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On the determination of residual stress and mechanical 
properties by indentation 

Xi Chen a,*, Jin Van b, Anette M. Karlsson b 
• D"/Hlr/lllenl ofCMI Engitweri,rg lillli Engi/leering Meciumil:s. en/Wl1bill UtJi\'ersil)~ New York. NY JOO27·6699. USA 

b Depllrlmelll ofMt'ciJalliw/ Ellgineering. Ulli>'ersily of IJd(IWW7. Ne""o rk. DE 19716·)140. USA 

I. lntroduction 

The mechanical reliability ofbulk materials and coatings (e.g. 
fatigue, fracture, corrosion and wear) is strongly affected by their 
residual stress, commonly introduced by thermal mismatch, or 
mechanical and thenna! processing. The most critical residual 
stress component in coatings is the in-plane cqui-biaxial residual 
stress Iypically caused by laHice spacing mismatch and thermal 
expansion mismatch between the film and substrate. Moreover, 
the mechanical properties and residual stress of all materials 
are temperature dependent. For thin comings and substrates, the 
dependency becomes exacerbated with a change in tempera-
ture. This difference in behavior due to temperature change can 
be critical in service, since mismatch between coating and sub-
strate leads to high residual stress and ultimately coating failure 
[11. For example, coatings used for thennal protection in gas tur-
bine engines, experience local compressive stresses as high as 
several GPa at ambient [2-4J. Thus, in order to achieve a reliable 
engineering design, the actual level and sign of residual stress in 

• Corresponding aUlhor. Te l. : +1 212854 3787; fa~ : +1 2128546267.  
E-mail add",ss: xiehen@;eil·il.columbia.cdu(X. Chen).  

the specimen must be detennined, frequently by measurements, 
since associated material properties are many times unknown. 

There are many challenges associated with measuring prop-
erties of small scale structures, but instrumented indentation is 
widely used to probe mechanical properties such as Young's 
modulus, E, and yield strength, ay, for most engineering mate-
rials. Therefore, we will extend the usefulness of thi s method to 
measure the residual stress, arcs. 

1.1. A brief review of fhe illdentmioll Techllique 

A variety of techniques have been developed for measuring 
mechanical properties from indentation load-displacement data 
of an elastic-perfectly plastic, slresslree bulk material lS- 8], 
which will be review briefly in this subsection. Instrumented 
indentation is characterized by a sharp rigid indenter (with a 
half apex angle a) penetrating normally into a homogeneous 
solid where the indentation load, P, and displacement, 8, are 
continuously recorded during one complete cyele of loading and 
unloading (Fig. l a and b). To simplify the analysis, the inden-
ter is usually modeled as a rigid cone with 0' = 70.3°, so that 
the ratio of cross-sectional area 10 depth is the same as for a 
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Fig. 1. Schematic of instrumented indentation with a sharp indentation: (a) indentation on a homogeneous, isotropic semi-infinite substrate; (b) typical load-
displacement curves obtained from an indentation experiment; (c) conical indentation on a specimen with equi-biaxial in-plane residual stress. 

Berkovich or Vickers indenter [9]. By neglecting friction and 
the finite compliance of the measuring system and the indenter 
tip, the equations used to extract the hardness H and indentation 
modulus M are 

H = P/A = cbσy, (1) 

and 
√ 

S = γβ √ M A. (2) 
2 
π 

Here, the hardness H is defined as the ratio between indenta-
tion load P, projected contact area A and yield stress σ. The 
indentation modulus M is given by the plane-strain modulus, 
Ē ≡ E/1 − ν2, for isotropic materials and by a more compli-
cated weighted average of the elastic constants for anisotropic 
materials [10], where E and v are the Young’s modulus and 
Poisson’s ratio of the bulk material, respectively. The contact 
stiffness S = dP/dδ is obtained from the slope of initial por-
tion of the elastic unloading curve (Fig. 1b). The constant cb 
in Eq. (1) is a constraint factor that depends on indenter shape 
and material properties: cb increases with E/σ and approaches a 
constant (≈3) when E tan α/σy > 20 [9,11]. β is a shape fac-¯
tor, with β = 1 for axisymmetric indenters and β = 1.03–1.05 
for indenters with square or rectangular cross-sections [12]. 

