

[II]	 Burger D., Austin T., "The SimpleScalar tool set, version 2", Tech. Report No. 1342,
Computer Sciences Dept., Univ. of Wisconsin, June 1997.

[12] Chang F., Farkas K., Ranganathan P., "Energy-driven statistical profiling: detecting soft-
ware hotspots", in: Proceedings of the Workshop on Power Aware Computing Systems,
February 2002.

[13] Chedid w., Yu c., "Dynamic voltage scaling techniques for power-aware MPEG decod-
ing", Master's Thesis, ECE Dept., Cleveland State University, December 2003.

[14] Chung E.-Y., Benini L., Bogliolo A., Lu Y.-H., De Micheli G., "Dynamic power man-
agement for nonstationary service requests", IEEE Transactions on Computers 51 (II)
(November 2002) 345-1361.

[IS] Chung E.-Y., Benini L., De Micheli G., "Dynamic power management using adaptive
learning tree", in: Proceedings of the International Conference on Computer-Aided De­
sign, November 1999, pp. 274-279.

[16] Cignetti T., Komarov K., Ellis c., "Energy estimation tools for the Palm™,,, in: Pro­
ceedings of the ACM MSWiM'2000: Modeling, Analysis and Simulation of Wireless and
Mobile Systems, August 2000.

[17] Douglis	 F., Krishnan P., Bershad B., "Adaptive disk spin-down policies for mobile
computers", in: Proceedings of the 2nd USENlX Symposium on Mobile and Location­
Independent Computing, 1995, pp. 381-413.

[18] "Earth Simulator", http://www.es.jamstec.go.jp/esc/englindex.html.
[19] Elnozahy E.N., Kistler M., Rajamony R., "Energy-efficient server clusters", in: Proceed­

ings of the Second Workshop on Power Aware Computing Systems, February 2002.

[20]	 Flinn J., Satyanarayanan M., "PowerScope: a tool for profiling the energy usage of mo-
bile applications", in: Proceedings of the Workshop on Mobile Computing Systems and
Applications (WMCSA), February 1999.

[21]	 Gary S., Ippolito P., Gerosa G., Dietz e., Eno J., Sanchez H., "PowerPC 603, a micro-
processor for portable computers", IEEE Design & Test of Computers 11 (4) (October
1994) 14-23.

[22]	 Ghazaleh N.A., Mosse D., Childers B., Melhem R., Craven M., "Collaborative operating
system and compiler power management for real-time applications", in: 9th IEEE Real­
Time and Embedded Technology and Applications Symposium, 2003.

[23] Gniady e., Hu Ye., Lu Y-H., "Program counter based techniques for dynamic power
management", in: 10th International Symposium on High Peiformance Computer Archi­
tecture (HPCA'04), February 2004.

[24] Golding R., Bosch P., Staelin e., Sullivan T., Wilkes J., "Idleness is not sloth", in: Pro­
ceedings of the USENlX Winter Conference, 1995, pp. 201-212.

[25] Govil K., Chan E., Wasserman H., "Comparing algorithms for dynamic speed-setting of
a low-power CPU", MobiCom (1995).

[26] Gowan M., Biro L., Jackson D., "Power considerations in the design of the Alpha 21264
microprocessor", in: ACM Design Automation Conference, June 1998, pp. 726-731.

[27] Gurumurthi S., Sivasbramaniam A., Irwin M.J., Vijaykrishnan N., Kandemir M., "Using
complete machine simulation for software power estimation: the SoftWatt approach", in:
Proceedings of the International Symposium on High Peiformance Computer Architec­
ture (HPCA-8), February 2002.

[28] Hwang e.-H., Wu A., "A predictive system shutdown method for energy saving of event-
driven computation", in: International Conference on Computer-Aided Design, Novem-
ber 1997,pp.28-32.

[29] Henkel J., Lekatsas H., "A2BC: adaptive address bus coding for low power deep sub-
micron designs", in: ACM Design Automation Conference, 2001.

[30] "IRIX OS", http://www.sgi.com/developers/technology/irix!.
[31] Kandemir M., Vijaykrishnan N., Irwin M., "Compiler optimizations for low power sys-

tems", in: Workshop on Power Aware Computing Systems, 2002, pp. 191-210.
[32] Kim E.J., Yum K.H., Link G.M., Das e.R., Vijaykrishnan N., Kandemir M., Irwin MJ.,

"Energy optimization techniques in cluster interconnects", in: International Symposium
on Low Power Electronics and Design (ISLPED'03), August 2003.

[33] Klaiber	 A., "The technology behind Crusoe processors", Transmeta Corporation,
http://www.transmeta.com/pdfs/papecaklaibecI9janOO.pdf. January 2000.

[34]	 Li J., J.P. Martine, Huang M.e., "The thrifty barrier: energy-aware synchronization in
shared-memory multiprocessors", in: lath International Symposium on High Peifor­
mance Computer Architecture (HPCA'04), February 2004.

[35]	 Lu Y-H., Benini L., De Micheli G., "Low-power task scheduling for multiple devices",
in: International Workshop on Hardware/Software Codesign, May 2000.

[36]	 Lu Y-H., Benini L., De Micheli G., "Operating-system directed power reduction", in:
International Symposium on Low Power Electronics and Design, July 2000.

[37] Lu Y-H., De Micheli G., "Comparing system-level power management policies", IEEE
Design & Test of Computers 18 (2) (March 2001) 10-19.

[38] Lu	 Y-H., Simunic T, De Micheli G., "Software controlled power management",
in: Proceedings of the 7th International Workshop on Hardware/Software Codesign
(CODES99), May 1999, pp. 157-161.

[391	 Mead c., Conway L., Introduction to VLSI Systems, Addison-Wesley, Reading, MA,
1980.

