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On several conjectures from evolution of dispersal

Isabel Averill, Yuan Lou* and Dan Munther
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(Received 24 June 2010; final version received 30 September 2010 )

We address several conjectures raised in Cantrell et al. [Evolution of dispersal and ideal free distribution,
Math. Biosci. Eng. 7 (2010), pp. 17–36 [9]] concerning the dynamics of a diffusion–advection–competition
model for two competing species.A conditional dispersal strategy, which results in the ideal free distribution
of a single population at equilibrium, was found in Cantrell et al. [9]. It was shown in [9] that this special
dispersal strategy is a local evolutionarily stable strategy (ESS) when the random diffusion rates of the
two species are equal, and here we show that it is a global ESS for arbitrary random diffusion rates. The
conditions in [9] for the coexistence of two species are substantially improved. Finally, we show that this
special dispersal strategy is not globally convergent stable for certain resource functions, in contrast with
the result from [9], which roughly says that this dispersal strategy is globally convergent stable for any
monotone resource function.

Keywords: evolution of dispersal; ideal free distribution; evolutionarily stable strategy; reaction–
diffusion–advection

AMS Classification: 35K57; 92D25

1. Introduction

Within the broad scope of theoretical ecology, the notion of dispersal is indispensable in
determining the distribution, dynamics, and persistence of a species within its habitat. More
specifically, one can ask how the spread and movement of a population evolves over time. Recent
studies have identified several mechanisms which play significant roles in this evolution [18], one
of which is temporal and spatial variability in the environment. Hastings [23] focused on spatial
variation in the environment, utilizing a reaction–diffusion model to study its effect on the evolu-
tion of passive dispersal (see also [19,30]). Following Hastings’ work, Belgacem and Cosner [1]
added an advection term to the well-known logistic reaction–diffusion model, realizing that in a
spatially variable environment, a population may move towards regions that are more favourable.
The endeavour to understand the evolution of this combination of passive and biased dispersal,
via a reaction–diffusion–advection model in a spatially inhomogeneous environment, prompted
the work of Cosner and Lou [13], Cantrell et al. [4,6,8,9], Chen and Lou [10], Chen et al. [11],
Hambrook and Lou [22], Bezuglyy and Lou [2], Lam [34,35], and Lam and Ni [36].
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Our paper emerges from the above context with the aim of addressing several conjectures raised
in Cantrell et al. [9] concerning the dynamics of the two species diffusion–advection–competition
model

ut = μ∇ · [∇u − u∇P(x)] + u[m(x) − u − v] in � × (0, ∞),

vt = ν∇ · [∇v − v∇Q(x)] + v[m(x) − u − v] in � × (0, ∞),

[∇u − u∇P ] · n = [∇v − v∇Q] · n = 0 on ∂� × (0, ∞), (1)

where u(x, t) and v(x, t) represent the densities of two competing species, μ and ν are their
random diffusion coefficients, P, Q, m ∈ C2(�̄), and m(x) is the intrinsic growth rate of both
species. Throughout this paper we will always assume that m > 0 in �̄, where � is a bounded
domain in R

N with smooth boundary ∂�, n is the outward unit normal vector on ∂�, and the
boundary condition in Equation (1) says that there is no flux across the boundary.

To motivate our discussion, we first consider the dynamics of Equation (1) when v(x, t) ≡ 0,
i.e. only species u is present. For such a situation, Equation (1) is reduced to the single species
reaction–diffusion–advection model

ut = μ∇ · [∇u − u∇P ] + u(m − u) in � × (0, ∞),

[∇u − u∇P ] · n = 0 on ∂� × (0, ∞). (2)

It is known that if m > 0 in �, then Equation (2) has a unique positive steady state, denoted by u∗,
which is globally asymptotically stable among non-negative non-trivial initial data, and u∗ solves

μ∇ · [∇u∗ − u∗∇P ] + u∗(m − u∗) = 0 in �,

[∇u∗ − u∗∇P ] · n = 0 on ∂�. (3)

Integrating the equation of u∗ and applying the divergence theorem, we have∫
�

u∗(m − u∗) dx = 0.

