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Lusternik–Schnirelmann category, complements of skeleta
and a theorem of Dranishnikov

JOHN OPREA

JEFF STROM

In this paper, we study the growth with respect to dimension of quite general homotopy
invariants Q applied to the CW skeleta of spaces. This leads to upper estimates
analogous to the classical “dimension divided by connectivity” bound for Lusternik–
Schnirelmann category. Our estimates apply, in particular, to the Clapp–Puppe theory
of A–category. We use cat1.X / (which is A–category with A the collection of
1–dimensional CW complexes), to reinterpret in homotopy-theoretical terms some
recent work of Dranishnikov on the Lusternik–Schnirelmann category of spaces
with fundamental groups of finite cohomological dimension. Our main result is the
inequality cat.X / � dim.B�1.X //C cat1.X / , which implies and strengthens the
main theorem of Dranishnikov [7].

Errata Minor corrections made 11 August 2010

55M30; 55P99

1 Introduction

The Lusternik–Schnirelmann category of a space X , denoted cat.X /, is the smallest
integer k so that X can be covered by open sets U0;U1; : : : ;Uk , each of which
is contractible to a point in X . LS category is an important numerical invariant in
algebraic topology, critical point theory and symplectic geometry (see, for instance,
Cornea et al [5], Clapp and Puppe [4] and Rudyak and Oprea [22]). One of the most
basic estimates for LS category is (by Grossman [12] or see, for instance, Cornea et
al [5])

(}) cat.X /�
dim.X /
cC 1

;

where X is c–connected. While this inequality was originally proven for covering
dimension, the fact (shown later) that LS category is a homotopy invariant allows
us to take dim.X / to mean homotopy dimension, the minimum covering dimension
of all spaces homotopy equivalent to X . For CW or simplicial complexes, covering
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1166 John Oprea and Jeff Strom

dimension is the same as cellular or simplicial dimension, so for these spaces the
term homotopy dimension means the minimum cellular or simplicial dimension of all
spaces homotopy equivalent to X . Throughout the paper, “dim” shall mean homotopy
dimension whenever we speak of it in the context of a homotopy invariant.

Note that the inequality (}) implies that a space whose category is greater than half
the dimension must have a nontrivial fundamental group. In the world of closed
3–manifolds, the fundamental group completely determines the category (see Gómez-
Larrañaga and González-Acuña [10], Oprea and Rudyak [19] or Švarc [26, Corollary
(attributed to Berstein), page 117]). But such a result is too much to hope for in general,
and the precise influence of the fundamental group on the category of the space is still
rather a mystery.

In [3] (also see Švarc [26] and Dranishnikov and Rudyak [9]), Berstein discovered a
very interesting connection between the fundamental group and category. If cat.X /D
dim.X /D n, then there must be a class ˛ 2H 1.X I I.�// with ˛n 6D 0. Here, I.�/

denotes the augmentation ideal of the group ring on the fundamental group � D �1.X /

and cohomology is taken with local coefficients in I.�/. The same local coefficient
approach has been used in [8] to show that manifolds with category equal to 2 are
either surfaces or have free fundamental groups. This has given rise to further study
of the LS category of CW complexes with free fundamental group (see Dranishnikov,
Katz and Rudyak [8], J Strom [25] and Dranishnikov [6]).

These results led Rudyak to conjecture that the LS category of spaces whose fundamental
groups have finite cohomological dimension should be asymptotically bounded above
by 1

2
dim.X /. Rudyak’s conjecture was reformulated by Dranishnikov as the explicit

upper bound

cat.X /� dim.B�1.X //C

�
dim.X /� 1

2

�
:

In the papers [6; 7], Dranishnikov proved this conjecture, first for groups with cohomo-
logical dimension �2 and then for arbitrary groups. The inequality is sharp for X DS1 ,
but other examples seem difficult to come by. Examples such as X DB��CPn suggest
that it might be possible to reduce the upper bound.

Problem 1.1 Is it true that

(?) cat.X /�
�

dim.B�1.X //C dim.X /� 1

2

�
?

We do not address this problem here, although an implication is mentioned in Section 7.

For his proof of the conjecture, Dranishnikov introduced some novel and useful
techniques for the estimation of LS category. The approach is point-set theoretic,
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LS category, complements of skeleta and a theorem of Dranishnikov 1167

involving clever manipulation of open covers, and so it does not fit neatly into the
homotopy-theoretical study of LS category.

This paper grew out of our attempts to understand and reinterpret Dranishnikov’s
argument from a homotopy-theoretic point of view. We found that the proof of the
main lemma [7, Lemma 3.2] implies a bit more than the lemma states: namely, there is
an inequality between cat.X / and a certain invariant of X , which we provisionally
call �1.X / (it is unnamed in Dranishnikov’s paper). We prove here that �1.X / is
in fact the 1–category cat1.X / defined by Clapp and Puppe [4]. Thus we have the
following formula.

