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Cardiomyopathy Detection from 
Electrocardiogram Features 

Mirela Ovreiu and Dan Simon  
Cleveland Clinic Foundation, Cleveland State University 

United States 

1. Introduction 
Cardiomyopathy refers to diseases of the heart muscle that becomes enlarged, thick, or 

rigid. These changes affect the electrical stability of the myocardial cells, which predisposes 

the heart to failure or arrhythmias. Cardiomyopathy in its two common forms, dilated and 

hypertrophic, implies enlargement of the atria. Therefore, computer intelligence techniques 

are proposed for the recognition and classification of P wave features for cardiomyopathy 

diagnosis. The technique that we propose is a neuro-fuzzy network. The neuro-fuzzy 

classifier will be trained with innovative evolutionary algorithms, which have recently been 

shown to be efficient global optimizers. 

Cardiomyopathy is a significant clinical problem which is mainly generated by 

volume/diastolic overload. To accommodate the increased blood volume, the heart 

chambers may stretch or dilate. Valvular regurgitation and congestive heart failure are two 

conditions that contribute to chamber dilation. 

Cardiomyopathy is generally diagnosed by an electrocardiographic (ECG) investigation. In 

the current standards published by the American Heart Association, chamber hypertrophy 

or enlargement is a separate diagnostic category which can be detected with ECG analysis 

(Masson, Hancock, & Gettes, 2007). Although many algorithms have been implemented for 

ECG analysis, the proposed research is unique in several ways. 

 We propose the development of non-invasive and automatic cardiomyopathy 

diagnosis, which has not been reported in the literature. 

 We propose the development of algorithms for P wave analysis, which have not been 
reported in the literature. 

 We propose the use of 5-lead ECG data, which is more readily available than 12-lead 
data.

 We propose the use of a powerful neuro-fuzzy architecture for ECG analysis, which 
has not been reported in the literature. 

 We propose neuro-fuzzy ECG classifier optimization using evolutionary algorithms, 
which has not been reported in the literature. 

Our preliminary studies of postoperative cardiovascular patients reveal our hypothesis: the 
ECG presents different electrical activity for patients with cardiomyopathy, compared with 
patients who do not have cardiomyopathy. This working hypothesis indicates that an 
automated method that selects the best ECG parameters to include in a cardiomyopathy 
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diagnosis algorithm will be extremely valuable. Although such a method will not be fool-
proof or 100% correct, and thus cannot replace medical doctors, it will help physicians 
diagnose or prognose life threatening conditions such as stroke or ventricular or atrial 
fibrillation. This will expedite the initiation of medical treatment as appropriate to minimize 
the risk of these conditions, or to prevent their onsets. 
Although it has long been suggested that cardiomyopathy is reflected in modification of 
ECG characteristics, statistics-based attempts to classify cardiomyopathy from the ECG have 
been underwhelming (Macfarlane, 2006; Magdic, Saul, 1997). Motivated by the universal 
approximation theorem for neuro-fuzzy networks discussed in the chapter, we hypothesize 
that earlier limitations may be overcome by a neuro-fuzzy classification model. 
Cardiovascular diseases are the major cause of death in the western world, resulting in more 
than 800,000 deaths per year in the United States alone (American Heart Association, 2009). 
One in five Americans has some form of cardiovascular disease (Olson, 2004). 
Cardiomyopathy is a significant clinical problem which is mainly generated by 
volume/diastolic overload. To accommodate the increased volume of blood, the heart 
chambers may stretch or dilate. Valvular regurgitation and congestive heart failure are two 
conditions that contribute to chamber dilation. 
Cardiomyopathy is generally diagnosed by an echocardiograph investigation. For an 
echocardiography the patient has to be referred to a cardiologist or an echocardiographic 
investigation. But the electrocardiographic (ECG) investigation is always part of a 
cardiologic work-up. 
The ECG represents the recording of the deflection of ionic current across myocardial cell 
membranes and throughout the extracellular space of the different tissues of the thoracic 
cavity. The ECG, in competition to many other techniques, retains an important role in 
diagnosis and prognosis of cardiovascular diseases. 
It has been suggested that cardiomyopathy is reflected in modification of ECG 
characteristics such as P wave morphology. Previous statistics-based attempts to classify the 
cardiomyopathy from ECG have been underwhelming (Macfarlane, 2006; Magdic, Saul, 
1997), but we hypothesize that these limitations can be overcome using a hybrid neuro-
fuzzy classification model. To test this hypothesis and direct the results to patient care, we 
follow these directions. First we design a neuro-fuzzy model to diagnose cardiomyopathy. 
Then we train the network using an aquired clinical database of ECG signals. 
Neuro-fuzzy systems can be trained with derivative-based methods like gradient descent 
(Chen, Linkens, 2001; Linkens, Chen, 1999) or with evolutionary algorithms such as genetic 
algorithms and swarm intelligence (Kennedy, Eberhart, & Shi, 2001). Evolutionary 
algorithms have the advantage of not requiring derivative information, and have less 
likelihood of getting stuck in a local optimum. Hence we use a new biologically motivated 
optimization algorithm called biogeography-based optimization (BBO) (Simon, 2008) to 
train the neuro-fuzzy ECG classification network. We also incorporate opposition-based 
learning in the BBO algorithm (Ergezer, Simon, & Du, 2009) for better classification. 

