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Measurement of interfacial shear mechanical properties in 
thermal barrier coating systems by a barb pullout method 
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I. Introduction 

Thermal ba rrier coati ngs (TBCs) are enabling materi
a ls in Ihe design of advanced gas turbine engine systems 
[1,2]. Based on ceramics with low thermal conductivity, 
such coatings provide thermal insulation to actively 
cooled metall ic components. allowing designers to o pti
mize system performance by maximizing com bustion 
temperatures. Gi ven the role of TBCs in shielding struc
IUral componenls from damaging thermal environments, 
coat ing durability is of primary importance. Thus, 
understanding the mechanisms that dictate coating fai l
ure has been the subject of intense research . It is well 
recognized that TBCs exhibit several fa ilure mechanisms 
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[3- 12], and that these mechanisms often have competi ng 
dependencies on constituent material properties. In gen
eral. coati ng fa ilure is governed by a series of events that 
include crack nucleation, propagation and coa lescence, 
leading to coating spallat ion . Coating durability is then 
dependent upon the interplay between the crack driving 
forces and the resistance to crack propagation th rough 
the coat ing or along the releva nt interfaces. 

Experimental measurements of crack growt h resis
tance arc needed to refine and validate models ofcoati ng 
fail ure processes, and to determ ine the linkages between 
delamination resistance and the relevant chem ical and 
microst ructural parameters. Di rect measurements of 
coating and/or in terfacia l toughness in TBC systems 
arc recent and spa rse [[3- 15]. The focus here is on facil
itating stich experimental measurements. A key concern 
is to accurately simulate the loading conditions that 
d rive failu re in TBCs. as crack growth resistance is 
highly dependent upon the mode-mixity of loading. 
Addi tionall y, the tough ness of a TBC is also highly 
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anisotropic, depending strongly on the coating deposi
tion technique and the resulting microstructure. For fail
ures caused by large compressive stresses that develop 
within the coating, delamination crack growth occurs 
under principally mode II loading—particularly for 
longer cracks with fully-developed crack wake contact 
zones. Hence, the durability or lifetime is a direct func
tion of mode II toughness of the coating. 

A number of test approaches have been developed for 
measuring key toughness parameters in thin film and 
coating systems [13–17]. These test methodologies rely 
on inducing film delamination in a controlled manner, 
allowing for a quantitative measurement of adhesion 
or crack resistance. However, each approach has limita
tions, both experimentally and in application to a partic
ular materials performance issue. Examples of test 
approaches that have been developed for ceramic coat
ing systems include: (1) blister or bulge propagation 
methods [16] that rely on pressurization from the under
side of the film or coating; (2) bend tests of notched 
multilayer beams [15,16]; and (3) indentation techniques 
[13,16,17] that depend upon developing plastic strains 
in a ductile substrate and transmitting those strains to 
the coating. Each of these test methodologies is appro
priate over a particular range of mode-mixities. For 
example, blister growth methods typically result in 
opening mode crack growth, with phase angles in the 
range of w; 0–30°. Bending methods are only appropri
ate for mixed-mode cracking measurements, where the 
applied loading is equally opening and shear (phase an
gles of w; 40–45°). The impression methods, typified by 
conical and wedge indentation, result in phase angles 
that approach w = 90° as the delamination front moves 
away from the indenter [14,18]. 

However, other challenges and limitations exist in 
using these techniques for evaluation of TBC failure. 
For example, the blister tests are hampered by the need 
for special sample preparation approaches (back-thin
ning of wafers), whereas the indentation experiments, 
although much more appropriate for evaluation of shear 
mechanical properties, are highly dependent upon the 
plastic properties of the substrate [18] and are very sen
sitive to the anisotropic (porous) structure of the cera
mic top coat [19]. In this work, we describe a test that 
obviates many of the issues with existing protocols for 
measuring the fracture resistance of TBCs and related 
multi-layer systems. The methodology is based on a 
'barb' geometry, and originates from similar approaches 
applied in the study of fiber reinforced ceramic and/or 
metal matrix composites [20,21]. The approach is partic
ularly useful in capturing crack growth behavior under 
mode II loading conditions, and is amenable to mea
surement of both short-crack and long-crack behavior. 
It allows direct measurement of the relative opening 
and shear displacements, and direct correlation of crack 
length, applied load and microstructural aspects. The 

technique is illustrated by investigating the interfacial 
shear mechanical properties of an electron-beam physi
cal vapor deposition (EB-PVD) TBC system. The barb 
test is demonstrated to have utility in investigating the 
delamination behavior of this coating. 