Theorem 1.2 (Corollary 6.2)

cat.X /� dim.B�1.X //C cat1.X /� dim.B�1.X //C

�
dim.X /� 1

2

�
:

A great deal of the complexity of Dranishnikov’s proof arises in order to estimate �1.X /.
Once we have shown that this is simply cat1.X /, we can find this upper estimate by a
different and more homotopy-theoretically satisfying method. Our alternative method
depends on a fundamental relation between the skeleta of a simplicial complex and their
complements (see Lemma 2.2), which implies the following estimate of the homotopy
dimension of the complement of a skeleton.

Proposition 1.3 If X is an n–dimensional simplicial complex and Xr is the r –
skeleton of X , then Xn�Xr has the homotopy type of a complex of dimension at most
n� r � 1.

This must certainly be known to geometric topologists, but we have not been able to
find it in the literature. Moreover, we have found the result to be an extremely useful
tool that is a common thread for results throughout the paper, so we give a proof in
Section 2.

When X is a simplicial complex, Lemma 2.2 implies a result of Roth: cat.Xn�Xr /�

n�r�1 if Xn�Xr is path-connected [21, Lemma 1.6]. We must mention, though, that
Roth’s lemma applies to general CW complexes, while ours is valid only for simplicial
complexes. Roth used his lemma – in its full generality – to derive an upper bound on
the LS category of unordered configuration spaces.

More importantly for us however, Lemma 2.2 is the key to a completely new proof
of the fundamental superadditivity property of categorical sequences (see Nendorf,
Scoville and Strom [17]). This new proof is easily generalized, and reveals that
superadditivity is actually a feature of the sequences defined in an analogous way for
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1168 John Oprea and Jeff Strom

a vast array of homotopy invariants Q. Superadditivity of the Q–sequence implies
that Q.X / is bounded above by

�
dim.X /=.connQ.X /C 1/

˘
, where connQ.X / is the

Q–connectivity of X , defined below in Section 3. This theory applies, in particular, to
1–category [4], yielding the bound cat1.X /� d.dim.X /� 1/=2e.1

The conjecture proved by Dranishnikov (and reproved here) evolved from a conjec-
ture in an earlier draft of the paper [8], which asked whether compact manifolds of
dimension � 4 and with free fundamental group must satisfy cat.M / < dim.M /� 1.
In [25], the second author showed that in fact for any CW complex X with free
fundamental group, cat.X / is bounded above by, roughly, 2

3
dim.X /, which was good

enough to prove the conjecture above for all manifolds with dim.M / > 4. The case
dim.M /D 4 remained maddeningly out of reach, even for the much stronger result of
Dranishnikov [6].

However, Brandon Strom [24] has called our attention to a lemma of Hillman [13]: a
4–dimensional Poincaré duality complex with free fundamental group has the homotopy
type of a CW complex built by attaching a single 4–cell to a wedge of lower dimensional
spheres. Thus all such spaces have category at most 2, which resolves, in the affirmative,
the n D 4 case of the original question. (In fact, while Hillman’s result applies to
Poincaré duality complexes, Matumoto and Katanaga [16] had earlier proved the same
result for 4–dimensional manifolds and both these results were mentioned in the
published version of [8].2)

These results also answer an old question about symplectic manifolds. Since ev-
ery finitely presented group arises as the fundamental group of a closed symplectic
4–manifold, we now know that there exist non–simply connected symplectic man-
ifolds M 4 (with free fundamental group) whose category is half their dimension.
No examples of such spaces were previously known (although a cohomologically
symplectic example was constructed in [2]). By Poincaré duality, a 4–manifold with a
nontrivial free fundamental group must have a nontrivial cup product in its cohomology,
which means that

cat.M 4 �
Qs

1 S2/ D sC 2D
dim.M 4 �

Qs
1 S2/

2
;

and so such symplectic manifolds exist in all even dimensions. In Section 7, we shall
discuss some further applications of our results to symplectic topology.

1We use Dranishnikov’s bound here, but note that for an integer r > 1 and any integer n , bn=rc �

d.n� 1/=re with equality holding when r D 2 .
2Thanks to the referee for pointing these items out.
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2 The fundamental dimension lemma

If we remove the k –skeleton from an n–dimensional simplicial complex, the result
still has topological dimension n, but what is its homotopy dimension? A subsimplex
� � � of the simplex � has a complementary simplex L� whose vertices are the
vertices of � that do not belong to � . It follows that � is equal to the join � � L�
and that dim.�/C dim. L�/D dim.�/� 1. Thus the n–dimensional simplex � is the
standard homotopy pushout of the diagram �  � � L� ! L� , where dim.�/D ` and
dim. L�/D n� `� 1. This simple observation is the underlying idea in our result about
the complements of skeleta.

We begin with a bit of groundwork. For basic results about simplicial complexes, see
Seifert and Threlfall [23] and Alexandrov [1] for example.

Lemma 2.1 Let � be an n–dimensional simplex, and let � be a k –dimensional
simplex of the barycentric subdivision sd.ı/ of ı . Then � \ sd.�n

r / is a single
simplex �r of dimension ` such that r � .n� k/� `� r:

Proof If r D n, the statement is plainly true; in particular, it holds for the barycentric
subdivision of a 0–simplex. We now assume that 0 � r < n, and that the result is
known for any .n� 1/–simplex.