2. Background 
2.1 Cardiomyopathy 
The term “cardiomyopathy” defines a group of diseases primarily affecting the cardiac 
muscle by weakening it or changing its structure. Cardiomyopathy can be acquired or 
inherited, and in many cases its cause is unknown. Hypertrophic cardiomyopathy is 



  
 
 

 

 

 

 

 

  

 

 

 

  

   

  

 

   

 
 

 

inherited and is supposed to be a result of defects of genes that regulate heart muscle 
growth. Abnormal cardiac enlargement can be due to an increase in length or diameter of  
existing cardiac muscle cells (Olson, 2004). Cardiomyopathy, through electrical instability of 
myocardial cells, is associated with cardiac conduction abnormalities that can degenerate to 
arrhythmia or heart failure (Dische, 1972). 
Cardiomyopathies, especially hypertrophic, are considered a common cause of sudden 
cardiac death in young adults and children (Ingles, Semsarian, 2007; Bar-Cohen, Silka, 2008). 
The Chagas and idiopathic dilated etiologies of cardiomyopathy led to Pereira et al.’s study 
in adults (Pereira et al., 2010); after 40 months, almost half of the cases studied (113 out of 
284) registered deaths (104) or heart transplants (9). 
The ECG records the deflection of ionic current across myocardial cell membranes and 

through the extracellular space of the thoracic cavity tissues. The history of cardiomyopathy 

research reveals the evolution of the analysis of ECG correlations. Due to the left ventricle’s 

critical role, initial studies were focused only on the ECG features of the hypertrophic left 

ventricle (Sox, Garber, Littenberg, 1989). The QRS and T waves, as the reflections of 

ventricular depolarization and repolarization respectively, were analyzed (Ziegler, 1970). In 

the study by Sox et al., citing the Framingham Study, the left ventricular hypertrophy (LVH) 

was defined by a prolonged ventricular activation period of 0.05 s, tall R waves, depressed 

ST segments, and inverted T waves (Sox, Garber, Littenberg, 1989). Ziegler was the first to 

analyze T waves related to LVH; he presented different patterns of the QRS and T 

configurations into left or right precordial limb leads (Ziegler, 1970). The P wave portrays 

atrial electrical activity, so changes in the atrial action potential and substrate are reflected in 

P wave timing or morphology (Chandy, 2004). Bahl et al. presented the P wave changes 

associated with the type and stage of the disease (Bahl, 1972). Analyzing the four chamber 

enlargements, Johnson et al. presented P wave changes for enlarged left and right atria 

(Johnson, Horan, & Flowers, 1977). 

The atria, characterized by thin walls, respond to volume and pressure overload due to 

dilatation. Moreover, the enlargement of the associated ventricle is recognized as the cause 

of the enlargement of the atrium (Macfarlane, 2006; Magdic, Saul, 1997). The right atrium 

enlargement is recognized by the increased amplitude of the P wave (0.25 mV) while left 

atrial abnormality is reflected by the lengthened P wave  duration (>120 ms) as well as a  

notched P wave. 

The American Heart Association, American College of Cardiology Foundation, and the 

Heart Rhythm Society, recently concluded on standards to be used when interpreting ECG 

data related to cardiomyopathy (Hancock et al., 2009). In left ventricular hypertrophy, the P 

wave shape is mentioned as a criterion. In right ventricular hypertrophy (LVH), a P wave 

amplitude larger than 0.25 mV in lead II is presented as a threshold. Left atrial abnormality 

implies a prolongation of the total atrial activation time (>120 ms), widely notched P wave, 

and possible changes in P wave area. The right atrial abnormality list includes a larger 

amplitude of the P wave (> 0.25 mV) and a prolongation of the P wave in patients after 

cardiac surgery, which is the case for the patients in our proposed research. 

