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Phosphate Reactions as Mechanisms of High-Temperature Lubrication

Summary
One of the major problems preventing the operation of advanced gas turbine engines at higher 

temperatures is the inability of currently used liquid lubricants to survive at these higher temperatures 
under friction and wear conditions. Current state-of-the-art organic liquid lubricants rapidly degrade at 
temperatures above 300 °C; hence some other form of lubrication is necessary. Vapor-phase lubrication is 
a promising new technology for high-temperature lubrication. This lubrication method employs a liquid 
phosphate ester that is vaporized and delivered to bearings or gears; the vapor reacts with the metal 
surfaces, generating a solid lubricious film that has proven very stable at high temperatures. In this study, 
solid lubricious films were grown on cast-iron foils in order to obtain reaction and diffusion rate data to 
help characterize the growth mechanism. A phenomenological mathematical model of the film deposition 
process was derived incorporating transport and kinetic parameters that were coupled to the experimental 
data. This phenomenological model can now be reliably used as a predictive and scale-up tool for future 
vapor-phase lubrication studies.

Introduction
In the design of advanced jet engines, whose operating temperatures often exceed 400 °C, the choice 

of a lubricant and lubrication technique is of considerable concern. The method chosen to lubricate the 
contact surfaces must be effective in reducing friction and wear and increasing the usable life of these 
components. Materials employed to reduce friction and control wear may be in the forms of gases, solids 
or liquids. Gas lubricants find most of their applications in bearing technology. The drawback of such 
bearings is their relatively low load-carrying capacity. Solid lubricants can reduce friction and wear, but 
the lubricating films are slowly consumed as surface layers are sheared away, and they possess higher 
friction coefficients than liquid lubricants. Liquid lubricants provide excellent protection at low 
temperatures, but at temperatures above 300 °C even the most advanced liquid lubricants degrade rapidly 
and cannot be used over extended times. Because of the thermal limitations exhibited by conventional 
liquid lubricants, vapor-phase lubrication (VPL) has received a great deal of attention over the past 
decade as an alternative approach for high-temperature lubrication. The majority of VPL studies have 
utilized a liquid phosphate ester that is transported as a vapor to bearings or gears where the vapor reacts 
on the metal surfaces generating a solid lubricious film. Vapor-phase lubrication studies on a variety of 
metallic and ceramic substrates have indicated the need for a transition metal, such as iron, to be present 
in order for a film to be produced successfully (refs. 1 to 3). The chemical reaction between the organic 
vapor and iron-containing surfaces produces an iron-phosphate-type film (ref. 4) containing iron, 
phosphorus, oxygen, and carbon. This method has been successfully applied to metals at high 
temperatures (refs. 5 to 7). Makki and Graham (ref. 6) studied tricresyl phosphate (TCP) and postulated a 
mechanism for vapor-phase deposition of TCP on different surfaces including metals, quartz, and 
ceramics to produce tenacious solid films with a nodular structure. While their studies and results were 
exciting, the ortho isomer of TCP is a known neurotoxin, and it can thermally decompose further into



neurotoxic compounds when combined with other lubricants. Aiming to overcome the potential 
dangers associated with TCP, Rao (ref. 7) investigated an alternative vapor-phase lubricant called 
bis-(4-flurophenoxy)-tetrakis-(3-trifluromethylphenoxy) cyclotriphosphazene also referred to as X-1P. 
X-1P provided adequate lubrication and was shown to work at temperatures higher than those used for 
TCP. However, at high temperatures X-1P forms hydrogen fluoride and corrodes metallic parts over 
extended operation.

In response to health and environmental concerns, “synthetic” analogues to the natural phosphate 
esters were developed to reduce both toxicological concerns and production costs. Because of its 
chemical similarity with TCP (figs. 1 and 2), the alternative lubricant used for this research was the 
phosphate ester, tert-butylphenyl phosphate (TBPP). Phosphate esters in the vapor phase have shown that, 
under the right conditions, they can produce a lubricating film that is stable at very high temperatures 
(refs. 2, 3, and 8). This film provides lubrication and has the ability to significantly reduce the coefficient 
of friction for operating temperatures above 300 °C. This particular feature of TBPP was recently 
demonstrated by Desai (ref. 8), by utilizing a universal wear tester machine (UWTM) to evaluate the 
performance of the lubricant under actual dynamic conditions.