2. Materials and experimental techniques 

To demonstrate the utility of the test technique, an 
EB-PVD TBC system was investigated in this study. 
The EB-PVD TBC system was supplied by the JFCC 
(Japan Fine Ceramics Center, Nagoya, Japan). This 
system consisted of 4 mol% Y2O3 stabilized ZrO2, depos
ited by physical vapor deposition onto the metallic sub
strate to a thickness of �200 lm. The substrate was a 
MA738LC nickel-based superalloy, over-coated with a 
NiCoCrAlY bond coat layer, and sectioned into pieces 
averaging 55 mm · 20 mm · 2.5 mm in size. The bond 
coat was deposited by plasma spray deposition to a 
thickness of 100–150 lm, and had an overall composi
tion of 32 wt.% Ni, 21 wt.% Cr, 8 wt.% Al, 0.5 wt.% Y, 
with the balance Co. The bond coat surface was then pol
ished up to 1200 grit before the TBC deposition. Fig. 1(a) 
shows a typical columnar structure observed in the EB
PVD TBC layer. A thermally grown oxide (TGO) layer, 
0.5 lm thick, is present between the TBC layer and the 
bond coat after processing. High-magnification images 
revealed the undulated nature of the bond coat/TGO 
interface, as shown in Fig. 1(b) (indicated by arrows). 

Fig. 1. (a) A typical columnar structure of the EB-PVD TBC, and 
(b) a high-magnification image showing the undulated nature of the 
bond coat/TGO interface. 
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Fig. 2. Shape and dimensions of the specimen for barb pullout testing. 

A schematic of the barb test specimen is shown in 
Fig. 2, illustrating the overall shape and specific dimen
sions used in this study. Test specimens with dimen
sions of 40 mm · 6 mm  · 3 mm were cut from the 
EB-PVD-processed TBC specimens, using a conven
tional mechanical cutting procedure. The cut faces were 
ground through standard metallurgical procedures 
to (1) obtain specimens with the desired final thick
ness, (2) introduce parallel surfaces, and (3) eliminate 
mechanical flaws introduced during the cutting process. 
The TBC layers were then notched at a distance of 3 mm 
from the end of the specimens, to define the length over 
which crack growth occurs. The remaining TBC seg
ments were carefully removed with a WC polishing tool. 
Two specimen pieces prepared in this manner were then 
affixed back-to-back, using an alignment tool and epoxy 
adhesive, to form the final barb test specimens. 

A schematic illustration of the test fixture for barb 
pullout method is shown in Fig. 3. The fixture is 
designed to provide flat surfaces that transmit force to 
the cut edge of the TBC layer during relative translation 
of the metallic substrate. Given that the ceramic coating 
layers are generally very thin ( 200 lm), ensuring proper 
contact with the test fixture is a primary concern of the 
test technique. In the present study, sapphire plates that 
could be translated normal to the specimen surface were 
used as load transfer or support blocks. Prior to perform
ing the barb test, the position of the sapphire supports 
were adjusted using the fine-thread adjustment pins in 
the loading fixtures. The sapphire was positioned to pro
vide optimal load transfer to the cut edge of the coating, 
free of a frictional load transfer to the metallic substrate. 

The barb tests were performed in ambient air at room 
temperature using a screw-driven mechanical test system 

P 

Fig. 3. Schematic illustration of the loading fixture utilized for the 
barb pullout testing. 

(Model Autograph AG-500E, Shimadzu Corp., Kyoto, 
Japan). Testing was performed with a constant cross 
head displacement rate of 0.1 mm/min. The force– 
displacement response during the testing was digitized 
and continuously recorded using a digital memory scope 
(ORM 1200, Yokogawa Electric, Tokyo, Japan). Five 
specimens were tested. After test completion, the speci
mens were examined using scanning electron micros
copy (SEM) to investigate the crack path selection, 
and general morphology of the fracture surfaces. 

3. Measurements and observations 

3.1. Force–displacement curve 

A typical plot of response force versus crosshead 
displacement (P–u), obtained from barb testing of the 
EB-PVD TBC specimen, is shown in Fig. 4. The force in
creases nearly linearly up to a maximum force, with the 
exception of an initial nonlinear segment corresponding 
to compliance associated with the test fixture and speci
men alignment in the self-aligning mechanisms. The max
imum force, Pmax, corresponds to the point at which the 
applied force is sufficient to initiate delamination of the 



�
�

500 

400 

300 

200 

100 

0 

Displacement, u (µm) 

Fig. 4. A typical force–displacement curve obtained during the barb 
pullout testing for the EB-PVD TBC system. 

TBC layer from the underlying substrate. Direct observa
tions with a long-standoff distance optical microscope 
show no visible delamination crack growth prior to the 
peak force point. Three or four instantaneous force drops 
are typically observed after the maximum force, Pmax, 
but prior to complete debonding. This behavior suggests 
that propagation of the interfacial delamination occurs 
incrementally. Direct observation shows the coatings 
on both sides of the sample remain intact, adhered to 
the substrate over part of the contact area after the initial 
force drops. Complete decohesion coincides with the final 
drop to zero response force. The measured force drop 
corresponds to direct observation of complete delamina
tion over the full contact length. 