Our proposed algorithm presents the advantage of compatibility with the clinical Cardio-
Vascular Intensive Care Unit (CVICU) setting since it is designed to analyze P wave 
parameters from a 5-lead ECG, versus the laboratory 12-lead ECG. P wave delineation is made 
automatically on the ECG signal using wavelet transforms. The P wave features obtained by 
the wavelets are then processed by a neuro-fuzzy system. Neuro-fuzzy systems are 



 
  

 

 
 

  

 

 

 

 

 
 

 

 

 
 

 

  
 
 
 

 

  

 

  

combinations of fuzzy systems and artificial neural networks. Such combined systems have 
the advantage that they can learn faster and more accurately than an individual artificial 
neural network or fuzzy logic system. A benefit over artificial neural networks is that the rules 
that describe the system are explicit, thus permitting easy interpretation and validation. 
Considering the frequent association of cardiomyopathy and atrial fibrillation, a future 
application of this successful classification process is the inclusion of the results in an 
automatic prediction algorithm for atrial fibrillation (AF). AF is a threatening arrhythmia 
that is encountered in 25% of post-cardiovascular surgical patients in the CVICU of the 
Cleveland Clinic. 
Cardiomyopathy diagnosis will be performed by a multivariate, neuro-fuzzy classification 

model that uses P wave parameters to generate a cardiomyopathy classification index. 

Artificial Neural Networks are universal approximators (Buckley, Hayashi, 1995), and there 

has also been extensive work to prove that neuro-fuzzy systems can approximate any 

continuous function to any desired degree of accuracy (Feuring, Lippe, 1999). Alvisi et al. 

(Alvisi et al., 2006) have studied the performances of fuzzy logic and Artificial Neural 

Networks, revealing the weaknesses and strengths of each of the methods. The strengths can 

be emphasized, and some of the weaknesses can be attenuated, by combining the techniques 

into a hybrid neuro-fuzzy model. The universal approximation theorem is the reason that 

a neuro-fuzzy system may be able to overcome the limitations of previous statistics-based 
methods for ECG analysis. 

2.2 Neuro-fuzzy networks 
Consider a multi-input, single-output fuzzy logic system. Our discussion can be easily 

generalized to multiple output systems, but restricting our discussion to single-output 

systems simplifies the notation considerably. In addition, the ECG classification system that 

we consider in this paper is single-output. The ith rule Ri of the fuzzy system can be written 

as follows (Chen, Linkens, 2001). 迎沈 :	If 捲怠 is 畦沈怠 and	 … and	捲陳 is	畦沈陳 then	検 噺 権沈岫捲岻, 岫件 噺 な,⋯ , 喧岻. (1) 

The inputs xi and the output y are linguistic variables, Aij are fuzzy sets, and zi(x) is a 
function of the input x = [x1 … xm]T. The output function zi(x) typically takes one of the 
following forms: (1) singleton, (2) fuzzy set, (3) linear function. If the fuzzy system uses 
center average defuzzification, product inference, and singleton fuzzification, then zi(x) = zi 

(a singleton) and the fuzzy system output can be written as

椎沈退椎沈退怠 権怠沈 ∏陳珍退陳珍退怠怠 航沈珍沈珍盤捲盤捲珍珍匪検 噺 ∑∑ ∏ 航 匪 (2) 

where ij(xij) denotes the degree of membership of xj in Ri. As in many neuro-fuzzy 

networks, we use a Gaussian form for ij: 捲珍 伐 潔沈珍匪態航沈珍盤捲珍匪 噺  exp蕃– 盤 態 否 (3)購沈珍



 
 

  

  

  

 
 

 

 

 
 

 
 

  
 

  
  

  
     

 

where cij is the jth element of the center of the ith rule, and ij is its standard deviation. In 
this case, Eq. (2) becomes

検 噺 椎 拳 
(4)∑沈退怠 兼沈岫捲岻

椎拳 噺 布権沈兼沈岫捲岻 (5)沈退怠 

兼沈岫捲岻 噺 結捲喧岷伐岫捲 伐 潔沈岻脹鶏貸態岫捲 伐 潔沈岻峅 (6) 

where 潔沈 噺 岷潔沈怠 ⋯ 潔沈陳峅脹 and 鶏 噺  diag岫購怠,⋯ , 購陳岻. Eq.  (5) is in the form of a radial basis 
function, which is a type of neural network (Chen, Linkens, 2001). The system of Eqs. (5) 
and (6) is therefore called a neuro-fuzzy system. It can be depicted as shown in Figure 1. 

Fig. 1. Multi-input single-output neuro-fuzzy system architecture 

The neuro-fuzzy system in Figure 1 is a function of the pxm elements of the membership 

centers cij, the pxm elements of the membership standard deviations ij, and the p elements 
of the singleton outputs zi. There are thus p(2m+1) parameters that define the neuro-fuzzy 
system. For a given neuro-fuzzy system architecture and a given training set of 
input/output data, the neuro-fuzzy system parameters can be optimized with respect to 
these p(2m+1) parameters. 

2.3 Biogeography-Based Optimization (BBO) 
Biogeography-based optimization (BBO) is a recently-developed population-based 
evolutionary optimization algorithm (Simon, 2008). As its name implies, BBO is motivated 
by biogeography, which is the study of the distribution of species over time and space 
(Whittaker, 1998). BBO has demonstrated good performance on various benchmark 
functions (Lomolino, Riddle, & Brown, 2009; Simon, 2008). It has also been successfully 
applied to several real-world optimization problems, including sensor selection (Simon, 
2008), power system optimization (Rarick et al., 2009), groundwater detection (Kundra, 
Kaur, & Panchal, 2009), and satellite image classification (Panchal et al., 2009). 