Let ı be an n–simplex, and let � be a k –simplex in sd.ı/. The r –skeleton ır is
contained in the union of the .n� 1/–faces of ı . Therefore, if � does not include the
barycenter of ı among its vertices, then � lies in an .n� 1/–dimensional face � of ı
and, by the inductive hypothesis, � \ sd.ır /D � \ sd.�r / is a single simplex � with
dimension ` where

r � .n� k/ < r � ..n� 1/� k/� `� r:

If, on the other hand, � does include the barycenter of ı among its vertices, then
consider the .k � 1/–dimensional simplex � � � complementary to the barycenter
of ı . We have � \ sd.ır /D � \ sd.ır / and the first part of the argument, applied to
� � ın�1 , shows that � \ sd.ır / is a simplex of dimension ` with

r � .n� k/D r � ..n� 1/� .k � 1//� `� r:

Note that the condition r � .n� k/� ` is equivalent to k � `� 1� n� r � 1.

Algebraic & Geometric Topology, Volume 10 (2010)



1170 John Oprea and Jeff Strom

Lemma 2.2 (Fundamental Dimension Lemma) If X is a simplicial complex, then
its n–skeleton Xn is homeomorphic to the standard homotopy pushout3 in the diagram

T
�r //

L�r

��

Xr

��
S // Xn

where

� Xr is the r –skeleton of X ,

� dim.T / < n,

� S 'Xn�Xr and dim.S/ < n� r .

Proof The idea of the proof is to show that it is true for a single simplex � of sd.X /,
in such a way that the maps and homotopies involved are compatible for the faces of the
simplex. Then we piece them together to get the result for any assembly of simplices.

Let � be a k –simplex of the first barycentric subdivision sd.�n/. By Lemma 2.1,
the intersection � \ sd.�n

r / is a single simplex �.r/ of dimension ` with `� r and
k � `� 1 � n� r � 1. Write L�.r/ for the simplex in � complementary to �.r/, so
that � is the join �.r/� L�.r/, and mD dim. L�.r//D k � `� 1� n� r � 1.

Using the join notation in which points of the join are affine combinations atCb.1� t/

with t 2 Œ0; 1�, we write

�.r/D
˚
at C b.1� t/

ˇ̌
a 2 �.r/; b 2 L�.r/ and t � 1

2

	
;

L�.r/D
˚
at C b.1� t/

ˇ̌
a 2 �.r/; b 2 L�.r/ and t � 1

2

	
:

Then we define

� D �.r/\ L�.r/D
˚

1
2
.aC b/

ˇ̌
a 2 �.r/; b 2 L�.r/

	
;

which is homeomorphic to �.r/ � L�.r/ in such a way that the projection maps
p�.r/W � ! �.r/ and p L�.r/W � ! L�.r/ are given by the formulas

p�.r/
�

1
2
.aC b/

�
D a and p L�.r/

�
1
2
.aC b/

�
D b:

It is crucial to note that if � is contained in a larger simplex z� , and we apply our
construction to z� , then its restriction to � is the same as the construction applied
directly to � . This is what makes it possible to glue our homotopy pushout diagrams
together.

3ie, double mapping cylinder

Algebraic & Geometric Topology, Volume 10 (2010)



LS category, complements of skeleta and a theorem of Dranishnikov 1171

Clearly, �.r/ and L�.r/ are (homeomorphic to) the mapping cylinders of p�.r/ and
p L�.r/ . Since their intersection is precisely � , � is the (standard) homotopy pushout of
the diagram

L�.r/ �
p L�.r /oo

p�.r / // �.r/:

Now for the general case: let X be a simplicial complex, and define

T D
[

�2sd.Xn/

�.r/\ L�.r/ and S D
[

�2sd.Xn/

L�.r/:

Note that dim.S/ � n� r � 1. The union sd.Xr / D
S
�2sd.Xn/

�.r/, while vitally
important, does not need new notation. The maps p�.r/ and p L�.r/ for the various
simplices � of sd.X / fit together to define maps �r W T ! Xr and L�r W T ! S .
Explicitly,

�r .x/D p�.r/.x/ and L�r .x/D p L�.r/.x/;

where x 2 � , which are well defined because of the observation in the previous
paragraph. Then we define

Xr D

[
�2sd.Xn/

�.r/ and xS D
[

�2sd.Xn/

L�.r/;

which are the mapping cylinders of �r and L�r , respectively. Their intersection is equal
to T and their union is Xn , so Xn is homeomorphic to the double mapping cylinder
of the diagram

Xr T
�roo L�r // S:

The proof is complete since S ' xS 'Xn�Xr where, as mentioned before, dim.S/�
n� r � 1.

3 Growth of homotopy invariants with dimension

The categorical sequence of the space X is the function �X W N!N [f1g defined
by

�X .k/D inffn j cat.Xn!X /� kg;

where Xn!X denotes an n–skeleton of X .4 The sequence �X describes how the
Lusternik–Schnirelmann category grows with respect to the dimension of the CW
skeleta of X . Categorical sequences were introduced and applied in [17; 25]. Some
key properties of categorical sequences �X are: �X is independent of the choice of

4This is terminology from [17]: an n–skeleton for a general space X is an n–equivalence Xn!X in
which Xn is a CW complex with dim.Xn/� n .