π/4+0.155 cot α(1−2ν/4(1−ν))
γ = π is a correction factor for the 

(π/2−0.831 cot α(1−2ν/4(1−ν)))2 

conical indenter [13]. Both hardness and stiffness are indepen-
dent of the indentation depth if the strain gradient effect is 
ignored1 [14]. 

As the indenter penetrates the specimen, the materials either 
produce plastic pile-up at the crater rim (when the yield strain, 
σy/E, is small), or exhibit the elastic sink-in effect (when σy/E 
is large) [11]. The amount of pile-up/sink-in is denoted as δp 
(Fig. 1a). For conical indenters, the projected contact area A is 
given by 

2 2 2A = πa = π(tan α)2δ = 24.5δc , (3)c 

where the contact depth: 

δc = δ + δp. (4) 

Eq. (4) contains contributions of both plastic pile-up around the 
indenter and elastic sink-in, which is counted negative. It is obvi-
ous from Eqs. (3) and (4), that the projected contact area depends 
on δp. Oliver and Pharr [5] proposed an elastic model for deter-
mining the contact area in which plastic pile-up is neglected: 

εPmax �δp = (5)
Smax 

where ε = 0.75 for a conical indenter. Alternatively, the pile-up 
and contact area can be measured experimentally or determined 
from the numerical analysis (such as the finite element method 
or molecular dynamics). Once A is determined properly, the 
hardness is then obtained from Eq. (1) and the stiffness can be 
derived from Eq. (2), which allows one to measure Ē and σy by 
using the indentation technique. 

1.2. The effect of in-plane residual stress 

Several attempts have been made to incorporate residual 1 For metals it is observed that the hardness increases with decreasing inden- stress measurements from instrumented indentation. Tsui et al. tation depth, when the penetration is in the sub-micron regime. This is known as 
strain gradient plasticity. We ignore such effect by assuming that the indentation 1996 [15] used standard nanoindentation techniques to inves-
depth is sufficiently deep. tigate the influence of uniaxial and biaxial in-plane stresses 
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(applied to the specimen by bending) on the hardness and elas-
tic modulus measurements of aluminum. The projected contact 
areas were measured by optical techniques. It was found that the 
hardness and elastic modulus thus calculated were essentially 
independent of the residual stress level, which was verified by 
a parallel finite element simulation [16]. Based on the assump-
tion that the hardness is unaffected by tensile or compressive 
elastic residual stress, several general methods was proposed 
for determining the in-plane equi-biaxial residual stress by con-
ical or spherical indentation. Most approaches compare the 
contact depth (or contact area, or load-displacement curve) of 
the stressed and unstressed specimens, from which σres can be 
estimated [17–20]. In some other studies [21,22], the residual 
compression was seen to enhance the pile-up and residual ten-
sion reduced δp. The ratio between the projected and nominal 
contact areas, i.e. (δc/δ)2, was calculated as a function of σres by 
using finite element analysis. Therefore, the authors suggests, 
the in-plane residual stress can be obtained if δp can be mea-
sured properly for a given material [21,22]. 

The above techniques have several disadvantages: they either 
require testing on a stress-free specimen as a reference, or deter-
mining the contact depth accurately, which is often not feasible. 
In addition, only few materials were tested which may lead to 
incomplete conclusions,2 and a complete examination of all pos-
sible combinations of material properties and residual stresses 
remains yet to be developed. 

Can we measure all three unknowns, (E, σy, σres) from one 
simple indentation test? How do the different residual stress and 
mechanical property combinations affect the pile-up, projected 
contact area, plastic zone, and other indentation mechanisms? 
The finite element method is useful for this purpose because it 
provides a convenient way of measuring the projected contact 
area between indenter and material needed for calculation of 
hardness and stiffness. It is also straightforward to vary mate-
rials properties and residual stress over a wide range, such that 
our numerical analysis would cover most engineering materials 
used in practice. Thus, in this study, the finite element method 
(FEM) is used to investigate the effect of residual stress on 
elastic–plastic indentation of bulk materials and thick coatings. 