 
 

 
 

   

  

  

   

 

 

 
 
 

  
 

 

 
 

 

Given an optimization problem and a population of candidate solutions (individuals), a 
biogeography-based optimization (BBO) solution with high fitness is likely to share its 
features with other solutions, and a solution with low fitness is unlikely to share its features. 
Conversely, a solution with high fitness is unlikely to accept features from other solutions, 
while a solution low fitness is likely to accept features. Solution feature sharing, which is 
called immigration and emigration, tends to improve the solutions and thus evolve a good 
solution to the problem. 
In biogeography-based optimization (BBO), each individual solution has its own 

immigration rate i and emigration rate i. A good solution has relatively high  and low , 
while the converse is true for a poor solution. The immigration rate and the emigration rate 
are functions of the fitness of the solution. They are often calculated as 膏沈 噺 血沈⁄券航沈 噺 な 伐 膏沈 (7) 

where n is the population size and fi is the fitness rank of the ith individual (the most fit 

individual has a rank fi = 1). The immigration rates i are interpreted by the BBO algorithm 

as immigration probabilities. The emigration rates i are proportional to fitness and so are 
used in a roulette-wheel type of algorithm to determine the emigrating solution in case 
immigration is selected for a solution. 
Although the migration rates in Eq. (1) are linear with respect to fitness rank as originally 
proposed in earlier study (Simon, 2008), more natural migration rates which are sigmoid 
with respect to fitness rank generally seem to give better optimization performance 
(Lomolino, Riddle, & Brown, 2009). However, in this paper we retain the original linear 
migration rates for the simplicity reason. 
As with other evolutionary algorithms, mutation is typically implemented to increase 
exploration, and elitism is often implemented to retain highly fit solutions. The standard 
BBO algorithm is shown in Figure 2. 

Fig. 2. One generation of the standard BBO algorithm. 



  
  

 

 
 

  
 

  

 

 

 

  
 

 

 

 

  

 

 

 

  

  

   

  

  

  

 

2.4 Oppositional BBO 
Opposition-based learning (OBL) has been introduced as a method that can be used by 
Evolutionary Algorithms (EAs) to accelerate convergence speed by comparing the fitness of 
an individual to its opposite and retaining the fitter one in the population (Rahnamayan, 
Tizhoosh, & Salama, 2007; Tizhoosh, 2005). The “opposite” of an individual is defined as the 
reflection of that individual’s features across the midpoint of the search space. Opposition-
based differential evolution (ODE) (Rahnamayan, Tizhoosh, & Salama, 2008.) was the first 
application of OBL to Evolutionary Algorithms (EAs). OBL was first incorporated in BBO in 
earlier research study (Ergezer, Simon, & Du, 2009) and was shown to improve BBO by a 
significant amount on standard optimization benchmarks. 
Given an Evolutionary Algorithm (EA) population member x, there are at least three 
different types of oppositional points that can be defined. These oppositional points are 
referred to as the opposite xo, the quasi-opposite xq, and the quasi-reflected-opposite xr. 
Figure 3 illustrates these points for an arbitrary x in a one-dimensional domain. The point c 
is the center of the domain, xo the reflection of x across c, xq is a randomly generated point 
from a uniform distribution between c and xo, and xr is a randomly generated point from a 
uniform distribution between x and c. 

Fig. 3. Illustration of an arbitrary EA individual x, its opposite xo, its quasi-opposite xq, and 
its quasi-reflected-opposite xr, in a one-dimensional domain. 

OBL is essentially a more intelligent way of implementing exploration instead of generating 

random mutations. Another way of viewing OBL is from the perspective of social 

revolutions in human society. Society often progresses on the basis of a few individuals who 

embrace philosophies that are not just random, but that are deliberately contrary to accepted 

norms. Given that an EA individual is described by the vector x, and that the solution to the 

optimization problem is uniformly distributed in the search domain, it is shown in 

Rahnamayan’ study (Rahnamayan, Tizhoosh, Salama, 2007) that xq is probably closer to the 

solution than x or xo. Further, it is presented in our earlier publication (Ergezer, Simon, & 

Du, 2009) that xr is probably closer to the solution than xq. These results are nonintuitive, but 

results related to random numbers are often nonintuitive, and the OBL results are derived 

not only analytically by also using simulation. 