The purpose of this study was the derivation and validation of a mathematical model to describe the 
chemical vapor deposition (CVD) of TBPP on cast iron using a modified thermogravimetric analysis 
(TGA) unit. Solid lubricious films were grown by CVD in the TGA unit at temperatures ranging between 
260 to 330 °C. Kinetic analysis of the TGA data was used to estimate both kinetic and transport 
parameters to be used in the film deposition model described in this report. Surface analyses were also 
performed for chemical characterization of the films.

Experimental
The organic liquid used for this study was a tert-butylphenyl phosphate (TBPP) manufactured by 

Great Lakes Chemical Corporation (Indianapolis, IN). TBPP possesses superior oxidative, thermal, and 
hydrolytic stability compared to all other commercial phosphate ester products. Its extremely low 
volatility and exceptional stability makes TBPP an excellent choice for high-temperature applications 
where an ashless additive is desired. It can be an effective and highly stable antiwear additive in both 
petroleum and synthetic base stocks including polyesters, diesters, and polyalphaolefins. It is known to be 
nontoxic, and it has no halogen in its structure, which might lead to corrosion. The substrates used in 
these deposition experiments were cast-iron foils.



Figure 3.—DuPont instruments (Bad Homburg, Germany) 951 Thermogravimetric analyzer. 
(a) TGA overview. (b) Detail of experimental setup.

The CVD experiments were performed in a TGA unit (fig. 3), modified so it would operate as a hot- 
wall CVD reactor. Cast-iron foil samples were shaped into cylindrical shells and suspended from a quartz 
rod in the TGA unit. A sample of the TBPP was placed in an aluminum pan positioned on the inside 
bottom of the furnace directly underneath the cast-iron foil. The amount of TBPP used was varied by 
using one to three pans. The location of the pans was also varied to examine the effects of location in 
producing thicker films. The sections of the quartz furnace tube that were not in contact with the furnace 
were shielded with aluminum foil to avoid or minimize TBPP condensation. No purge gas was used 
during the experiments in order to operate the reactor in a batch mode and maximize the conversion of the 
reactants inside the chamber.

The TGA unit was then programmed to slowly ramp the furnace temperature from room temperature 
to a preset high temperature during a 40-min period. The preset temperature, from 260 to 330 °C, was 
then held constant for 50 min. This 50-min isothermal time was chosen from past experience, as it proved 
to be sufficient to deposit films of appreciable weight at the preset temperature. After each CVD 
experiment, the coated cast-iron foil was removed from the TGA unit and stored for surface chemical 
analysis. Chemical characterization of the deposited film was carried out by elemental surface analysis 
using energy dispersive x-ray analysis (EDXA), Auger electron spectroscopy (AES), and Fourier 
transform infrared spectroscopy (FTIR).

Model Formulation
A schematic of the postulated film deposition process is shown in figure 4. The precursor, TBPP, is 

vaporized, and these vapors will react on contact with the surface of the cast-iron substrate, leading to the 
formation of an initial thin deposit. Subsequent reaction would require that the reactants diffuse through 
this film to reach the reaction surface. Thus the process involves three steps: (1) transportation of the 
TBPP species from the bulk gas to the gas-film interface, (2) diffusion through the growing film towards 
the substrate surface, and (3) a heterogeneous reaction between the substrate and the diffusing species.

The mathematical formulation of these steps would be

(1)



Figure 4.—Film deposition model for vapor-phase lubrication (VPL) experiments, 
where C is concentration of TBPP at various locations.

where the mass fluxes Fi are illustrated in figure 4. Here,

CG concentration of the aryl ester phosphate in the bulk gas
Cs concentration of the aryl ester phosphate at the outermost layer of film
C0 concentration of the aryl ester phosphate just inside the film surface
CI concentration of the aryl ester phosphate at the iron/film interface
D diffusivity of the aryl ester phosphate in the film
km gas phase mass transfer coefficient
kr rate constant for the surface chemical reaction
Sa specific surface area (area exposed/volume of the reactor chamber)
L film thickness
n overall reaction order

If the diffusion characteristic time is comparatively smaller than that of the reaction, the boundaries 
will behave as if they were stationary on the diffusion time scale, thus enabling us to make a pseudo- 
steady-state approximation to simplify the governing equations; that is, diffusion and reaction are 
occurring in a film of constant thickness. This assumption will be validated in the next section.