For indentation on a coating/substrate system, recent study 
by Chen and Vlassak [11] has shown that the substrate effect 
is negligible when the coating is softer than the substrate and 
the indentation depth is less than half of the coating thickness. 
To simply the present study, we assume there is no substrate 
effect. That is, for soft coating deposited on a hard substrate, the 
indentation depth δ is smaller than 50% of the coating thickness; 
and for hard coating on a soft substrate, the coating is very thick 
compare with δ (e.g. thermal barrier coatings). This assumption 
allows us to only focus on the mechanics of indentation on a 
homogeneous, isotropic bulk material with equi-biaxial in-plane 
residual stress. The findings of this study can be readily applied 
to thin film/coatings when the above criterions for neglecting 
the substrate effect are met. 

2 In fact, it will be show later in this study that hardness becomes very sensitive 
to residual stress when σy/E gets large. 

2. Model definition 

2.1. Dimensional analysis 

The axisymmetric model for indentation on a bulk material 
or thick coating with in-plane residual stress is shown in Fig. 1a 
and c. The substrate is taken to be infinitely deep. The half 
apex angle of the rigid conical indenter is α = 70.3◦. The coat-
ing is elastic-perfectly plastic, applicable to most high-strength 
alloys and ceramic coatings (the effect of work hardening will 
be explored elsewhere). Recent work by Mesarovic and Fleck 
[23] has shown that the Poisson’s ratio is a minor factor for 
static indentation. Dimensional analysis dictates the following 
relationship for hardness and stiffness: [ ] 

P σres σy= f , , (6)
πa2σy σy E [ ] 
S σres σy= g , . (7)¯2aE σy E 

As discussed above, for conical indentation in absent of resid-
ual stress, S/2aĒ = γβ ≈ 1.1 is a constant; and P/πa2σy = cb, 
which varies with σy/E. Inspired by the fact that the pile-up 
(or contact area) is significantly affected by the residual stress 
(discussed below), the third independent equation governing the 
three unknown variables is [ ] 
δp σres σy= H , . (8)
δ σy E 

It should be noted that although δp/δ is very sensitive to the 
variations of σy/E and σres/σy, it is very difficult to measure the 
pile-up or sink-in amount during the experiment. We note that 
the contact radius can be represented by ( [ ]r 

σres σy 
a = (δp + δ) tan α = δ tan α 1 + H , . (9)

σy E 

Thus, the work done by indentation is[ ]   δmax δmax 
2 σres σy

Pdδ = πa σyf , dδ  
0 0 σy E  [ ] 

π tan2 α σres σy= f ,
3 σy E 

( [ ]r2
σres σy 3× 1 + H , σyδ (10)
σy E max. 

It is therefore convenient to define a normalized indentation 
work, which implicitly embeds the variation of pile-up: δmax [ ] [ ] 

Pdδ σres σy π tan2 α σres σy0 = h , ≡ f , 
σyδ3 σy E 3 σy Emax ( [ ]r2

σres σy× 1 + H , . (11)
σy E 

By varying σres/σy and σy/E in a wide range, the functional 
forms of f, g, and h can be determined from extensive finite ele-
ment analysis. The hardness P/(πa2), contact stiffness S, and 



 

 

indentation work δmax Pdδ can be readily obtained from an 0 
experimental indentation load-displacement curve (c.f. Fig. 1b), 
as long as the contact radius a (or the projected contact area 
A) can be measured properly by take into account the pile-up 
or sink-in effect.3 Finally, the mechanical properties (E, σy) and 
in-plane residual stress (σres) of the specimen can then be solved 
from the reverse analysis: [ ]

P σres σy= σyf , , 
πa2 σy E [ ]
S σres σy¯
2a σy E (12) 

δmax 
Pdδ [ ] 

= Eg , , 

0 σres σy= σyh , . 
δ3 σy Emax 

2.2. Finite element model 

Finite element calculations were performed using the com-
mercial code ABAQUS [24] on Dell workstations. The rigid 
contact surface option was used to simulate the rigid indenter, 
and the option for finite deformation and strain was employed. 
A typical mesh for the axisymmetric indentation model com-
prises more than 5000 8-node elements. As already mentioned, 
the substrate material is taken to be elastic-perfectly plastic, with 
a Von Mises surface to specify yielding. The Coulomb’s friction 
law is used between contact surfaces, and the friction coefficient 
is taken to be 0.1, which is also a minor factor for nanoindenta-
tion [23]. The equi-biaxial in-plane residual stress is applied to 
the specimen by means of thermal expansion, followed by coni-
cal indentation on the free surface. The projected contact area is 
calculated directly from the numerical results by analyzing the 
nodes in contact with the indenter. All three parameters (E, σy, 
σres) are varied over a large range, such that the yield strain σy/E 
is varied between 0.001 to 0.1, and the residual stress σres/σy 
spans from −1 to 1. Such a wide range covers almost all pos-
sible combinations of mechanical properties and residual stress 
encountered in engineering materials. In addition to calculating 
the functional forms f, g, and h, the effects of residual stress on 
indentation residual stress, plastic zone, and surface profile (i.e. 
pile-up) are also examined by FEM and elaborated below. 