In this paper we use oppositional BBO (OBBO) to train the neuro-fuzzy ECG classification 

network. Suppose that the population size is N. OBBO works by generating a population of N 

opposite individuals which are the opposite of the current population. Then, given the entire 

2N individuals comprised of both the original and the opposite populations, the best N 

individuals are retained for the next population. However, this does not occur at each 

generation. Instead it occurs randomly with a probability of Jr at each generation. Jr is called 

the jump rate. Based on (Rahnamayan, Tizhoosh, & Salama, 2006) we use Jr = 0.3 in this paper. 

In order to increase the likelihood of improvement at each generation we implement OBBO 
as follows. At each generation, we save the original population of N individuals before 



 

 

 

 
  

 

 

 

  

 

 

     

  

    

  

 

creating a population of N new individuals via migration. We then create an opposite 
population of N additional individuals if indicated by the jump rate. Of the total 2N or 3N 
individuals, we finally select the best N for the next generation. Note that this approach 
guarantees that the best individual in each generation is at least as good as that of the 

previous generation. This is similar to a (+) evolutionary strategy (Du, Simon, & Ergezer, 

2009), whose parameters are not to be confused with the  and  migration parameters in 
BBO. The resulting OBBO algorithm is summarized in Figure 4. 

Fig. 4. One generation of oppositional BBO (OBBO). 

3. ECG data 
In preparation for the testing of a cardiomyopathy diagnosis model, a database of long-

duration ECG signals was collected. The database includes signals from 55 subjects, 18 of 

them with cardiomyopathy. Not all subjects experienced chronic or paroxysmal atrial 

fibrillation. The cardiomyopathy group contained 10 males and 8 females with a mean age 

of 54 (range 2388) years. The control group contained 22 males and 15 females with a mean 

age of 60 (range 2777) yrs. The inclusion criteria were the same for both groups: no chronic 

or paroxystic atrial fibrillation and no perioperative pacing. 

ECG parameters describing P wave morphology were computed for each minute of data 

recording for all 55 patients in the training data set. This set of ECG parameter values 

constitutes the input component of the training data set for neuro-fuzzy model 

development. For additional details of ECG parameter computation algorithms see 

(Bashour et al., 2004; Visinescu et al., 2004; Visinescu, 2005; Visinescu et al., 2006; Ovreiu 

et al., 2008) 



 

 
  
  
  
 

  
 

 
 

  
 

 
 

 

 
 

 
  

 
 

    

The P wave from the electrocardiogram reflects the electrical activity of the atria and may 
indicate the existence of irregularities in electrical conduction. Using a previously developed 
P wave detection method, the starting, ending, and maximum points of the P wave were 
determined (Visinescu, 2005). The average P wave morphology parameters were computed 
once per minute. The P wave morphology parameters included the following: 
a.	 Duration 
b.	 Amplitude 
c.	 A shape parameter which represents monophasicity or biphasicity 
d.	 Inflection point, which is the duration of the P wave between the onset and the peak 

points 
e.	 Energy ratio, defined as the fraction between the right atrial excitation energy and the 

total atrial excitation energy. 
Initial investigation revealed that the monophasicity / biphasicity parameter did not vary 
appreciably between cardiomyopathy and control patients. We therefore discarded the 
monophasicity / biphasicity parameter from our data set. Differences between the 
remaining P wave morphology parameters for cardiomyopathy and control patients in the 
training database are presented in Figure 5. Based on the standard deviation bars, there is 
apparently important information included in these parameters. Their usefulness in 
identifying the patients with cardiomyopathy is determined by the proposed neuro-fuzzy 
model as discussed in the following section. 

1.1 

1 

0.9 

0.8 

0.7 

Fig. 5. P wave characteristics of cardiomyopathy and control patients. Data are normalized 
to the mean values of the control patients. Error bars show one standard deviation. 

4. Experimental results 
4.1 Problem setup 
Cardiomyopathy diagnosis is performed by a multivariate, neuro-fuzzy classification model 
that uses current values of ECG P wave  parameters to generate a cardiomyopathy 
classification index. The initial model is a multi-input single-output fuzzy inference system 
with a three-layer architecture (Figure 1). The fuzzification layer takes crisp parameter 
values and determines their memberships in linguistic categories (low, medium, high, etc.). 

Cardiomegaly 
Control 

 duration inflection  energy amplitude 



 

  

 

 

 

   

 

 

 

  

  

 
 

  

 
  

 
 

  

  

   
   

 

 

 

 

 

 

 

Each of these fuzzy variables are then input to each node of the fuzzy rule layer (i.e.,  the  
middle layer shown in Figure 1). The model output, which is the cardiomyopathy 
classification index, is the weighted average of the output rules. 
Since we have four inputs (see Figure 5), we have m = 4 in Figure 1. The number of middle-

layer neurons is equal to p and should be chosen as a tradeoff between good training 

performance and good generalization. If p is too small then training performance will be 

poor because we will not have enough degrees of freedom in the neuro-fuzzy network. If p 

is too large then test performance will be poor because the training algorithm will tend to 

“memorize” the training inputs rather than obtaining a good generalization for test data. 