Since u∗ > 0 in �, either m − u∗ changes sign in � or m − u∗ ≡ 0 in �. If we regard m − u∗ as
the fitness of the species u at equilibrium, m − u∗ changes sign means that there is some mismatch
between the species density and its resource distribution. On the other hand, m − u∗ ≡ 0 means
that the population matches the environmental quality perfectly and the fitness of the population
is the same everywhere in the habitat. Furthermore, if m − u∗ ≡ 0, then ∇ · [∇u∗ − u∗∇P ] ≡ 0
in �, i.e. zero net movement of individuals. Hence, if the scenario m − u∗ ≡ 0 occurs, then the
species’ equilibrium density with dispersal present is the same as that with dispersal absent. Such
rather peculiar spatial distribution of species is usually referred to as the ideal free distribution [5].

A natural question is: for what kind of functions P(x) can it happen that m − u∗ ≡ 0? It was
found [9] that m − u∗ ≡ 0 if and only if P(x) − ln m(x) is equal to some constant. Since ∇(P +
C) = ∇P for any constant C, we may simply restrict our discussion to the case P(x) = ln m(x)

instead of P(x) = ln m(x) + C. It is known that population models with nonlinear diffusion
can support or approximate ideal free dispersal strategies (see [7,12]). It is quite interesting that
even biased movement of a species along its resource gradient alone can also produce ideal free
distributions of populations at equilibrium.

A steady state (ũ, ṽ) of Equation (1) with both components being positive is called a coexistence
state; (ũ, ṽ) is a semi-trivial steady state if one component is positive and the other is the zero
function. It is known that if m > 0, Equation (1) has exactly two semi-trivial steady states, denoted
as (u∗, 0) and (0, v∗), where u∗ is the unique positive solution of Equation (3) and v∗ can be defined
similarly.
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The first result of Cantrell et al. [9] can be stated as follows.

Theorem 1.1 [9, Theorem 1] Suppose that μ = ν, m ∈ C2(�̄), and m > 0 in �̄.

(a) Suppose that P(x) = ln m(x), Q(x) = ln m(x) + εR(x), where R ∈ C2(�̄). If R is non-
constant, then (0, v∗) is unstable and (u∗, 0) is globally asymptotically stable for 0 < |ε| � 1.

(b) Suppose that P(x) − ln m is non-constant. Then there exists some R ∈ C2(�̄) such that for
Q(x) = P(x) + εR(x), (u∗, 0) is unstable for 0 < |ε| � 1.

An important idea in adaptive dynamics [15–17,20] is the idea of evolutionarily stable strategies
(ESS). A strategy is said to be evolutionarily stable if a population using it cannot be invaded by
any small population using a different strategy. Part (a) of Theorem 1.1 shows that P = ln m is a
local ESS and part (b) shows that no other strategy can be a local ESS. It was conjectured in [9]
that P = ln m is a global ESS, i.e. part (a) of Theorem 1.1 holds for any ε �= 0. Our first result is
to answer this conjecture positively.

Theorem 1.2 Given any μ, ν > 0. Suppose that P(x) = ln m, and Q(x) − ln m is not a constant
function. Then, the semi-trivial steady state (u∗, 0) is globally asymptotically stable.

Remark 1.1 This theorem proves the conjecture that P(x) = ln m is a global ESS. In fact, we
also allow μ, ν to be arbitrary here. The condition on Q(x) is also necessary: if Q(m) − ln m is
also a constant function, Equation (1) has a continuum family of positive steady states, all of them
are of the form (sm(x), (1 − s)m(x)), where s ∈ (0, 1).

Remark 1.2 Note that u∗ ≡ m when P(x) = ln m(x). It is easy to see that the semi-trivial steady
state (m, 0) is neutrally stable. Thus, even the local asymptotic stability of (m, 0) is non-trivial
and is of independent interest.

The second main result in [9] concerns the coexistence of two competing species and it can be
stated as the following.

Theorem 1.3 [9, Theorem 2, part (b)] Suppose that μ = ν, P (x) = ln m + αR, Q(x) =
ln m + βR, m > 0. We further assume that � = (0, 1) and Rx �= 0 in [0, 1]. If αβ < 0, then
both (u∗, 0) and (0, v∗) are unstable, and system (1) has at least one stable positive steady state.

Theorem 1.3 implies that the two species can coexist provided that their dispersal strategies lie
on two ‘opposite sides’ of the optimal strategy ln m. Our second result is to sharpen Theorem 1.3
as follows.