3.2. Fracture surface observations 

SEM micrographs of the exposed metallic substrate 
side of fracture surface after TBC delamination are 
shown in Fig. 5. The low-magnification images illustrate 
the complex crack growth behavior under shear loading 
mode. The failure surface was a mixture of exposed 
metallic bond coat and regions of TGO (some with a 
remaining thin, adherent TBC layer) (Fig. 5(a)). High-
resolution images show more clearly the fractured, 
embedded segments of TGO and the thin TBC layer 
bonded to these TGO particles (Fig. 5(b)). The presence 
of a thin TBC layer observed on the fracture surface is 
not fully understood, but is linked to the heterogeneous 
structure of the TBC coatings. A thin layer (thickness 
0.1 lm) of the TBC material, consisting of equiaxed 

grains of 30 nm diameter and having much higher den
sity, is often observed at the boundary between the 
columnar TBC structure and the TGO layer [22]. The 
properties of this layer are sufficiently different from 
the columnar layers that the preferred crack path during 
delamination is often through the TBC layer above, 
leaving the thin equiaxed TBC layer on the bond coat 
side of the exposed fracture surface. Despite the pres
ence of these adherent oxides, the fracture surface 
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Fig. 5. SEM micrographs of the fracture surface on the metallic 
substrate side exposed by the delamination of the TBC layer in the 
EB-PVD TBC system: (a) a low-magnification image revealing 
characteristics of the crack growth and failure surface and (b) a 
high-magnification image showing embedded thermally grown oxides 
in the bond coat and the existence of thin layers of TBC remaining 
adhered to the TGO segments. 

remained relatively smooth, flat relative to any relevant 
microstructural length scale (Fig. 5(a)). The nature of 
the failure observed is typical for an EB-PVD TBC 
system, where failure occurs along a mixed pathway 
through TGO/bond coat or TBC/TGO interfaces and/ 
or bulk TBC which consists of equiaxed grains nearby 
the TBC/TGO interface. 

On the other hand, wear tracks, indicating a sliding 
along the spalling interface during the testing, are 
observed on the exposed fracture surface (examples are 
indicated by arrows in Fig. 5(a)). The wear tracks ob
served on the failure surfaces evidence that the crack 
faces remained in contact during the crack advance, 
and that wake frictional effects act to stabilize growth 
of the delamination of TBC layer. This stabilization 
likely accounts for the apparent incremental crack 
growth observed after peak force. Additionally, exami
nation of the underside of delaminated TBC reveals that 
it is principally TBC with some patches of TGO, as 
shown in Fig. 6(a). High-magnification images, exempli
fied in Fig. 6(b), reveal the presence of micropores in the 
TGO layer. This view is taken from close to the edge of 
one of the spalled segments of TBC, such that the TBC 
columns may also be observed. From the above obser
vations, it is apparent that delamination proceeded 
essentially at the TGO layer, with the crack propagating 
along either the TGO/TBC interface or the TGO/bond 



Fig. 6. SEM micrographs of the underside of the delaminated TBC 
layer in the EB-PVD TBC system: (a) a low-magnification image 
showing a surface of TBC with patches of attached TGO, and (b) a 
high-magnification image showing micropores in the attached TGO as 
well as columnar structure of the TBC layer. 

coat interface, and periodically deviating into the TBC 
layer for the EB-PVD TBC system studied here. Based 
on these observations, the delamination behavior is 
schematically illustrated in Fig. 7. 
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Fig. 7. Schematic illustrations showing the delamination behavior of a 
TBC layer during the barb pullout testing for the EB-PVD TBC 
system: (a) as-coated and (b) post-tested. 

4. Analysis 

To quantify the effective coating/interface toughness, 
the delamination strain energy release rate should be 
determined. For the test configuration used here, the 
thickness of the substrate, hsub, is much greater than that 
of the TBC layer, htbc(hsub » htbc), and the length, ltbc, is  
also much larger than the thickness of the TBC, 
(ltbc » htbc). Fig. 4 indicates that the failure occurs more 
or less instantaneously. Under such conditions, an esti
mate of the strain energy release rate, Gi, is obtained 
by assuming (1) that all of the strain energy stored in 
the TBC layer and the substrate prior to initiating delam
ination is released in developing new surface area during 
crack propagation, and (2) that the delamination is uni
form along the crack tip without buckling. Neglecting 
the anisotropic nature of the TBC elastic properties, 
the strain energy release rate is approximated as [23]: 