The output y shown in Eq. (4) is chosen to be +1 for cardiomyopathy patients and 1 for 

control patients. The ECG database is used for training and the output of the neuro-fuzzy 

system is compared to the known classification of the ECG patient. The RMS training error 

is defined as 

継 噺 彪軽布岫穴沈 伐 検沈岻な
沈退
朝
怠 

態 (8) 

where N is the number of training inputs, di is the desired output of the ith training datum 

(+1 or 1), and yi is the corresponding neuro-fuzzy output. In order to determine the best 
value of p (the number of middle-layer neurons) we run 10 Monte Carlo simulations with 
various values for p and compare training and testing errors. The BBO parameters that we 
use are as follows: 

 Population size = 200 

 Mutation rate = 2% per solution feature 

 Generation limit = 50 
Mutation is implemented by randomly generating a new parameter from a uniform 
distribution between the minimum and maximum parameter bounds. The parameter 
bounds that we use are as follows: 

 Output singletons zi  [10, +10] 

 Membership centroids cij  [0, ]

 Membership standard deviations ij  [0.01, 5] 
We use ECG data from 55 test subjects as described in Section 3, which includes 37 control 

patients and 18 cardiomyopathy patients. We randomly divide the patients into 

approximately equal numbers of training patients and test patients. We therefore have 9 

cardiomyopathy patients and 19 control patients for training the network, and 9 

cardiomyopathy patients and 18 control patients for testing the network. We randomly 

choose 200 ECG data points from a 700-minute time interval for each patient for both 

training and testing. Therefore, we have 200(9+19) = 5600 data points for training, and 

200(9+18) = 5400 data points for testing. 

4.2 Parameter tuning and results 
Table 1 shows the minimum training error attained as specified in Eq. (2) for various 
numbers of middle-layer neurons, along with the resulting correct classification rate for 



 
   

 
 

 

 

  

  

  

  

 

 
 

  

  
 

 

   

  

   

 

 

    

    

 

training and testing. An ECG data point is classified as cardiomyopathy if the neuro-fuzzy 
output y > 0, and control if the neuro-fuzzy output y < 0. The quantity of primary interest is 
the correct classification rate for the test data, and Table 1 shows that this is attained with 3 
middle-layer neurons. Fewer neurons gives too few degrees of freedom, and more neurons 
results in a tendency of the neuro-fuzzy system to overfit the training data and hence not 
provide adequate generalization for the test data. 

p 
Training Error Train CCR (%) Test CCR (%) 

Best Mean Best Mean Best Mean 

2 

3 

4 

5 

0.85 

0.77 

0.78 

0.78 

0.88 

0.84 

0.83 

0.83 

76 

82 

84 

82 

72 

77 

77 

76 

66 

75 

65 

63 

58 

62 

55 

58 

Table 1. Training error and correct classification rate (CCR) for training and testing as a 
function of the number of middle layer neurons p. 

Next we implement OBBO to explore the effect of OBL on classification performance. Table 
2 shows results for three different OBL options: standard BBO, OBBO using quasi-
opposition (Q-BBO), and OBBO using quasi-reflected opposition (R-BBO). We use the same 
population size, mutation rate, and generation limit as discussed earlier. We use 3 middle-
layer neurons as indicated by Table 1. Table 2 shows that OBBO using quasi-opposition 
provides the best neuro-fuzzy classification performance when test performance is used as 
the criterion. 
Note that the numbers in Tables 1 and 2 do not match exactly because they are the results of 
different sets of Monte Carlo simulations. In future work we will use a more extensive set of 
simulations in order to obtain results with a smaller margin of error. 

Training Error Train CCR (%) Test CCR (%) 

Best Mean Best Mean Best Mean 

BBO 0.77 0.86 84 76 66 58 

Q-BBO 0.83 0.86 79 74 69 62 

R-BBO 0.80 0.85 81 75 65 60 

Table 2. Training error and correct classification rate (CCR) for training and testing for 
alternative implementations oppositional BBO. 

After settling on Q-BBO with 3 middle-layer neurons, we explore the effect of mutation 

rate on Q-BBO performance. Table 3 shows neuro-fuzzy results for various mutation 

rates. We use the same population size and generation limit as before. Table 3 shows that 

mutation rate does not have a strong effect on neuro-fuzzy system results, but based on 

test data performance, a low mutation rate generally gives better results than a high 

mutation rate. 



  

   

   

   

   

   

   

   

 

 

 

 

 

 

 

 

  

  

 

  

Mutation rate Training Error Train CCR (%) Test CCR (%) 

(%) Best Mean Best Mean Best Mean 

0.1 0.79 0.85 81 76 71 61 

0.2 0.82 0.86 80 75 72 59 

0.5 0.77 0.85 82 76 69 62 

1.0 0.80 0.85 80 74 67 57 

2.0 0.83 0.86 79 74 69 62 

5.0 0.82 0.87 81 74 68 58 

10.0 0.80 0.87 78 73 65 59 

Table 3. Training error and correct classification rate (CCR) for different mutation rates 
using Q-BBO. 