Theorem 1.4 Suppose that P(x) = ln m + αR, Q(x) = ln m + βR, and R ∈ C2(�̄) is non-
constant. If αβ < 0, then both (u∗, 0) and (0, v∗) are unstable, and system (1) has at least one
stable positive steady state.

The third main result of [9] concerns whether ln m is a convergent stable strategy (CSS) of
system (1). A strategy is convergent stable if selection favours strategies that are closer to it over
strategies that are further away. More precisely, the following result is established in [9].

Theorem 1.5 [9, Theorem 2, part (a)] Suppose that μ = ν, P (x) = ln m + αR, Q(x) =
ln m + βR, � = (0, 1), and Rx �= 0 in [0, 1]. If α < β < 0 or 0 < β < α, then (u∗, 0) is unsta-
ble and (0, v∗) is stable. Moreover, given any η > 0, there exists κ > 0 such that if either
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(i) α, β ∈ [−η, 0] and 0 < β − α < κ or (ii) α, β ∈ [0, η] and −κ < β − α < 0, then (0, v∗)
is globally asymptotically stable.

It is natural to inquire whether the assumption Rx non-vanishing in � is essential for
Theorem 1.5 to hold. A little surprisingly, it turns out to be possible to construct non-monotone
functions R(x) such that for P(x) = ln m + αR(x) and Q(x) = ln m + βR(x), both (u∗, 0) and
(0, v∗) are unstable for suitably chosen positive constants α, β, μ, ν. To this end, we first give a
description of such non-monotone functions R(x). Given any function m > 0 in �̄, we assume
that R(x) satisfies the following.

(A) There exists some x0 ∈ �̄ such that x0 is a local maximum of R(x) and

R(x0) <

∫
�

m2R∫
�

m2
.

It is not difficult to see that for any positive function m (even if m is a positive constant), there
exist functions R ∈ C2(�̄) which satisfy assumption (A). If we perturb R slightly, we may further
assume that all critical points of R are non-degenerate. Clearly, any function R(x) which satisfies
assumption (A) will have at least two local maxima and thus cannot be monotone. To see this, let
x∗ be any global maximum point of R(x), then we have

R(x0) <

∫
�

m2R∫
�

m2
< R(x∗) = max

�̄

R.

In other words, for any local maximum point x0 of R satisfying assumption (A), x0 cannot be a
global maximum point of R.

Our main goal is to show that under assumption (A), (u∗, 0) is unstable for suitably chosen
parameters α, β, μ, ν > 0. The key ingredient is to find α > 0 and μ > 0 such that u∗(x0) <

m(x0), i.e. the species u at equilibrium undermatches its resource at some local maximum point
of R. Once this is done, we can choose β sufficiently large, i.e. the species v has a strong tendency
to concentrate near the local maxima of R, such that small populations of v can invade in a
neighbourhood of x0 since the effective growth rate for v is m(x) − u(x), which is positive for x

close to x0. The precise statement of our result is as follows.

Theorem 1.6 Suppose that R(x) satisfies assumption (A) and all critical points of R are non-
degenerate. Assume that P(x) = ln m + αR and Q(x) = ln m + βR in Equation (1). Then there
exists some α0 > 0 such that for every α ∈ (0, α0), we can find some μ0 > 0 such that if μ >

μ0, then given any ν > 0, both (u∗, 0) and (0, v∗) are unstable for sufficiently large β > 0.
Furthermore, system (1) has at least a stable positive steady state.

Note that ν can be arbitrarily chosen, so we allow μ = ν in our constructions. This immediately
gives a counterexample to some conjecture raised in part (c), Remark 1.1 of [9].

Theorem 1.6 suggests that there is some α∗ > α0 > 0 such that the strategy P(x) = ln m(x) +
α∗R(x) may be a local ESS and/or CSS. At first look this appears to contradict part (b) of
Theorem 1.1, which says that no other strategy can be a local ESS except P = ln m. Actually they
are consistent with each other since part (b) of Theorem 1.1 allows R to vary arbitrarily, while
here we are fixing m and R and only allow the parameters α, β to vary. In other words, if we only
consider the evolution of a single trait α, β, then system (1) may have other local ESS and/or CSS
besides P = ln m. Hence, while the global ESS exists and is unique, this global ESS may not be
a global CSS, and there may exist multiple local ESS and/or CSS for system (1) if we only allow
one single trait to evolve.