Under pseudo-steady-state conditions, the mathematical model reduces to the simple diffusion model

(2)

subject to the following boundary conditions:

(3)

(4)



Integrating equation (2) for a constant D yields,

(5)

(6)

Where H is Henry’s Law coefficient expressed as 1/RT. Since the partial pressure of the species at the 
solid surface requires additional experimental information, it is expressed in terms of the species partial 
pressure in bulk PG as

(7)

where C* is the concentration of the aryl ester phosphate in the film in thermodynamic equilibrium with 
the gas phase. Now the ideal gas law can be used to replace Cs and CG as follows:

(8)

(9)

(10)

which leads to

In a typical experiment the mole fraction of TBPP in the system is significantly less than 1, making it a 
diluted system. Hence, the concentration just inside the film C0 and the partial pressure Ps can be related 
through Henry’s Law:

(11)

where hG is a modified gas phase mass transfer coefficient.
The rate of deposition can now be related to the growth rate of the solid film by a simple mass

balance:

Hence the pseudo-steady-state condition can be reformulated as

At steady state, F1= F2 = F3 and



(12)

Substituting equation (11) into R, the above equation becomes

(13)

subject to L = 0 at t = 0, where R = krCIn /Sa while Mw and p are the molecular weight and density of the 
film, respectively. For the typical deposition conditions, one can safely assume that the mass transfer from 
the gas phase to the film/substrate interface is fast as compared to the chemical reaction, and hence km is 
significantly larger than kr; that is,

(14)

Equation (13) can then be integrated, from t0, Lo to t, L to yield

(15)

Equation (15) is then rewritten in terms of weights to better correlate with the TGA experimental data. By 
substituting W= pAL (where W is the mass of the film, and A is its surface area),

(16)

(17)

τD and τR are the diffusion and reaction times,

respectively. W* is a normalized deposited film mass, where

(18)



Equation (17) is the equation that will be coupled to the experimental data. This equation can be plotted 
as a straight line y = mx + b, where

W* , τD, and can be estimated from the slope m and the intercept b.

Experimental Results
Data were obtained from the TGA experiments and surface analyses of the films; the data were then 

analyzed to validate the proposed model.

Thermogravimetric Analysis (TGA)

Figure 5 represents typical TGA data obtained during a VPL experiment using a TBPP precursor. As 
the deposited film grows on the cast-iron substrate, the increasing mass of the substrate is plotted against 
temperature and time. The isothermal data was statistically analyzed after each TGA experiment before 
proceeding with the kinetic analysis.

The kinetic and transport parameters were obtained by the least-squares method. The transition from 
the reaction control regime (constant ordinate) to the diffusion control regime (linear correlation) was 
determined via one-sided sensitivity analysis. This analysis is illustrated in figure 6. This analysis enabled 
the identification of what section of the data can be used to estimate each parameter in equation (17).

Typical reaction and transport parameter values calculated from the analysis of the TGA data are 
summarized in table I. The characteristic diffusive times τD are at least 4 orders of magnitude smaller than 
the characteristic reaction times (where ετ is the calculated error associated with each characteristic 
time constant), which supports the pseudo-steady-state assumption made in the model formulation.

Figure 5.—Typical TGA data with tert-butylphenyl phosphate (TBPP) as precursor, 
showing isothermal region.



Figure 6.—Identifying the “transition” point through one-sided sensitivity analysis, 
where W0 and W are the initial and final film masses corresponding to times t0 
and t, respectively (see eq. (16)).

TABLE I.—TRANSPORT AND KINETIC PARAMETERS 
FOR TGA DEPOSITION EXPERIMENTS

Experiment Temperature,
°C

Precursor
lubricant

mass,
g

Film
mass,a
w’,
105 g

Reaction
time,

τr,
104 s

Error,

104 s

Diffusion
time,

τD,
109 s

Error,
ετ,

109 s

1 269.3 0.015 2.0 7 0.4 9 2
2 270.2 0.016 2.1 8 0.3 4 0.5
3 287.9 0.023 3.0 7.4 0.3 9 1
4 308 0.038 4.7 6 0.3 17 2

aW* is normalized mass of deposited film, see eq. (18).