3. Numerical results 

3.1. The effect of residual stress on indentation stress 

The stress and strain fields caused by the indentation inter-
act strongly with the pre-existing fields, which in turn affect the 
hardness, stiffness, and indentation work, discussed in Section 
3.3. The effect of in-plane residual (or applied) stress on hard-
ness can be explicated from the view of shear plasticity. Since 

3 Optical measurements or AFM surface scan are typically used to determine 
the pile-up (or sink-in) and true projected contact area. If the material has a high 
yield strain or if the indentation is nearly elastic, then the Oliver-Pharr method 
(Eq. (5)) can be applied to obtain δp and a accurately. 

the indentation pressure is compressive and perpendicular to the 
applied surface, the existence of tensile surface stress in the spec-
imen increases the magnitude of the shear stresses beneath the 
indenter compared with an unstressed specimen. Consequently, 
the plastic deformation in the specimen is enhanced, which leads 
to a reduction of contact hardness H and normalized pile-up δp/δ 
when in-plane residual tensile stress presents. 

Some additional insight to the mechanics behind this can be 
gained by studying the in-plane stress component, σrr, under 
maximum indentation load for various residual stress, σres/σy, 
Fig. 2. When the residual stress is tensile, σres/σy = 0.8, Fig. 2a, 
the region of indentation compressive stress is smaller than 
for the initial stress-free case, σres/σy = 0,  Fig. 2b. This gives 
rise to an apparent lower hardness material. The opposite sit-
uation holds for specimen with residual compression (Fig. 2c, 
σres/σy = −0.8): the maximum compressive stress is larger than 
that in the unstressed sample, and the resulting overall compres-
sion zone is much larger. 

Additional insight to the change in apparent hardness can 
be gained by studying the size of the plastic zone at maximum 
indentation load for various combinations of E/σ and σres/σy, 
Fig. 3. For  E/σy = 100 (Fig. 3b), the plastic strain is enlarged 
with increasing level of residual stress. Since the plastic region 
is larger and the deformation beneath the indenter is finite plas-
tic without work hardening, when in-plane residual tensile stress 
presents, the surface is allowed to “sink-in” during the indenta-
tion, which leads to the reduction of contact hardness (discussed 
below). On the other hand, the residual compressive stress results 
in a smaller plastic region, and with a larger local accumu-
lation. This results in a significant pile-up during indentation 
(Fig. 4), more resistance to plastic deformation during penetra-
tion, and an increase of normalized hardness (see Section 3.3). 
For hard materials (Fig. 3a with E/σy = 10) the plastic region is 
relatively small, and a significant part of the deformation is elas-
tic. Nevertheless, the trend that the plastic zone enlarges with 
increasing tensile residual stress σres/σy is obvious. A softer 
specimen with E/σy = 1000 shows a more significant plastic 
region (Fig. 3c). For compressive residual stresses the plastic 
zone is more confined near the impression crater, where a sig-
nificant pile-up is observed. When the in-plane residual stress is 
tensile, the plastic strain is distributed more evenly, resulting in 
a smaller δp/δ. The details of pile-up are presented in the next 
section. 

3.2. The effect of residual stress on surface profile 

A common output from indentation testing is the charac-
terization of the deformed surface, commonly used to calcu-
lated material properties. However, this may not be a reliable 
parameter when residual stresses are present. For hard mate-
rials (E/σy = 10), a significant amount of the deformation is 
elastic, and thus only sink-in presents at the indentation crater 
(Fig. 4a). In addition, for hard materials the surface profile at 
maximum penetration is essentially independent of the resid-
ual stress, σres/σy. However, upon unloading the deformation 
mechanism is dominated by a significant elastic recovery that 
strongly depends on the residual stress level. A smaller but still 