Journal of Biological Dynamics 121

This paper is organized as follows. In Section 2, we give some preliminary results on monotone
dynamical systems and criteria on the local stability of semi-trivial steady states. Sections 3–5
are devoted to proofs of Theorems 1.2, 1.4, and 1.6, respectively. Some discussions of the results
are given in Section 6.

2. Preliminary results

In this section, we summarize some statements regarding solutions of system (1) and the stability of
its steady states, which will be useful in later sections. By the maximum principle for cooperative
systems [40] and the standard theory for parabolic equations [25], if the initial conditions of
Equation (1) are non-negative and not identically zero, system (1) has a unique positive smooth
solution which exists for all time and it defines a smooth dynamical system on C(�̄) × C(�̄)

[3,26,41]. The stability of steady states of Equation (1) is understood with respect to the topology of
C(�̄) × C(�̄). The following result is a consequence of the maximum principle and the structure
of Equation (1) (see [9, Theorem 3]).

Theorem 2.1 The system (1) is a strongly monotone dynamical system, i.e.

(a) u1(x, 0) ≥ u2(x, 0) and v1(x, 0) ≤ v2(x, 0) for all x ∈ � and
(b) (u1(x, 0), u2(x, 0)) �≡ (u2(x, 0), v2(x, 0)) implies u1(x, t) > u2(x, t) and v1(x, t) <

v2(x, t) for all x ∈ �̄ and t > 0.

The following result is a consequence of Theorem 2.1 and the monotone dynamical system
theory [26,41].

Theorem 2.2 If system (1) has no coexistence state, then one of the semi-trivial steady states
is unstable and the other one is globally asymptotically stable [29]; if both semi-trivial steady
states are unstable, then Equation (1) has at least one stable coexistence state [14,37].

The following result concerns the linear stability of semi-trivial steady states of Equation (1)
(see, e.g. [11, Lemma 5.5]).

Lemma 2.1 The steady state (u∗, 0) is linearly stable/unstable if and only if the following
eigenvalue problem, for (λ, ψ) ∈ R × C2(�̄), has a positive/negative eigenvalue:

ν∇ · [∇ψ − ψ∇(ln m + βR)] + (m − u∗)ψ = −λψ in �,

[∇ψ − ψ∇(ln m + βR)] · n = 0 on ∂�.

The criterion for the linearized stability of the semi-trivial steady state (0, v∗) is analogous.

3. Proof of Theorem 2

In this section, we focus on the case when P(x) = ln m, i.e. the following model:

ut = μ∇ · [∇u − u∇(ln m)] + u[m(x) − u − v] in � × (0, ∞),

vt = ν∇ · [∇v − v∇Q(x)] + v[m(x) − u − v] in � × (0, ∞),

[∇u − u∇(ln m)] · n = [ν∇v − v∇Q(x)] · n = 0 on ∂� × (0, ∞). (4)
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Theorem 3.1 Given any μ, ν > 0. Suppose that Q(x) − ln m is not a constant function. Then,

the semi-trivial steady state (u∗, 0) is globally asymptotically stable.

Proof Step 1. We show that Equation (4) has no positive steady states. To this end, we argue by
contradiction. Suppose that u, v are positive steady states of Equation (4), i.e. they satisfy

μ∇ · [∇u − u∇(ln m)] + u[m(x) − u − v] = 0 in �,

ν∇ · [∇v − v∇Q(x)] + v[m(x) − u − v] = 0 in �,

[∇u − u∇(ln m)] · n = [∇v − v∇Q(x)] · n = 0 on ∂�. (5)

Set w = u/m. Then w satisfies

μ∇ · [m∇w] + mw(m − u − v) = 0 in �,
∂w

∂n

∣∣∣∣
∂�

= 0.