2 2hsubr htbcrsub tbcGi  þ ð1Þ
Esub Etbc 

where rsub and rtbc are the uniaxial stress in the sub
strate and TBC layer, respectively, Esub and Etbc are 
Young's modulus of the substrate and the TBC layer, 
respectively. Young's modulus is taken to be Esub = 
200 GPa for the substrate [24] and Etbc = 44 GPa for 
the EB-PVD TBC [13]. By way of a force balance, the 
in-plane stress in the coatings, due to the applied force, 
can be calculated as: 

P 
rtbc ¼ ð2Þ 

2htbcwtbc 

Substituting Eq. (2) into Eq. (1) yields   
P 2 1 1

Gi  þ ð3Þ 
4 Esubhsubw2 Etbchtbcw2 

sub tbc

Because the maximum applied load obtained in the P–u 
curve is believed to correspond to the onset of the TBC 
layer delamination from the substrate, the strain energy 
release rate for delamination cracking of the TBC layer 
from the substrate is determined using Eq. (3) with the 
maximum force, Pmax. Note that the instantaneous force 
drop behavior was neglected in determining the energy 
release rate using Eq. (3) although typical three or four 
load drops were observed after the maximum load 
(Fig. 4). Thus, the energy release rate determined with 
the peak load for initial delamination is the critical en
ergy delamination criterion, i.e., toughness of interface. 
For the EB-PVD TBC system used, it is found that 
the measured critical strain energy release rates ranged 
from 60 to 90 J/m2 using Eq. (3), with an average value 
of  70 J/m2. With the present experimental method, 
these values are roughly the mode II strain energy re
lease rates (w = 90°) for either the TBC/bond coat inter
face or the TBC layer-dependent upon the observed 
fracture path selection. 



 

 

The mode II toughness of EB-PVD TBC has been 
measured at ambient temperature by both indentation 
testing [13] and wedge impression testing [14], and found 
to be of the order of CII = 60 J/m2 when the mode II del
aminations occurred predominantly at the TGO/bond 
coat interface [13,14]. The value obtained in the present 
measurements is higher than that mentioned above for 
the mode II toughness reported elsewhere [13,14] 
(CII = 60 J/m2). It is known that the critical strain en
ergy release is linked to the properties of the bond coat, 
TGO, and TBC as well as their interface; properties such 
as the surface roughness and composition of the bond 
coat, thickness of TGO, residual stress at interface and 
physical properties of TBC. In particular, the residual 
stress at the interface and the Young's moduli used in 
determining the critical strain energy release value from 
Eq. (3) directly affect the measured value. However, 
these properties of TBC are not well characterized, 
and they could vary from specimen to specimen. In 
the present study, a possible reason for the higher 
toughness value that was obtained is correlated with 
observations of significant wear tracks on the post-test 
specimens (Fig. 5(a)). The influence of interfacial fric
tion on the mode II toughness is documented in the 
literature. Mumm and Evans [14] showed that the 
mode II toughness value of TGO/bond coat interface 
(CII 56 J/m2 [14]) was lower than that of the oxide 
(CII P 100 J/m2 [15]). This low mode II toughness is 
attributable to the bending effect of the TGO/TBC 
bilayer as well as to shortening of the zone subject to 
friction over the full length of the delamination. The 
increasing effect of friction on the interface toughness 
was also reported by Reimanis et al. [25] after substan
tial crack extension for alumina scale bonded to Au sub
strate. They showed the value of toughness in the range 
of 10–55 J/m2 for short cracks and 80–125 J/m2 for 
cracks which have propagated just less than 1 mm. In 
the present measurement, a larger frictional contribu
tion relative to the indentation and wedge impression 
measurements was expected along the wake of the mode 
II delaminations because of significant frictional affects, 
as observed in SEM views of the post-test specimens 
(Fig. 5(a)). This large effect due to friction results from 
the longer contact zone subjected to friction as well as 
larger normal compressive stress acting on the TBC 
layer, as a result of fixing the TBC layer delamination 
edges during the barb testing and preventing bending 
of the TGO/TBC bilayer resulting from delamination. 

5. Concluding remarks 

A simple method of evaluating the shear mechanical 
properties of thermal barrier coating (TBC) systems has 
been developed. The technique is designed to evaluate 
crack growth resistance under essentially mode II loading 

conditions. The methodology has been applied to quanti
tatively measure the resistance to delamination of an 
EB-PVD TBC. The analysis has yielded estimates of the 
critical strain energy release rate for a TBC system. In 
the EB-PVD TBC system studied, the strain energy 
release rate was in a range of 60–90 J/m2 with an average 
value of 70 J/m2. The delamination crack propagated 
predominantly at the TGO/TBC, and TGO/bond coat 
interfaces. Although more detailed experimental studies 
and a refined analysis are needed to extract accurate val
ues of coating and interfacial properties, the protocol 
described here is applicable to evaluate the interfacial 
mechanical response of various types of TBC systems. 
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