Algebraic & Geometric Topology, Volume 10 (2010)



1172 John Oprea and Jeff Strom

CW decomposition of X ; the finite values of �X are strictly increasing; and that the
sequence is superadditive.

In this section we show that a profitable theory of sequences can be developed for any
invariant Q of homotopy classes of maps satisfying the following three properties:5

(1) (Normalization) Q.�/D 0.

(2) (Factorization) In a homotopy commutative triangle

X
f //

g
��

Z

Y

h

AA

Q.f /�minfQ.g/;Q.h/g.
(3) (Pushout) In a homotopy commutative diagram

A //

��

homotopy
pushout

B

f

��

��
C

g
,,

// D
�

%%
Y

Q.�/�Q.f /CQ.g/C 1.

For such Q we define, for any space X , the Q–sequence �Q
X
W N ! N [ f1g by

setting
�Q

X
.k/D inffn jQ.Xn!X /� kg;

where, as before, Xn! X is an n–skeleton. A numerical invariant Q of homotopy
classes of maps gives rise to an invariant of spaces by the simple rule

Q.X /DQ.idX /;

and the sequence �Q
X

is a useful tool for computing Q.X /, because

Q.X /Dmaxfk j �Q
X
.k/ <1g;

provided X is a finite-dimensional CW complex.

5Of course, we are thinking of an invariant Q such as the category of a map when we define these
properties, but there are more general invariants that satisfy them, as we shall see in Section 4.

Algebraic & Geometric Topology, Volume 10 (2010)



LS category, complements of skeleta and a theorem of Dranishnikov 1173

Remark 3.1 The Factorization Property implies that

(1) if f W X ! Y , then Q.f /�minfQ.X /;Q.Y /g, and

(2) if X is a retract of Y , then Q.X /�Q.Y /.

The three conditions imply that the sequence �Q
X

is well-behaved in a variety of ways.

Proposition 3.2 Suppose Q satisfies the Normalization, Factorization and Pushout
Properties.

(1) The sequence �Q
X

is independent of the choice of CW approximation: it is an
invariant of the weak homotopy type of X .

(2) If X is path-connected, then the finite values of �Q
X

are strictly increasing.

(3) If X is simply connected and �Q
X
.k/ D n, then H n.X IG/ ¤ 0 for some

coefficients G .

Proof Part (1) follows from Cellular Approximation. If i W Xn!X is an n–skeleton
and j W xXm! X is an m–skeleton with n �m (not necessarily from the same CW
decomposition), then we have a homotopy commutative diagram

Xn

i   

// xXm

j}}
X:

Using the Factorization Property, this shows Q.i/�Q.j / in general, and when mD n,
it implies Q.i/DQ.j /.

To prove (2), choose a CW approximation for X so that there are cofiber sequencesW
Sn!Xn!XnC1 . The Pushout Property and the Normalization Property together

give Q.XnC1/ � Q.Xn/C 1. Because of (1) we may use these skeleta to compute
�Q

X
. Now the weakly increasing sequence of numbers fQ.Xn/g has no gaps until it

gets to 1. Therefore if �Q
X
.k/ D n, then Q.Xn�1 ! X / D k � 1 (as opposed to

Q.Xn�1!X /� k � 1), and, finally, �Q
X
.k � 1/ < �Q

X
.k/.

For the last statement, note if X is simply connected and H n.X IG/D 0 for all coeffi-
cients G , then X has a CW decomposition in which Xn DXn�1 , which contradicts
�Q

X
.k/D n (see Strom [25, Remark 3] for more detail).

Now we come to the big surprise: the Pushout Property implies that the Q–sequence
is superadditive.

Algebraic & Geometric Topology, Volume 10 (2010)



1174 John Oprea and Jeff Strom

Theorem 3.3 Suppose Q satisfies the Factorization and Pushout Properties. Then the
sequence �Q

X
is superadditive, in the sense that

�Q
X
.kC l/� �Q

X
.k/C �Q

X
.l/

for all k; l 2N .

Proof Let �Q
X
.k/D n and �Q

X
.l/Dm. To show �Q

X
.kC l/ � nCm, we consider

particular skeleta

inCm�1W XnCm�1!X; im�1W Xm�1!X and in�1W Xn�1!X:

Since Q satisfies the Factorization Property, we may use any skeleta we like. Since
a CW complex has the homotopy type of a simplicial complex (see Lundell and
Weingram [15]), we choose our .nCm � 1/–skeleton XnCm�1 to be a simplicial
complex, and our .n� 1/– and .m� 1/–skeleta be the simplicial skeleta of XnCm�1 .
Since �Q

X
.k/D n and �Q

X
.l/Dm, we have Q.in�1/ < k and Q.im�1/ < l ; we will

show that Q.inCm�1/ < kC l .