Since w > 0, dividing the equation of w by w and integrating in �, we have

μ

∫
�

m
|∇w|2

w2
+

∫
�

m(m − u − v) = 0. (6)

Integrating the equations of u and v, we have

∫
�

u(m − u − v) = 0 (7)

and ∫
�

v(m − u − v) = 0, (8)

respectively.
Adding up Equations (7) and (8), we have

∫
�

(u + v)(m − u − v) = 0. (9)

Subtracting Equation (9) from Equation (6), we obtain

μ

∫
�

m
|∇w|2

w2
+

∫
�

(m − u − v)2 = 0,

which implies that m − u − v ≡ 0 and w = s for some positive constant s > 0; i.e. u/m = s

for some constant s. Since u > 0 and v > 0, from m − u − v = 0, we see that s ∈ (0, 1) and
v = (1 − s)m. Substituting (u, v) = (sm, (1 − s)m) into the equation of v and dividing the result
by (1 − s), we see that

ν∇ · [m∇(ln m − Q(x))] = 0 in �, ∇(ln m − Q(x)) · n|∂� = 0. (10)

By the maximum principle [40], Q(x) − ln m must be equal to some constant, which contradicts
our assumption. This proves that Equation (4) has no positive steady states.
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Step 2. We show that (0, v∗) is unstable. By Lemma 2.1, it suffices to show the smallest
eigenvalue, denoted by λ1, of the linear eigenvalue problem

μ∇ · [∇ϕ − ϕ∇(ln m)] + (m − v∗)ϕ = −λϕ in �,

[∇ϕ − ϕ∇(ln m)] · n = 0 on ∂�

satisfies λ1 < 0. Let ϕ1 denote the positive eigenfunction of λ1 uniquely determined by
max�̄ ϕ1 = 1. Set ψ = ϕ1/m. Then the previous equation can be written as

μ∇ · [m∇ψ] + m(m − v∗)ψ = −λ1mψ, ∇ψ · n|∂� = 0.

Dividing the equation of ψ by ψ and integrating the result in �, we have

μ

∫
�

m
|∇ψ |2

ψ2
+

∫
�

m(m − v∗) = −λ1

∫
�

m. (11)

Integrating the equation of v∗, we have

∫
�

v∗(m − v∗) = 0. (12)

Subtracting Equation (12) from Equation (11), we find that

μ

∫
�

m
|∇ψ |2

ψ2
+

∫
�

(m − v∗)2 = −λ1

∫
�

m.

Hence, λ1 < 0 as long as v∗ �≡ m. To this end, we argue by contradiction and suppose that v∗ ≡ m.
Then by the equation of v∗, we see that Equation (10) holds, which implies that Q(x) − ln m is
constant and we reach a contradiction. Hence, v∗ �≡ m and thus λ1 < 0.

Step 3. We show that the semi-trivial steady state (u∗, 0) is globally asymptotically stable. This
follows from Theorem 2.2, system (4) has no positive steady state (Step 1), and the semi-trivial
steady state (0, v∗) is unstable (Step 2). �

4. Proof of Theorem 4

In this section, we generalize previous results in Cantrell et al. [9] on the coexistence of two
competing species. In particular, we focus on the case where P(x) = ln m + αR and Q(x) =
ln m + βR, i.e. we consider

ut = μ∇ · [∇u − u∇(ln m + αR)] + u[m(x) − u − v] in � × (0, ∞),

vt = ν∇ · [∇v − v∇(ln m + βR)] + v[m(x) − u − v] in � × (0, ∞),

[∇u − u∇(ln m + αR)] · n = [∇v − v∇(ln m + βR)] · n = 0 on ∂� × (0, ∞). (13)

Theorem 4.1 Suppose that αβ < 0 and R ∈ C2(�̄) is non-constant. Then, both semi-trivial
steady states (u∗, 0) and (0, v∗) are unstable, and system (13) has at least one stable positive
steady state.
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Proof Step 1. We show that (0, v∗) is unstable. Let λ1 denotes the smallest eigenvalue of the
following linear problem

μ∇ · [∇ϕ − ϕ∇(ln m + αR)] + ϕ(m − v∗) = −λϕ in �,

[∇ϕ − ϕ∇(ln m + αR)] · n = 0 on ∂�, (14)

and let ϕ1 denote the unique positive eigenfunction of λ1 which satisfies max�̄ ϕ1 = 1. Set ψ =
ϕ1/(meαR). Then, ψ satisfies

μ∇ · [meαR∇ψ] + ψmeαR(m − v∗) = −λ1meαRψ in �, ∇ψ · n|∂� = 0. (15)

Dividing the equation of ψ by ψ and integrating in �, we have

−λ1

∫
�

meαR = μ

∫
�

meαR |∇ψ |2
ψ2

+
∫

�

meαR(m − v∗). (16)

Recall that v∗ satisfies

ν∇ · [∇v∗ − v∗∇(ln m + βR)] + v∗[m(x) − v∗] = 0,

[∇v∗ − v∗∇(ln m + βR)] · n = 0 on ∂�. (17)

Set w = v∗/(meβR). Then w satisfies

ν∇ · [meβR∇w] + v∗(m − v∗) = 0 in �, ∇w · n|∂� = 0.