Fig. 2. Contour plots of indentation radial stress (σrr/σy) with different resid-
ual stress level, all with E/σy = 100: (a) residual tension (σres/σy = 0.8); (b) no 
residual stress (σres/σy = 0); (c) residual compression (σres/σy = −0.8). 

noticeable recovery is also observed for E/σy = 100 (Fig. 4b). For 
many high-strength alloys and coatings which have E/σy ∼ 100, 
the effect of residual stress on pile-up/sink-in is obvious through 
Fig. 4b: comparing with the base case where σres/σy = 0, the 
presence of residual compression significantly enhances the pile-
up, while residual tension leads to larger plastic zone and more 
sink-in effect. When the specimen is even softer (E/σy = 1000, 
Fig. 4c), indentation only develops pile-up around the crater rim 
and the amount of pile-up increases with increasing residual 
compression. The deformation is finite plastic and the plastic 

Fig. 3. Plastic zone as a function of residual stress showing the increase of plastic 
deformation with residual tension: (a) E/σy = 10; (b) E/σy = 100; (c) E/σy = 1000. 

zone is very large beneath the indenter, hence, the elastic recov-
ery is almost negligible. 

The pile-up/sink-in amount (δp/δ) is thus dependent on both 
relative softness (E/σy, in consistent with literature [5,9,11]) and 
normalized residual stress (σres/σy, similar to the trend found in 
[21,22]). However, caution must be taken since the large dif-
ference between the surface profiles before and after unloading 
may lead to incorrect measurements of δp/δ, as shown in Fig. 4a. 
As discussed in Section 2, it is therefore more reliable to rep-
resent the indentation work in the 2D space of (E/σy, σres/σy), 
numerated below. 



Fig. 4. The variation of surface profile near the indentation crater as a function 
of residual stress. Impression geometries for both maximum penetration and 
unloading are shown: (a) E/σy = 10; (b) E/σy = 100; (c) E/σy = 1000. 

3.3. Functional forms determined from indentation testing 

The functional forms of f, g, and h (with reference to Eqs. 
(6), (7), and (11)) are shown in Fig. 5a–c, respectively. The 
normalized hardness is essentially a constant (about 2.9) when 
E/σy > 300, and the normalized stiffness is invariant (about 1.1) 
when E/σy > 30. This suggests that for soft materials, due to 
the finite plastic deformation induced by indentation, both hard-
ness and stiffness are essentially insensitive to the residual stress. 
Consequently, they cannot be used to measure the residual stress 
in the substrate unless new equations (e.g. the indentation work) 
are taken into account. Tsui et al. [15] have found that for a soft 
aluminum alloy, both hardness and stiffness determined with the 
optically measured true contact area are essentially independent 
of the in-plane residual stress. This is in consistent with the cur-
rent approach. Both limits of rigid plastic deformation, cb = 2.9 
(Fig. 5a) and γ = 1.1 (Fig. 5b), agree with the values found in 
literature [7,9,13]. 

When the substrate is not too soft (E/σy < 300, which is 
applicable to many high-strength alloys and ceramic coatings), 
the existence of a tensile in-plane residual stress significantly 
enhances the plastic flow in the specimen, which produces 
a larger hardness impression and a lower measured hardness 
(Fig. 5a). The normalized hardness also decreases with increas-
ing yield strain of the substrate, thanks to the increasing impor-
tance of elasticity. In absent of residual stress, the dependence 
of normalized hardness versus yield strain agrees well with the 
classic analysis by Johnson [9]. 

The residual stress significantly affects the contact stiffness 
when E/σy < 30. It is found from Fig. 5b that tensile resid-
ual stress tends to increase the contact stiffness and residual 
compression will decrease the contact stiffness. Within a hard 
substrate, the presence of residual compression or tension will 
facilitate or impede the unloading process, and such effect 
amplifies with increasing elastic component E/σy. The analy-
sis of the unloading curves shows that more elastic work is 
recovered (both S and residual indentation depth δf/δmax are 
smaller) with decreasing E/σy and decreasing σres/σy, in con-
sistent with Fig. 4. The normalized contact stiffness remains 
at constant γ in absent of residual stress. Overall, Fig. 5a 
and b suggests that both hardness and stiffness are sensitive 
to residual stress for high-strength materials with large yield 
strain. 