Our Fundamental Dimension Lemma gives the homotopy pushout square

T

��

// Xn�1

�� in�1

��

S //

j --

XnCm�1

inCm�1

((
X;

in which dim.S/�m� 1. Then the Pushout and Factorization Properties give

Q.inCm�1/�Q.in�1/CQ.j /C 1

�Q.in�1/CQ.im�1/C 1

� .k � 1/C .l � 1/C 1

< kC l

since, by Cellular Approximation, the inclusion j W S ,! X factors up to homotopy
through im�1W Xm�1 ,!X .

Superadditivity provides us with a useful upper bound for Q.X / when X is finite-
dimensional. To state it, we define the Q–connectivity of X to be the number

connQ.X /D �Q
X
.1/� 1:

Algebraic & Geometric Topology, Volume 10 (2010)
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As long as Q satisfies the Normalization Property, connQ.X / is bounded below by the
ordinary connectivity, conn.X /. If Q is ordinary Lusternik–Schnirelmann category,
then connQ.X / D conn.X /. We show that every numerical invariant satisfying the
Normalization, Factorization and Pushout Properties has an upper bound of the form
“dimension divided by connectivity.”

Proposition 3.4 Suppose Q satisfies the Normalization, Factorization and Pushout
Properties. If X is c–connected, then

Q.X /�
�

dim.X /

�Q
X
.1/

�
D

�
dim.X /

connQ.X /C 1

�
�

�
dim.X /
cC 1

�
:

Proof If X is infinite-dimensional, there is nothing to prove, so we assume that X is
finite-dimensional. By superadditivity, we have �Q

X
.k/� k ��Q

X
.1/ for all k . Therefore

Q.X /Dmaxfk j �Q
X
.k/ <1g

Dmaxfk j �Q
X
.k/� dim.X /g

�maxfk j k � �Q
X
.1/� dim.X /g

D

�
dim.X /

�Q
X
.1/

�
:

Remark 3.5 The Pushout Property is a homotopy-theoretical form of the covering
definition of LS category. The covering definition has been used to prove that cat.X /�
dim.X / (see Cornea et al [5, Theorem 1.7]), but we have not seen the covering definition
yield the better bound cat.X /� dim.X /=.conn.X /C1/. Furthermore, the introduction
of Q–connectivity is new, and leads to lower upper bounds.

4 A–Category

Following Clapp and Puppe [4], 6 we define the A–category of a map f W Z!X . An
open cover U D fU0;U1; : : : ;Ukg of Z is an A–LS cover for f if each restriction
f jUi

factors, up to homotopy, through a space A2A; for such a cover, we set c.U/Dk .
Then we define

catA.f /D inffc.U/ jU is an A–LS cover of f g:

The theory we developed in the previous section applies to the invariants QD catA .

6Note that we use reduced category, where catA.�/ D 0 while Clapp and Puppe use unreduced
category, where catA.�/D 1 .

Algebraic & Geometric Topology, Volume 10 (2010)
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Theorem 4.1 (Clapp–Puppe [4, (1.3)]) For any A, the invariant catA satisfies the
Normalization, Factorization and Pushout Properties.

It follows that there are well defined, strictly increasing and superadditive sequences
�

catA
X

; we’ll use the simpler notation �A
X

for these sequences. Theorem 4.1 implies that
each invariant catA has an upper bound of the form “dimension divided by connectivity.”
A related, but more technical, result was proved in [4, Lemma 5.7]. Let’s write connA

for connectivity with respect to catA .

Corollary 4.2 For a finite-dimensional CW complex X ,

catA.X /�
�

dim.X /
connA.X /C 1

�
:

Clapp and Puppe single out the case Ar Dfr –dimensional spacesg as worthy of special
attention and they suggest the notation catr for this special notion of category. For
path-connected spaces, cat0 is ordinary LS category. Also, if s � r , then As �Ar and
so catr .X /� cats.X /. In particular, catr .X /� cat.X / for any space X . To obtain a
tighter upper bound for catr .X /, we need to estimate the connectivity connr .X /D

connAr .X /. The following result follows from the definitions and Proposition 3.2.

Lemma 4.3 (1) For any space X ,

r � connr .X /� inffm� r jH mC1.X IG/¤ 0 for some abelian G g:

(2) If X is simply connected then the second inequality of (1) is actually an equality.

In particular, connr .X /� r for all X .

Now we can establish our estimates for catr .X /.

Proposition 4.4 Let X be a space with Xr the r –skeleton of X . Suppose that h� is
a multiplicative cohomology theory. If K D ker.h�.X /! h�.Xr //, then

nil.K/� catr .X /�
�

dim.X /
r C 1

�
:

where nil.K/ is the length of the longest nontrivial product of degree nonzero elements
in K .

Proof The first inequality follows from [4, Proposition 3.1] and the standard cuplength
inequality argument for category (see [5, Proposition 1.5]) since K is precisely the
set of elements of h�.X / that vanish when pulled back to any space of dimension at
most r . The second inequality follows from Proposition 3.4 and Lemma 4.3.
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It is a standard consequence of the homotopy lifting property (see [5, Corollary 1.45
and Remark 1.46]) that cat. xX /� cat.X / for any covering xX !X . With a little care,
the argument can be made to work for catr as well.