Multiplying the equation of w by wl and integrating in �, we have

νl

∫
�

meβRwl−1|∇w|2 −
∫

�

(v∗)l+1

mlelβR
(m − v∗) = 0, (18)

where l > 0 is to be chosen later.
By Equations (16) and (18) we have

−λ1

∫
�

meαR = μ

∫
�

meαR |∇ψ |2
ψ2

+ νl

∫
�

meβRwl−1|∇w|2

+
∫

�

ml+1e(α+lβ)R − (v∗)l+1

mlelβR
(m − v∗).

Choose

l = −α

β
.

By our assumption αβ < 0, we have l > 0. Hence,

−λ1

∫
�

meαR ≥
∫

�

ml+1 − (v∗)l+1

mlelβR
(m − v∗),

where the equality holds if and only if ψ and w are both equal to constants. Since l > 0, we
see that

(ml+1 − (v∗)l+1)(m − v∗) ≥ 0
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in �, where the equality holds if and only if m = v∗. Therefore, λ1 ≤ 0, and λ1 = 0 if and only
if m − v∗ ≡ 0. To complete the proof, it suffices to rule out the possibility m ≡ v∗. To this end,
we see that if m ≡ v∗, v∗ satisfies

ν∇ · [∇v∗ − v∗∇(ln m + βR)] = 0 in �,

[∇v∗ − v∗∇(ln m + βR)] · n = 0 on ∂�. (19)

By the maximum principle [40] we see that v∗/(meβR) is equal to some constant. This together
with m ≡ v∗ implies that eβR must be equal to some constant. Since β �= 0, we see that R must be
equal to some constant, which contradicts our assumption. Hence, λ1 < 0, which together with
Lemma 2.1 implies that (0, v∗) is unstable.

Step 2. Similarly, by symmetry we see that if αβ < 0, (u∗, 0) is unstable. Since the system (13)
is a strongly monotone dynamical system, by Theorem 2.2 we see that system (13) has at least a
stable positive steady state. �

5. Proof of Theorem 1.6

This section is devoted to the case when both α and β are positive. It is shown in Cantrell et al. [9]
that if � is an interval and Rx > 0 in �̄, 0 < α < β, then (u∗, 0) is stable and (0, v∗) is unstable.
A natural question is whether the monotonicity of R(x) is essential. In this section, we will
construct non-monotone functions R(x) such that for P(x) = ln m + αR(x) and Q(x) = ln m +
βR(x), both (u∗, 0) and (0, v∗) are unstable for suitably chosen positive constants α, β, μ, ν.

Lemma 5.1 Let x0 be a local maximum of R which satisfies assumption (A). There exists some
α0 > 0 such that for every α ∈ (0, α0),

eαR(x0) <

∫
�

m2e2αR∫
�

m2eαR
.

Proof For sufficiently small α,∫
�

m2e2αR∫
�

m2eαR
− eαR(x0) =

[
1 + α

∫
�

m2R∫
�

m2
+ O(α2)

]
− [1 + αR(x0) + O(α2)]

= α

[∫
�

m2R∫
�

m2
− R(x0)

]
+ O(α2) > 0.

�

Lemma 5.2 Let x0 be a local maximum of R which satisfies assumption (A). Then there exists
some μ0 such that if μ > μ0, u∗(x0) < m(x0).

Proof Set w = u∗/(meαR). Then w satisfies

μ∇ · [meαR∇w] + u∗(m − u∗) = 0 in �, ∇w · n|∂� = 0.