The normalized indentation work (Fig. 5c) appears to have a 
wide spread for both E/σy and σres/σy. This is partly because the 
pile-up δp/δ varies with both yield strain and residual stress (c.f. 
Fig. 4). In general, the normalized indentation work increases 
with increasing E/σy: that is, in order to create the same impres-
sion, larger load (or plastic work) is needed to indent the sub-
strate with higher modulus. Since the residual tension “facili-
tates” the penetration of indenter tip, the normalized indentation 
work decreases with increasing σres/σy. 

The results presented in the previous section indicate that 
the indentation testing is highly dependent on residual stresses, 
in particular for materials with E/σy < 300 and thus have impor-
tant applications for high-strength materials. Fig. 5 suggests that 
when combined together, the normalized hardness, stiffness and 



 
¯Fig. 5. (a) Normalized hardness P/π2σy, (b) normalized contact stiffness S/2aE, and (c) normalized indentation work δmax 

Pdδ/δ3 σy, as a function of material 0 max
elastic–plastic property E/σy and normalized yield stress σres/σy. 
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indentation work plots should yield sufficient information for 
the reverse analysis, from which the three unknowns (E, σy, 
σres) can be measured by indentation. Over the entire region of 
parameters considered in this study, the three functional forms 
f, g, and h can be fitted to the following functions. The com-
parisons between fitted surfaces (Eq. (13)) with original data 
obtained from FEM (Fig. 5a–c) are shown in Fig. 6a–c. The 
fitting has an uncertainty less than 3% over the entire (E/σy, 
σres/σy) space: 

√ √2 3Ω = a1 + a2τ + a3τ + a4 τ + a5 τ + a6ξ + a7ξτ 
√ √2 3 2 2+a8ξτ + a9ξ τ + a10ξ τ + a11ξ + a12ξ τ 

√ √2 2 2 2 3 3+a13ξ τ + a14ξ τ + a15ξ τ + a16ξ 
3√ √ 3 3 2 3 3+a17ξ τ + a18ξ τ + a19ξ τa20 + ξ τ. (13) 

In Eq. (13), The function Ω represents normalized hardness 
(P/πa2σy, or  f), normalized contact stiffness (S/2aE, or  g),¯
or normalized indentation work ( 0 

δmax Pdδ/δ3
maxσy, or  h), and 

τ ≡ E/σy and ξ ≡ σres/σy are two variables. The coefficients 
ai(i = 1–20) are listed in Table 1. 

4. Reverse analysis and examples 

In order to solve the three unknowns (E, σy, σres) from the 
three fitting functions (f, g, h), the optimization method is used 
to minimize the total error of Eq. (12). A flow chart of the reverse 
analysis based on such algorithm is given in Fig. 7. The hard-
ness, contact stiffness, and indentation work are measured from 
an indentation load-displacement curve after the experiment. For 
each numerical iteration, the variables (E, σy, σres) are substi-
tuted in Eq. (13) and the error between Ω and the corresponding 
measured values are found. A total error function is defined 
as the summation of errors from f, g, and h. The roots (E, σy, 
σres) are found by searching a minimum of the total error func-
tion of those three variables on a fixed interval. The algorithm 
is based on golden section search and parabolic interpolation. 
The initial boundary are given by a rough range of the Young’s 

Fig. 7. Schematic of the process flow of reverse analysis. 



Table 1 
Parameters of three fitting functional forms 

Parameters Normalized Normalized contact Normalized work of 
hardness stiffness indentation 

a1 −1.4943 1.1041 −3.7438 
a2 0.0032 3.7528 × 10−4 −0.0771 
a3 4.1178 × 10−7 −8.5558 × 10−8 1.7110 × 10−5 

a4 −0.7500 −0.0235 2.9685 
a5 2.4572 0.0476 0.4208 
a6 2.5012 0.8105 8.9619 
a7 −0.0244 −0.0032 0.0507 
a8 4.9842 × 10−6 6.1966 × 10−7 −1.9059 × 10−5 

a9 1.8116 0.2781 0.0963 
a10 −4.0314 −0.7044 −4.6897 
a11 −1.4904 −0.0783 −8.1284 
a12 0.0095 2.8227 × 10−4 0.0270 
a13 −2.4728 × 10−6 −5.2211 × 10−8 −2.0045 × 10−6 

a14 −0.6405 −0.0258 −2.7352 
a15 1.4709 0.0649 6.8228 
a16 −1.0050 −0.1904 5.9693 
a17 0.0089 0.0011 −0.0691 
a18 −1.9143 × 10−6 −2.3340 × 10−7 1.6321 × 10−5 

a19 −0.6334 −0.0786 4.5106 
a20 1.4098 0.1864 −9.5823 

Fig. 8. Comparison between the material properties predicted from reverse anal-
ysis and the input parameters used in numerical indentation experiments. 