TABLE II.—EDXA RESULTS FOR SOLID FILMS DEPOSITED 
ON CAST IRON FOILS FROM TBPP PRECURSOR 

[Values expressed in atomic percent.]
Element Control

(before deposition)
After deposition for 30 min at

275 °C 280 °C 290 °C 330 °C

C 0 9.44 10.32 12.06 14.07
O 0.94 10.36 11.97 14.52 23.9
P 0 0.43 0.83 1.1 3.81
Fe 99.06 79.76 76.89 72.32 58.22

Energy Dispersive X-Ray (EDXA)

The films deposited on cast-iron substrates were characterized by EDXA. Table II shows the EDXA 
results for films obtained at different temperatures.

The results suggest that as the deposition temperature increases, a thicker film is created. For 
example, for the same amount of lubricant used at 275 and 280 °C, the phosphorus concentration in the 
films approximately doubled. Also, for experiments from 290 to 330 °C the amount of phosphorus 
increased three and a half times, while the lubricant mass was only 25 percent larger at these 
temperatures.



Auger Electron Spectroscopy (AES)

Film chemistry was investigated with AES. Figures 7 and 8 present profiles of atomic percentages of 
the element composition of films deposited at low and high temperatures, respectively. These figures 
show the atomic percentages of carbon, oxygen, iron, and phosphorus as a function of depth. For a 16-mg 
sample of lubricant used for deposition experiments at 270 °C, the phosphorous atomic percentage 
becomes negligible after 135 nm. However, for films deposited at 290 and 310 °C from 26 mg of 
lubricant, the amount of phosphorous remains noticeable up to depths of 225 and 720 nm, respectively. 
There is a small amount of carbon in the outer layer of each of those samples. Artifacts resulting from the 
low sensitivity of the AES to phosphorous and from noise in the spectrum are more noticeable as the 
atomic percentage of phosphorous becomes smaller.

Figure 7.—Auger electron spectrocopy depth profiling for solid lubricant 
film deposited on cast iron at 270 °C from TBPP precursor.

Figure 8.—Auger electron spectrocopy depth profiling for solid lubricant 
film deposited on cast iron at 310 °C from TBPP precursor.



Fourier Transform Infrared Spectroscopy (FTIR)

The main functional groups in the deposited film surface were identified by FTIR. Figure 9 shows the 
spectrum for a film deposited at 275 °C. The sloping baseline observed in the spectra is a result of surface 
roughness and reflectivity difference between the gold slide used as a background and the cast-iron 
substrate. Spectra for foils treated below 275 °C appear similar to that of bare cast-iron, which would 
suggest that these experiments resulted in the thinnest films reported.

The spectra for experiments where successful deposition occurred did not show any aromatic C-H 
stretches, which indicates that the outermost film layers do not have any aryl groups. This means that 
either the TBPP decomposes while being heated and only the phosphate anion PO4-3 reacts with the iron 
surface or that TBPP molecules reach the iron surface and upon reaction the aryl groups decompose. As 
the deposition temperature increased, the P=O peak becomes more prominent. In addition, an extra peak 
corresponding to P-O-C becomes visible as the temperature increases (fig. 10). These observations 
corroborate the AES analysis that as the deposition temperature increases, thicker films are generated.

Figure 9.—Infrared spectrum of solid lubricant film deposited on cast 
iron at 275 °C from TBPP precursor.

Figure 10.—Infrared spectrum of solid lubricant film deposited on cast 
iron at 310 °C from TBPP precursor.



Conclusions
In order to better understand the vapor-phase lubrication mechanism, a pseudo-steady-state 

mathematical model of the deposition process was formulated, and an equation was derived relating 
kinetic and transport parameters to the deposited film growth.

A modified thermogravimetric analysis (TGA) unit then was successfully used to grow solid 
lubricious films on cast-iron foils by chemical vapor deposition. These deposition experiments produced 
films at temperatures ranging between 270 and 330 °C using tert-butylphenyl phosphate as a precursor. 
The modified TGA unit enabled deposition experiments under a controlled atmosphere and at constant 
temperature. Studies were restricted to the temperature range that has shown 1 order of magnitude 
reductions in the coefficient of friction for dynamic lubrication processes.

The experimental data collected in this temperature range were used to estimate the kinetic and 
transport parameters involved in the deposition. Surface analysis of the deposited films revealed the 
temperature dependence of the deposition mechanism. The ability to carry out deposition experiments 
under controlled temperature conditions yielded reliable estimations of the temperature dependence of 
transport and kinetic parameters. The numerical values of the transport and kinetic parameters validated 
the pseudo-steady-state assumption made in the development of the mathematical model. This model can 
now be used as a predictive and scale-up tool for future vapor-phase lubrication studies.
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