Lemma 4.5 If pW xX !X is a covering, then catr . xX /� catr .X /.

Proof Let catr .X /D n, and let U0; : : : ;Uk be an Ar –categorical cover of X . By
composing with the homotopy compressing Uk into the r –skeleton Xr , we obtain a
homotopy H W p�1.Uk/� I !X with H1.p

�1.Uk//�Xr . By the homotopy lifting
property, we have a homotopy GW p�1.Uk/�I! xX with G1.p

�1.Uk//� p�1.Xr /.
But, since p is a local homeomorphism, we can always arrange cell structures so that
p�1.Xr /D xXr . Hence, p�1.Uk/ compresses into xXr for each k and we therefore
have catr . xX /� catr .X /.

Unfortunately, catr . xX /� catr .X / is usually a poor estimate. For instance, the universal
cover Sn!RPn has cat.Sn/D 1 and cat.RPn/D n. Using our next proposition, we
can do much better. The key is that if we know a bit about the homotopy groups of X ,
then we can sometimes obtain more useful information.

Proposition 4.6 Let pW zX ! X denote the universal covering. If �j .X / D 0 for
1< j � r , then

cat. zX /D catr . zX /� catr .X /�
�

dim.X /
r C 1

�
:

Proof Let catr .X /D n with Ar –categorical cover X DU0[U1[� � �[Un . Just as in
the proof of Lemma 4.5, the homotopy lifting property implies that each p�1.Uk/ ,! zX

factors, up to homotopy, through an r –skeleton zXr !
zX . Since �j .X / D 0 for

1 < j � r , we have �j . zX / D 0 for 1 � j � r , and so the r –skeleton zXr !
zX is

nullhomotopic. Therefore we have an LS-cover zX Dp�1.U0/[p�1.U1/ � � �[p�1.Un/

of zX and

cat. zX /D catr . zX /� catr .X /�
�

dim.X /
r C 1

�
;

by Proposition 3.4.

Example 4.7 Since Sn is not contractible, we know cat.Sn/ > 0. From the universal
covering Sn!RPn , we obtain

cat.Sn/D catn�1.Sn/� catn�1.RPn/�

�
dim.RPn/

.n� 1/C 1

�
D 1;

so we recover cat.Sn/D 1 from the estimate for catn�1.RPn/.
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Remark 4.8 Of course, in the situation of Proposition 4.6, the inequality cat. zX /�
bdim.X /=.r C 1/c follows from the estimate (}) of the Introduction. It is the fact that
catr .X / fits between these bounds that is of interest because it offers an opportunity
for obtaining a better upper bound for the category of the universal cover of a space in
terms of the category of the space.

Finally, we point out that general invariants Q are related to A–category for carefully
chosen collections A.

Remark 4.9 Suppose Q satisfies the Normalization, Factorization and Pushout Prop-
erties and set AD fA jQ.A/D 0g. Then Q.X /� catA.X /. The reverse inequality is
not generally true, for we could define

Q.X /D
�

0 if catA.X /D 0;

1 otherwise:

This Q satisfies the three properties, but it is clearly not equal to catA .

5 An LS type invariant of fiber pairs

A fiber pair is simply a map of fibrations, ie, a strictly commutative diagram

E0

f //

p0   

E1

p1~~
B

in which p0 and p1 are fibrations. If F0 and F1 are, respectively, the fibers of
p0 and p1 over the basepoint �, then there is an induced map F0 ! F1 . If B is
path-connected, then the induced maps of fibers over other points of B are homotopy
equivalent to this map.

By forming the mapping cylinder over B , we may replace a fiber pair with an in-
clusion of a subfibration E0 ,! E1 over B . From now on, for conceptual (if not
mathematical) convenience, we will work with inclusions of fibrations. An open cover
U DfU0;U1; : : : ;Ung of E1 is a � –cover if each inclusion Uk ,!E1 factors through
the inclusion E0 ,!E1 , up to homotopy over B ; for such a cover we define  .U/D n.
Then we set

�.E0 ,!E1/D inff .U/ jU is a � –cover of X g:

Note that if there is no such cover, then �.E0 ,!E1/D1.
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The clever point-set topology of Dranishnikov’s paper is contained in the following
proposition.

Proposition 5.1 Suppose, in the fiber pair diagram above, B is path-connected and
the inclusion F0 ,! F1 is nullhomotopic. Then

cat.E1/� dim.B/C�.E0 ,!E1/:

The proof rests on two subtle point-set-theoretical results, which we state here – without
proof – for easy reference.
Theorem 5.2 (1) [7, Theorem 1.4] If U D fU0;U1; : : : ;Ugg is an open cover

of a normal space X , then for every m � g there is an open cover V D
fV0;V1; : : : ;Vmg such that
� each Vk is a disjoint union of open sets W˛ such that W˛ is contained in at

least one of the sets Uj , and
� any subcollection consisting of gC 1 sets of V covers X .