modulus E, and an initial guess of both σy/E and σres/σy. Based 
on the searching results obtained in the last numerical step, the 
boundary is updated automatically to give faster convergence 
and more accurate local solutions. An accurate solution with 
total error less than 5% can be obtained after several numerical 
iterations. 

In order to examine the accuracy of reverse analysis, a total 
of 33 numerical experiments of indentation are performed, with 
σy/E and σres/σy varying in a large range.4 The input material 
parameters used in FEM are shown as open squares in Fig. 8. 
For each experiment, the contact hardness, stiffness, indentation 

4 Note that some of these parametric combinations where not used in gener-
ating Figs. 5 and 6. 

work and projected contact area are measured from the finite 
element analysis. These numbers are then fed into the reverse 
analysis to predict σy/E and σres/σy. The results obtained from 
numerical analysis are plotted as solid circles in Fig. 8. Excellent 
agreements between the original input data and reverse analysis 
are found for all possible combinations of residual stress and 
material parameters. 

It would be ideal to compare the model with existing experi-
mental data. Unfortunately, a complete set of experimental data 
which involves Berkovich indentation load-displacement curves 
for biaxially stressed elastic-perfectly plastic bulk material could 
not be found in literature. For example, Tsui et al. [15] and 
Suresh Giannakopoulos [17] did not show the variation of inden-
tation load-displacement curves with residual stress (which is 
required for analyzing the indentation work in this study); while 
Swadener et al. [18] have used spherical indenters. Some mate-
rials that have been used in experiments have either significant 
strain hardening [20] (for low-carbon steel) or strain gradient 
effect at small indentation depth [19] (for single crystal tung-
sten), which leads to a normalized hardness far above 3 and thus 
does not apply to the present investigation. Some others only 
involve uniaxial residual stress instead of biaxial stress [22,25], 
or excessive substrate effect for indentation on biaxially stressed 
thin films [26]. Therefore, although bulk materials and coatings 
with equi-biaxial residual stress are very common in applica-
tions, to our knowledge, the existing indentation data in literature 
does not yield sufficient information to compare with the present 
model. Indentation experiments that include desired parameter 
outputs are currently in progress, and will be presented at a later 
date. 

5. Conclusion 

In this study, the finite element analysis has been used to 
investigate the effect of in-plane equi-biaxial residual stress on 
hardness and stiffness measured from indentation tests on a bulk 
material (or thick coating). By varying the material parame-
ter and residual stress over a large range, it is found that both 
hardness and stiffness vary with residual stress, especially for 
high-strength materials with large yield strain. Both the plastic 
pile-up (or elastic sink-in) and indentation work are found to be 
very sensitive to the level of residual stress, which makes the 
determination of residual stress from indentation test possible. 
Based on the functional forms of normalized contact hardness, 
stiffness, and indentation work, a reverse algorithm is presented 
which may be used to measure the material yield stress, modulus, 
and residual stress from one simple indentation test. The com-
parison between the material properties predicted from reverse 
analysis and the input parameters used in numerical indentation 
experiments shows good agreement. 

The effects of residual stress on indentation stress and plastic 
zone are also investigated. It is found that the indentation com-
pressive stress diminishes with residual tension, which leads 
to an enlarged plastic zone and gives apparent lower hardness. 
On the other hand, with residual compression the maximum 
indentation compressive stress is increased, causing less plas-
tic deformation (with smaller plastic zone) and gives rise to the 



hardness. It is also found that the elastic recovery upon unloading 
is very large for materials with high yield strain, and the elastic 
recovery increases with increasing residual compression. There-
fore, caution must be taken when measuring the contact depth 
after unloading. 

Unlike many of the previous studies [17–20], the new indenta-
tion technique proposed in this paper does not require a reference 
stress-free material for comparison purposes. Thus, this method 
has the potential to map the residual stress field on the surface 
of a specimen quickly and effectively. 
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