[40J "MiIlywatt", http://www.cs.duke.edu/ari/millywattl.
[41] "Mobile Intel Pentium III processor	 in BGA2 and Micro-PGA2 packages datasheet",

Intel Corporation.
[42J Moh S.,	 Yu c., Lee B., Youn H. Y, Han D., Lee D., "4-ary tree-based barrier syn-

chronization for 2-D meshes without nonmember involvement", IEEE Transactions on
Computers 50 (8) (August 200 I) 811-823.

[43] "Motorola Dragonball", http://www.motorola.comldragonball/.
[44J Moudgill M., Bose P., Moreno J., "Validation of Turandot, a fast processor model for mi-

croarchitecture exploration", in: Proceedings of IEE£ International Pel.formance, Com­
puting and Communication Conference, 1999, pp. 451---457.

[45J "MPEG-2: the basics of how it works", Hewlett Packard Lab.
[46] Namgoong w., Yu M., Meng T, "A high-efficiency variable-voltage CMOS dynamic DC-

DC switching regulator", in: IEEE International Solid-State Circuits Conference, J997,
pp. 380-381.

[47] "OnNow", hllp://www.microsofl.com/hwdev/onnow/.
[481 "Palm as emulator", http://www.palmos.com/devitools/emulator/.
[49] Patino O.A., Jimenez M., "Instruction level power profile for the powerPC microproces-

sor", in: Computing Research CO/~ference 2003, University of Puerto Rico-MayagUez,
April 2003, pp. 120-123.

[50] Pinheiro E., Bianchini R., Carrera E.Y., Heath T, "Load balancing and unbalancing for
power and performance in cluster-based systems", Technical Report DCS-TR-440. Dept.
Computer Science, Rutgers University, May 200 I.

[51] Qiu Q., Pedram M.,	 "Dynamic power management based on continuous-time Markov
decision processes", in: Proceedings of the Design Automation C0/1ference, June 1999,
pp. 555-561.

[52] Quan G., Hu X.,	 "Energy efficient fixed-priority scheduling for real-time systems on
variable voltage processors", in: Design Automation Conference, 200 I.

[53] Shang L., Peh L.-S., Jha N.K., "Dynamic voltage scaling with links for power optimiza-
tion of interconnection networks", in: 9th International Symposium on High-Petformance
Computer Architecture (HPCA '03), February 2003.

[541	 Shin D., Kim 1., "Intra-task voltage scheduling for low-energy hard real-time applica-
tions", IEEE Design & Test of Computers 18 (2) (March 2001) 20-30.

[55] "SimaS", http://simos.stanford.edu/.
[56J "Simulink", http://www.mathworks.com/products/simulink/. The MathWorks.
[57J Simunic T, Benini L., Glynn P., De Micheli G., "Dynamic power management for

portable systems", in: Proceedings (~tthe International Conference on Mobile Computing
and Networking, 2000, pp. 11-19.

[581 Son D., Yu c., Kim H., "Dynamic voltage scaling on MPEG decoding", in: International
Conference on Parallel and Distributed Systems (ICPADS), 200 I.

[59] "SPEC NM98", http://www.specbench.orglosg/jvm98/.
[60] Srivastava M.B., Chandrakasan A.P., Brodersen R.W., "Predictive system shutdown and

other architecture techniques for energy efficient programmable computation", IEEE
Transaction on VLSI Systems 4 (1) (March 1996) 42-55.

[61] Stan M., Burlesonı W., "Bus-invert coding for low-power I/O", IEEE Transaction on
VLSI3 (1) (1995) 49-58.

[62] "The Standard Performance Evaluation Corporation (SPEC)", http://www.spec.org/.
[63] Su c.L., Tsui c.y, Despain A.M., "Low power architecture design and compilation tech-

niques for high-performance processors", in: COMPCON'94, 1994.
[64] Suzuki K., et al., "A 300 MIPSIW RISC core processor with variable supply-voltage

scheme in variable threshold-voltage CMOS", in: IEEE Custom Integrated Circuits Con­
ference, 1997, pp. 587-590.

[65] Tiwari v., Malik S., Wolfe A., Lee M.T., "Instruction level power analysis and optimiza-
tion of software", Journal ofVLSI Signal Processing 13 (2-3) (August 1996).

[66] Tomiyama H., Ishihara T., Inoue A., Yasuura H., "Instruction scheduling for power re-
duction in processor-based system design", in: Proceedings of Design Automation and
Test in Europe (DATE98), 1998, pp. 855-860.

[67] Wang H.-S., Zhu X.-P., Peh L.-S., Malik S., "Orion: a power-performance simulator for
interconnection networks", in: Proceedings ofMICRO 35, November 2002.

[68] Weiser M., Welch B., Demers A., Shenker S., "Scheduling for reduced CPU energy",
in: USENIX Symposium on Operating Systems Design and Implementation, (OSDI), No-
vember 1994, pp. 13-23.

[69] Wen v., Whitney M., Patel Y, Kubiatowicz J.D., "Exploiting prediction to reduce power
on buses", in: 10th International Symposium on High Performance Computer Architec­
ture (HPCA'04), 2004.

[70]ı Ye w., Vijaykrishnan N., Kandemir M., Irwin MJ., "The design and use of SimpiePower:
a cycle-accurate energy estimation tool", in: Proceedings ofthe Design Automation Con­
ference, June 2000.

[71]ı Ye T.T., De Micheli G., Benini L., "Analysis of power consumption on switch fabrics
in network routers", in: Proceedings of the 39th Conference on Design Automation, June
2002.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

	Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
	Original Citation
	Repository Citation

	Power Analysis and Optimization Techniques for Energy Efficient Computer Systems