Figure 6 shows the progress for a typical Q-BBO training simulation. Note that the 

minimum training error in the top plot is monotonically nonincreasing due to the inherent 

elitism of the algorithm (see Figure 3). However, the average cost in the top plot, along with 

the success rates in the bottom plot, sometimes increases and sometimes decreases from one 

generation to the next. The results shown in Figure 6 also indicate that better results might 

be obtained if the generation limit were increased. However, care must be taken when 

increasing the generation limit. As the generation count increases, the training error will 

continue to decrease but the test error will eventually begin to increase due to overtraining 

(Tetko, Livingstone,& Luik, 1995). 

The Q-BBO training run illustrated in Figure 6 resulted in the following neuro-fuzzy 

parameters: 

0.513 0.116 0.981 0.065   c 0.316 0.930 0.138 0.214 (9)  0.899 0.235 0.041 0.613  
1.119 0.409 0.133 0.101 

  0.326 0.805 1.963 1.529 (10) 

1.825 0.356 0.858 0.438  権 噺 岷な.はねな 伐ど.ひはば ど.ばばひ峅.  (11) 

Recall that we used a c range of [0, ], but from Eq. (3) the highest membership centroid was 

less than 1 after Q-BBO training. This indicates that we could decrease the c range in order 

to get better resolution during training. 

Similarly, recall that we used a  range of [0.01, 5], but from Eq. (4) the highest standard 

deviation was less than 2 after Q-BBO training. This indicates that we could decrease the  
range in order to get better resolution during training. 

Finally, recall that we used an output singleton z range of [10, +10], but from Eq. (5) the 

output singletons were between 1 and 2 after Q-BBO training. This indicates that we could 

decrease the z range in order to get better resolution during training. 
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Fig. 6. Typical Q-BBO training results. 

4.3 Clustering and pruning 
The appropriate number of clusters in the neuro-fuzzy system is equivalent to the number 
of middle-layer neurons p shown in Figure 1. Determination of the optimal number of fuzzy 
rules is equivalent to finding a suitable number of clusters for the given data set. This can 
also be performed using fuzzy c-means clustering (Chen, Linkens, 2001; Linkens, Chen, 
1999). Clustering is itself a multiobjective optimization problem that maximizes 
compactness within clusters, maximizes separation between clusters, and maximizes neuro-
fuzzy system performance. 
In the previous section we solved for cluster count using a direct approach involving 
manual tuning (see Table 1). However, we could also solve for cluster count by observing 
the output singletons zi after training, discarding those that are significantly smaller than the 
others, and then retraining the network. This is a type of pruning. For example, when using 
BBO to train the neuro-fuzzy system with 5 middle-layer neurons, a typical result for the 
output singletons after convergence is z 噺 岷な.ばはは				な.ぱぱど			 伐 な.ばなに				宋. 惣操匝 伐 な.のねに峅. 
It is seen that the magnitude of z4  (ど.ぬひに岻	 is smaller by a factor of 4 than any of the other 
elements of z. This indicates that the corresponding fuzzy rule might be able to be safely 
removed from the neuro-fuzzy system without sacrificing performance. Retuning should 
then be performed because the neuro-fuzzy parameters will need to be adjusted to 
compensate for the network size reduction. 
Another way to check if we are using too many middle-layer neurons is by looking at the 
distance between fuzzy membership function centers. If, after training, two membership 
function centers are very close to each other, that indicates that those two fuzzy sets could 
be combined. For example, the matrix of fuzzy centroids after a typical training run with 5 
middle-layer neurons (i.e., 5 fuzzy membership sets) is given by 
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0.5587 0.0046 0.9480 0.6628 0.4908 0.3719 0.4274 0.2847  
c  0.5534 0.9005 0.9880 0.2659 .  

0.9839 0.7428 0.3904 0.2067  0.9992 0.6061 0.2754 0.2185  
Each row of c corresponds to a fuzzy set centroid, and each column of c corresponds to one 
dimension of the input data. A cursory look at the c matrix shows that rows 4 and 5 are 
similar to each other. A matrix of Euclidean distances between centroids (i.e., between 
columns of c) can be derived as 

0 0.7439 0.9807 1.1157 1.0980
 
0.7439 0 0.7732 0.6231 0.5838
 
 
c 0.9807 0.7732 0 0.7556 0.8919
     

1.1157 0.6231 0.7556 0 0.1797  1.0980 0.5838 0.7556 0.1797 0  
where cij is the Euclidean distance between centroids i and j. The c matrix indicates that fuzzy 
centroids 4 and 5 are much closer to each other than the other centroids, which implies that the 
corresponding membership functions overlap, and so they could be combined. Afterward, the 
neuro-fuzzy system should be retrained to compensate for the change in its structure. 