By the maximum principle [40], w and u∗ are both uniformly bounded for all μ ≥ 1. By Lp theory
for second-order elliptic operators (see [21]), for any p > 1, ‖w‖W 2,p(�) is uniformly bounded
for all μ ≥ 1. By the Sobolev embedding theorem, ‖w‖C1,τ (�̄) is uniformly bounded for some
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τ ∈ (0, 1). Passing to a subsequence if necessary, w converges to some function w̄ ∈ C1(�̄).
Multiplying the equation of w by w and integrating the result in �, we have

μ

∫
�

eαRm|∇w|2 +
∫

�

wu∗(m − u∗) = 0.

By letting μ → +∞, we see that w̄ satisfies∫
�

eαRm|∇w̄|2 = 0,

i.e. w̄ is a constant. To determine w̄, by integrating the equation of u∗ in � we find∫
�

u∗(m − u∗) dx = 0. (20)

If w̄ = 0, i.e. w → 0 in C1(�̄), then u∗ → 0 in L∞(�) as μ → ∞. Since m > 0 in �,
m − u∗ > 0 in � for large μ. This implies that u∗(m − u∗) > 0 in � for large μ, which con-
tradicts Equation (20). Hence w̄ must be a positive constant. This together with Equation (20)
implies that

w̄ =
∫
�

m2eαR∫
�

m2e2αR
.

Since w̄ is uniquely determined, the convergence of w to w̄ is independent of the subsequence.
Hence,

u∗

m
−→

∫
�

m2eαR∫
�

m2e2αR
eαR

uniformly in �̄ as μ → ∞. In particular, this, together with Lemma 5.1, implies that for every
α ∈ (0, α0), u∗(x0) < m(x0) for sufficiently large μ. �

Lemma 5.3 Suppose that R satisfies assumption (A) and all critical points of R are non-
degenerate. Then for α ∈ (0, α0), μ > μ0, ν > 0, the semi-trivial steady state (u∗, 0) is unstable
for sufficiently large β > 0.

Proof By Lemma 2.1, it suffices to show the least eigenvalue, denoted by λ1, of the eigenvalue
problem

ν∇ · [∇ϕ − ϕ∇(ln m + βR)] + (m − u∗)ϕ = −λϕ in �,

[∇ϕ − ϕ∇(ln m + βR)] · n = 0 on ∂�

satisfies λ1 < 0. Set ψ = ϕ/(meβR). Then ψ satisfies

ν∇ · [meβR∇ψ] + (m − u∗)meβRψ = −λmeβRψ in �, ∇ψ · n|∂� = 0.

By the variational characterization, λ1 is determined by

λ1 = inf
ψ∈W 1,2(�)

{∫
�
[νmeβR|∇ψ |2 − m(m − u∗)eβRψ2]∫

�
meβRψ2

}
.

Hence, to show λ1 < 0, we need to find ψ such that∫
�

[νmeβR|∇ψ |2 − m(m − u∗)eβRψ2] < 0.
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Let max�̄ m denote the maximum of m. It suffices to find ψ such that∫
�

[
ν

(
max

�̄

m

)
· eβR|∇ψ |2 − m(m − u∗)eβRψ2

]
< 0. (21)

To establish Equation (21), consider another linear eigenvalue problem

ν

(
max

�̄

m

)
∇ · [eβR∇ψ] + (m − u∗)meβRψ = −λeβRψ, ∇ψ · n|∂� = 0. (22)

Let λ∗ denote the principal eigenvalue of Equation (22). Rewrite Equation (22) as

−ν

(
max

�̄

m

)
�ψ − ν

(
max

�̄

m

)
β∇R · ∇ψ + m(u∗ − m)ψ = λψ, ∇ψ · n|∂� = 0. (23)

Hence, by Theorem 1 of [10] we have

lim
β→∞ λ∗ = min

R
[m(u∗ − m)],

where R denotes the set of local maxima of R. Note that

min
R

[m(u∗ − m)] ≤ m(x0)(u
∗(x0) − m(x0)) < 0,

where the last inequality follows from Lemma 5.2, provided that α ∈ (0, α0) and μ > μ0. This
implies that λ∗ < 0. Let ψ∗ > 0 denote an eigenfunction of λ∗. Note that λ∗ can be characterized as

λ∗ = inf
ψ∈W 1,2(�)

{∫
�

[
ν

(
max�̄ m

)
eβR|∇ψ |2 − m(m − u∗)eβRψ2

]∫
�

meβRψ2

}
, (24)

which is attained by ψ∗. It then follows from λ∗ < 0 and Equation (24) that Equation (21) holds
for ψ = ψ∗. This shows that λ1 < 0. �

The proof of the following result is identical to that of Theorem 3.5 in Cantrell et al. [6], so we
omit the details.