(2) [20; 7] If dim.X /� d , then for any open cover U of X and every m� d C 1,
there is an open cover W D fW0;W1; : : : ;Wmg such that
� W refines U , and
� each x 2X is contained in at least m� d C 1 sets of W .

Assuming Theorem 5.2, we now proceed to the proof of Proposition 5.1.

Proof of Proposition 5.1 Let dim.B/D d and let �.E0 ,!E1/D g .

Choose a � –cover of E1 and use Theorem 5.2(1) to extend it to a cover W D

fW0;W1; : : : ;WdCgg such that each Wi can be deformed, over B , into E0 , and such
that any subcollection of gC 1 sets of W cover E1 .

Next, find a cover of B by open sets which are contractible in B , so that the fibration p1

is trivial over each set in the cover. Then use Theorem 5.2(2) to obtain a cover
V D fV0;V1; : : : ;VdCgg of B such that each Vi is contractible in B and each point
b 2 B is contained in at least gC 1 of the sets Vi .

Write yVi D p�1
1
.Vi/. We claim that the collection

C D f yV0\W0; yV1\W1; : : : ; yVdCg \WdCgg

is an LS cover of E1 . It suffices to show that for each b 2 B , p�1
1
.b/ �

S
C . If

x 2 p�1
1
.b/ then, without loss of generality, b 2 V0 \ V1 \ � � � \ Vg and E1 D

W0[W1[ � � � [Wg . Therefore – again without loss – we have x 2W0 and hence

x 2 .p�1
1 .V0\V1\ � � � \Vg//\W0 D

�
yV0\

yV1\ � � � \
yVg

�
\W0 �

yV0\W0:

This shows that C covers E1 .
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It remains to show that each set yVi \Wi 2 C is contractible in E1 . To see this, first
contract each piece vertically into E0 , which can be done because the sets Wk are
� –sets. Then use homotopy lifting to contract each set horizontally into F0 . Finally,
use the hypothesis that the inclusion F0 ,! F1 is nullhomotopic to contract to a point
in E1 .

Remark 5.3 (1) It suffices to have each fiber of p0 contractible in E1 .

(2) The conditions are satisfied if F1 is .r � 1/–connected and F0 is .r � 1/–
dimensional.

Proposition 5.1 is the bulk of Dranishnikov’s [7, Lemma 3.2]. The other part involves
bounding the � term in the special dimension-and-connectivity case mentioned in
the Remark above, but we will accomplish this in a more theoretically satisfying way
below.

6 The case of zX1 ,! zX

Let X be a CW complex. Write � D �1.X / and let zX !X be the universal cover.
Choose a CW decomposition of X and pull it up to provide zX with a � –invariant CW
decomposition so that the covering map is cellular. Then we may form the fiber pair

E� �� zX1
//

%%

E� �� zX

zz
B�

whose induced map of fibers is zX1 ,! zX . It turns out that the fiber pair invariant

�1.X /D �.E� �� zX1 ,!E� �� zX /

is an old friend.

Theorem 6.1 �1.X /D cat1.X /.

There is a fibration qW E� �� zX ! X whose fiber is the contractible space E� . It
follows that q is a homotopy equivalence, and so we obtain Rudyak’s conjecture.

Corollary 6.2 If a connected space X has fundamental group � , then

cat.X /� dim.B�/C cat1.X /� dim.B�/C
�

dim.X /� 1

2

�
:

Proof This follows from Proposition 5.1, Theorem 6.1 and Proposition 4.4.
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Proof of Theorem 6.1 Let us call an open set U �E� �� zX a �1 –set if it can be
deformed over B� into E� �� zX1 ; and let us call a set U �X a cat1 –set if it can be
deformed in X into X1 .

Suppose U �X is a cat1 –set; then let zU D p�1.U /� zX . We show that E� �� zU �

E� �� zX is a �1 –set. To see this, first form the pullback squares

zU

��

// zX

��

zX1

��

oo

U // X X1:oo

Since U !X factors through X1 up to homotopy we may apply the homotopy lifting
property to see that zU factors through zX1 up to � –equivariant homotopy. The claim
follows because the Borel construction E��� .�/ is functorial and converts equivariant
homotopies to homotopies over B� .

If X D U0[U1[ � � � [Un is a cat1 –cover of X , then zX D zU0[
zU1[ � � � [

zUn is a
� –equivariant cover of zX , and so

E� �� zX D .E� �� zU0/[ .E� �� zU1/[ � � � [ .E� �� zUn/

is a �1 –cover of E� �� zX . Thus �1.X /� cat1.X /.