4.4 Fine tuning using gradient information 
The BBO algorithm that we used, like other Evolutionary Algorithms (EAs), does not 
depend on gradient information. Therein lies its strength relative to gradient-based 
optimization methods. Evolutionary Algorithms (EAs) can be used for global optimization 
since they do not rely on local gradient information. Since the neuro-fuzzy system shown in 
Figure 1 may have multiple optima, BBO training is less likely to get stuck in a local optima 
compared to gradient-based optimization. 
However, additional performance improvement could be obtained in the neuro-fuzzy classifier 
by using gradient information in conjunction with EA-based optimization. Gradient-based 
methods can be combined with EAs in order to take advantage of the strengths of each method. 
First we can use BBO, as above, in order to find  neuro-fuzzy parameters that are in  the  
neighborhood of the global optimum. Then we can use a gradient-based method to fine tune 
the BBO result. The most commonly-used gradient-based method is gradient descent clustering 
(Chen, Linkens, 2001; Linkens, Chen, 1999). Gradient descent can be further improved by using 
an adaptive learning rate and momentum term (Nauck, Klawonn, Kruse, 1997). 
Kalman filtering is a gradient-based method that can give better fuzzy system and neural 
network training results than gradient descent (Simon, 2002a, 2002b). Constrained Kalman 
filtering can further improve fuzzy system results by optimally constraining the network 
parameters (Simon, 2002c). H-infinity estimation is another gradient-based method that can 
be used for fuzzy system training to improve robustness to data errors (Simon, 2005). 

4.5 Training criterion 
The ultimate goal of the neuro-fuzzy network is to maximize correct classification percentage. 
If the neuro-fuzzy output is greater than 0, then the ECG is classified as cardiomyopathy; 



 

   
    

  
 

  

 

 

 
 
 

  
 

 

 

 

 

otherwise, the ECG is classified as non-cardiomyopathy. The bottom plot in Figure 6 shows 
that while RMS training error is monotonically nondecreasing, the success rate for the training 
data is non-monotonic. We could more directly address the problem of ECG data classification 
by using classification success rate as our fitness function rather than trying to minimize the 
RMS error of Eq. (2). That is, in fact, one of the advantages of EA training relative to gradient-

based methods  the fitness function does not have to be differentiable. However, if we use 
classification success rate as our fitness function, and then try to use a gradient-based method 
for fine-tuning, the cost functions of the two training methods would be inconsistent. 

5. Conclusion 
We have shown that clinical ECG data can be correctly classified as cardiomyopathy or non-
cardiomyopathy using a neuro-fuzzy network training by biogeography-based optimization 
(BBO). Our results show a correct classification rate on test data of over 60%. Better results 
can undoubtedly be attained with further training, but the main goal of this initial research 
was to demonstrate feasibility and to establish a framework for further refinement. 
Although our preliminary results are good, there are many enhancements that need to be 
made in order to improve performance and incorporate this work into a commercial 
product. For example, demographic information needs to be included with the ECG data. 
Some of the test ECGs were correctly classified 100% of the time, while others had a very 
low success rate. Figure 7 shows the classification success rate for the test data as a function 
of patient ID. Some patients generated ECG data that was successfully classified as 
cardiomyopathy / non-cardiomyopathy only 2% of the time, while others generated data 
that was successfully classified 100% of the time. This indicates that demographic data is 
important and that we should group patients into similar groups for testing and training. 
Some of these data include gender, race, medication usage, and age. This will become 
feasible as we perform more clinical studies and collect data from more patients. 
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Fig. 7. ECG classification success rate for test patients. 

We note that our results are based on snapshots of the data at single instants of time. We 
could presumably get better results by using a “majority rules” strategy for data collected 
over several minutes. For example, suppose that test accuracy is 60% for a given patient. We 
could use ECG data at three separate time instants and diagnose cardiomyopathy if the 



 
 

   

  

    

 
 
 

 

 

 
 

 
 

 
 

  

 

 
  

 

 

 
 

 
 

neuro-fuzzy network predicts cardiomyopathy for two or more of the data. This would 
boost test accuracy from 60% to 65%, assuming that the probability of correct classification is 
independent from one time instant to the next. We could then further improve accuracy by 
using more time instants. 
A strong reason for investigating this cardiac anomaly is its association to Atrial Fibrillation 
occurrence. The availability of ECG registrations and efficiency in time and cost savings of 
such a different approach, especially in cardiovascular surgical patients would imply as a 
future work, the inclusion of this automated classification algorithm  into a bed side monitor 
indicator that might be used in future classification and/or forecasting algorithms under 
investigation. 
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