Lemma 5.4 Suppose that the set of critical points of R(x) has Lebesgue measure zero and v∗ is
given by Equation (17). Then v∗ → 0 in L2(�) as β → ∞.

Lemma 5.5 Suppose that the set of critical points of R(x) has measure zero. Given any μ > 0,

ν > 0, and α > 0. If β is sufficiently large, then (0, v∗) is unstable.

Proof By Lemma 2.1 it suffices to show the principal eigenvalue, denoted by λ1, of the eigenvalue
problem

μ∇ · [∇ϕ − ϕ∇(ln m + αR)] + (m − v∗)ϕ = −λϕ in �,

[∇ϕ − ϕ∇(ln m + αR)] · n = 0 on ∂�,

is negative. Let ϕ1 be the positive eigenfunction of λ1 uniquely determined by max�̄ ϕ1 = 1. Set
ψ = ϕ1/(meαR). Then ψ > 0 satisfies

μ∇ · [meαR∇ψ] + (m − v∗)meαRψ = −λ1meαRψ in �, ∇ψ · n|∂� = 0.
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Dividing the above equation by ψ and integrating the result in �, we have

−λ1

∫
�

meαR = μ

∫
�

meαR|∇ψ |2
ψ2

+
∫

�

meαR(m − v∗) ≥
∫

�

m2eαR − ‖meαR‖L∞

∫
�

v∗ > 0,

where the last inequality follows from Lemma 5.4, provided that β is sufficiently large. �

Proof of Theorem 1.6 It follows from Lemmas 5.3 and 5.5 and Theorem 2.2. �

6. Discussion

In this paper, we addressed several conjectures raised in Cantrell et al. [9] concerning the dynamics
of some diffusion–advection–competition model for two competing species. Both species are
assumed to have the same population dynamics but different dispersal strategies: they both disperse
by random diffusion and advection along certain gradients, but possibly do so with different rates
and/or gradients. A conditional dispersal strategy, which results in the ideal free distribution of a
single population at equilibrium, was found in [9]. It was shown in [9] that this special dispersal
strategy is a local ESS when random diffusion rates of two species are equal, and we show that
it is actually a global ESS for arbitrary random diffusion rates. The conditions in [9] for the
coexistence of two species are also substantially improved. Finally, we construct some examples
to show that this special strategy may not be a globally CSS for certain resource functions with
two or more local maxima, in strong contrast with the result from [9], which roughly says that
this dispersal strategy is always a globally CSS for any monotone resource function. Our results
seem to suggest that for resource functions with two or more local maxima, there may exist some
other local ESS and/or CSS, besides the obvious candidate – the special conditional dispersal
strategy found in [9]. The biological intuition behind this is that if resource functions have two
or more local maxima, the resident species at equilibrium may undermatch its resource at some
local maximum of the resource, which makes it vulnerable to invasion by other species near such
local maxima.

Some ideas from this work might be useful in studying the evolutionary stability of dispersal
strategies in reaction–diffusion models [19,24,42,43], patch models [5,27,28,33,38,39], non-local
dispersal models [31,32,44], or metapopulation models [23,45]. These findings will be reported
in some forthcoming paper(s).

We conjecture that the special dispersal strategy P = ln m is a globally CSS when the function
R has a unique local maximum (and thus it must be the global maximum). For such functions
R, the construction of the counterexample in Theorem 1.6 breaks down since one always has
u∗(x0) ≥ m(x0) for any global maximum x0; i.e. the population at equilibrium always overmatches
its resource at the global maximum of R. To see this, following the proofs of Theorem 1.3 in [7]
or Lemma 5.2 in [11], if α ≥ 0, we have the following inequality:

u∗(x) ≥ m(x)eα[R(x)−max�̄R]

for every x ∈ �̄. In particular, u∗(x0) ≥ m(x0) for any global maximum x0 of R. We further refer
to [34–36] for recent important development on the qualitative profiles of u∗ and also steady-state
solutions of two species competition model with one sufficiently large advection coefficient.
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