Since the fibration qW E� �� zX !X with fiber E� is a homotopy equivalence, it has
a section � W X !E� �� zX . Let U �E� �� zX be a �1 –set, and let V D ��1.U /.
Then the diagram

E� �� zX1

��

q1 // X1

��
V

� jV //

inV

66U //

77

E� �� zX
q // X

commutes on the nose, except for the triangle, which commutes up to homotopy (over
B� ). This shows that V is a cat1 –set. Finally, if E� �� zX D U0 [U1 [ � � � [Un

is a cover of E� �� zX , by �1 –sets, then we may set Vk D ��1.Uk/, and X D

V0 [ V1 [ � � � [ Vn is a cat1 –cover of X . Thus cat1.X / � �1.X / which completes
the proof of Theorem 6.1.
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7 Some consequences for symplectic manifolds

A closed manifold X 2n is said to be cohomologically symplectic (or c-symplectic) if
there is a class ! 2H 2.X IR/ such that !n 2H 2n.X IR/Š R is nontrivial. Every
symplectic manifold is, of course, c-symplectic. Note that the standard cuplength and
dimension inequalities for LS category imply that

n� cat.X /� 2n:

We now compute the 1–category of c-symplectic manifolds.

Proposition 7.1 A c-symplectic manifold .X 2n; !/ has cat1.X /D nD 1
2

dim.X /.

Proof By Proposition 4.4, we have

n� nil.K/� cat1.X /�
�

dim.X /� 1

1C 1

�
D

�
2n� 1

2

�
D n;

since ! 2K D ker.H�.X IR/!H�.X1IR//.

Since � free implies dim.B�/D 1, we obtain the following.

Corollary 7.2 If .X 2n; !/ is c-symplectic and �1.X / is a free group, then n �

cat.X /� nC 1.

Now, by the cuplength lower bound and the (}) upper bound, a simply connected
c-symplectic manifold .X 2n; !/ always has cat.X / D n D 1

2
dim.X /. Therefore,

the estimate above is saying that the effect of a free fundamental group on category
is minimal. By the result of Hillman discussed in the Introduction, 4–dimensional
manifolds with free fundamental group have category 2, so the fundamental group has
no effect on category in this special case.

A general c-symplectic manifold .X 2n; !/ has cat.X /D nC k for k � 0. Then, for
� D �1.X /, we have by Corollary 6.2,

cat.X /� dim.B�/C cat1.X /

nC k � dim.B�/C n

k � dim.B�/;

and here we can see how a perturbation of LS category away from its value in the
simply connected case constrains the fundamental group.

The strongest instance of this occurs for the symplectically aspherical c-symplectic
manifolds. A manifold .X 2n; !/ is a symplectically aspherical manifold if there is a
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class z! 2H 2.K.�1.X /; 1// such that f �.z!/D ! , where f is the classifying map
of the universal cover. This has the immediate consequence that

dim.B�/� 2nD dim.X /:

In particular (as shown in [14]) if Zk is the fundamental group of a symplectically
aspherical (symplectic) manifold .X 2n; !/, then k � 2n. By [22], it is also true that
cat.X /D 2n, so our estimate says little about this case. However, if the estimate (?)
of the Problem 1.1 holds, then we recover the stronger result dim.B�/� 2n as well.

Gompf has shown [11] that every finitely presented group occurs as the fundamental
group of a closed symplectic manifold of dimension 4. However, taking restricted
classes of symplectic manifolds can constrain the groups that are allowed as fundamental
groups. By the discussion above, we see that a free group can never be the fundamental
group of a symplectically aspherical manifold.

Let’s consider another restricted class of symplectic (or c-symplectic) manifolds. Recall
that Bochner’s theorem restricts the class of manifolds possessing a nonnegative Ricci
curvature metric to those having b1.M / � dim.M /, with equality holding only for
a flat torus. This result was improved (even for manifolds with almost nonnegative
Ricci curvature) in [18] to b1.M /� cat.M /, again with equality only for a flat torus.
Moreover, for c-symplectic manifolds, the inequality was even better.

Theorem 7.3 [18] If .X 2n; !/ is a closed c-symplectic manifold with infinite funda-
mental group and nonnegative Ricci curvature, then

b1.X /� 2cat.X /� dim.X /;

where b1.X / is the first Betti number.

This leads to an analogous estimate involving dim.B�/.

Theorem 7.4 If .X 2n; !/ is a closed c-symplectic manifold with infinite fundamental
group � , nonnegative Ricci curvature and satisfying (?), then

b1.X /� 2cat.X /� dim.X /� dim.B�/:

Proof If � has infinite cohomological dimension, then there is nothing to prove, so
suppose dim.B�/ <1.

cat.X /�
�

dim.B�/C dim.X /� 1

2

�
�

dim.B�/
2

C n

2cat.X /� 2n� dim.B�/:
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In fact, the inequality b1.X /� dim.B�/ follows from the Cheeger–Gromoll splitting
together with the fact that groups and finite index subgroups have the same cohomo-
logical dimension. The interest in the two inequalities is that 2cat.X /�dim.X / fits in
between.

Example 7.5 Prime examples of symplectic manifolds with nonnegative Ricci curva-
ture are products X DT 2k�CPn�k . It is easy to show that cat.T 2k�CPn�k/DnCk .
These products are, of course, instances of X D B� �CPn , and if the estimate (?)
of Problem 1.1 holds, then Theorem 7.4 is sharp since b1.X /D 2k , dim.X /D 2n,
cat.X /D nC k and dim.BZ2k/D 2k :

2k � 2.nC k/� 2nD 2k � 2k:

Therefore, we see that solving Problem 1.1 has interesting consequences.
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