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Equation of state from the Potts-percolation model of a solid
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We expand the Potts-percolation model of a solid to include stress and strain. Neighboring atoms are connected
by bonds. We set the energy of a bond to be given by the Lennard-Jones potential. If the energy is larger than
a threshold the bond is more likely to fail, whereas if the energy is lower than the threshold, the bond is more
likely to be alive. In two dimensions we compute the equation of state: stress as a function of interatomic distance
and temperature by using renormalization-group and Monte Carlo simulations. The phase diagram, the equation
of state, and the isothermal modulus are determined. When the Potts heat capacity is divergent the continuous
transition is replaced by a weak first-order transition through the van der Waals loop mechanism. When the Potts
transition is first order the stress exhibits a large discontinuity as a function of the interatomic distance.

DOI: 10.1103/PhysRevE.84.051106 PACS number(s): 05.50.+q, 05.10.Ln, 05.10.Cc, 64.60.−i

I. INTRODUCTION

The mechanical properties of solids, such as melting [1,2]
and mechanical failure [3–6], are topics of considerable
interest. In this paper we continue the analysis of an equilib-
rium statistical mechanics model [7,8] of a solid. Previously
we assumed [9] harmonic springs and evaluated the role
of thermal fluctuations by using renormalization-group and
Monte Carlo simulations. Furthermore, we studied [10] the
model with an extended defect line and found a hybrid, first-
and second-order phase transition. In this paper we study the
equation of state of the solid, stress as a function, of strain
and temperature, obtained by assuming neighboring atoms
are separated by a fixed interatomic distance and associating
the Lennard-Jones energy to each pair of neighboring atoms
. An alternative realistic anharmonic energy versus atomic
distance due to Ferrante [11] has been considered in a previous
work [12].

The model is defined in Sec. II. We assume the energy of
a pair of neighboring atoms to be given by the Lennard-Jones
6-12 potential. If the energy of such a spring is larger than
the threshold energy, the probability for its failure is higher
than 50%. This model is mapped into a Potts model with
couplings that are dependent on the interatomic distance.
The free energy, number of live bonds, their fluctuations,
stress, and modulus are computed using renormalization-group
and Monte Carlo techniques. Fixing the interatomic distance
to a value independent of the atom locations makes this
model mean-field like. The role of the interatomic distance
fluctuations will be studied in a future work. The number
of Potts states q is a fugacity conjugated to the number of
clusters of live bonds, with q = 1 corresponding to springs
failing independently of each other. A challenging question
not addressed here is how to connect q to data from a real
solid.

The equation of state is studied paying particular attention
to the solid failure signaled by an extremum in the dependence
of stress on the interatomic distance. Beyond the maximum

*Corresponding author: diep@u-cergy.fr

under expansion and the minimum under compression for
stress versus strain dependence, the solid ceases to be
thermodynamically stable. The phase diagram includes the
Potts transition line. If the Potts transition line is in the stable
region of the phase diagram and if the q value is such that
the Potts heat capacity is divergent, a remarkable phenomenon
occurs in the vicinity of the transition line. A van der Waals
loop [13] develops in the stress-strain dependence signaling a
weak phase transition that replaces the continuous Potts phase
transition. While in the renormalization-group calculations
[14,15] that are exact [16] on hierarchical lattices [17,18]
the Potts transitions are always continuous, in the Monte
Carlo simulations we can see both continuous transitions
(for small q) and discontinuous transitions (for large q).
This allows us to explore the influence of the order of the
Potts transition on the mechanical properties of the solid,
such as stress dependence on temperature and interatomic
distance.

In Sec. III we present numerical results based on
the renormalization-group Migdal-Kadanoff scheme. Monte
Carlo simulations are presented in Sec. IV. Our concluding
remarks are found in Sec. V.

II. MODEL

The energy of any pair of neighboring atoms is

E(r) = ε

[(
r0

r

)12

− 2

(
r0

r

)6
]

, (1)

where r is the interatomic distance and r0 is the equilibrium
interatomic distance (under zero stress). If the energy of the
spring is larger than the threshold energy E0 the bond is more
likely to fail than to be alive. p is the probability that the bond
is alive and 1 − p is the probability that the bond is broken.
We assume the probabilistic weight w = p/(1 − p) to depend
on energy through the Boltzmann weight:

w = p

1 − p
= e−[E(r)−E0]/kBT . (2)

We allow for correlations between failing events by using
the Potts number of states q, which plays the role of a fugacity
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FIG. 1. Phase diagram (T ,r) plane for E0 = −0.5, q = 10. The
line with crosses is the instability line and the line with diamonds
is the Potts transition line. The model solid is thermodynamically
unstable outside the instability line.

controlling the number of clusters. For the same number of live
bonds, graphs with more clusters are favored if q > 1, while
if q � 1 there is a tendency to form a few large clusters. If
q = 1, bonds fail independently of one another, i.e., random
percolation process.

FIG. 2. (Color online) Equation-of-state isotherms: stress (white
circles) versus strain for E0 = −0.5, q = 10, T = 0.2 (upper) and
0.26 (lower). The Potts critical points are indicated by the lines with
crosses and the stability limits are indicated by the solid vertical
lines. The region between the solid lines is the stable region. The
compression region to its left and the expansion region to its right are
unstable. In Fig. 3 we show zooms close to the Potts critical points.

The partition function is obtained [19] by summing over all
possible configurations of bonds arranged on the lattice

Z =
∑
config

qCwB, (3)

where C is the number of clusters, including single site
clusters, and B is the number of live bonds.

The free energy per bond is f = ln Z/Nbonds. The deriva-
tives of the free energy f with respect to w and q provide,
respectively, the number of live bonds b and the number of
clusters c, each normalized by the total number of lattice bonds

b = w
∂f

∂w
, (4)

c = q
∂f

∂q
. (5)

The derivatives of b and c with respect to w and q provide
the fluctuations (variances) of those quantities:

�b2 = w
∂b

∂w
, (6)

�c2 = q
∂c

∂q
. (7)

FIG. 3. (Color online) Close-ups on isotherm E0 = −0.5,
q = 10, T = 0.26 near the Potts transition line under compression
and expansion, respectively. van der Waals loops, which signal
discontinuous transitions through the Maxwell construction, are
exhibited at the Potts critical points (indicated by vertical lines with
crosses). The solid line shows the stability limit.
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The stress σ is calculated by taking the derivative of the
free energy with respect to r , the interatomic distance:

σ = −kBT
∂f

∂r
= b

dE(r)

dr
. (8)

The equation of state, Eq. (8), states that the average stress
is equal to the stress associated with each live bond dE(r)/dr

multiplied by the number of live bonds b. The energy gradient
is obtained from Eq. (1):

dE(r)

dr
= −12ε

r0

[(
r0

r

)13

−
(

r0

r

)7
]

. (9)

The equation of state yields the isothermal linear modulus
(inverse compressibility) m:

m = ∂σ

∂r

∣∣∣∣
T

= d2E(r)

dr2
− 1

kBT
�b2

(
dE(r)

dr

)2

. (10)

We perform Monte Carlo simulations of the model using its
mapping into the Potts model. By using the Kasteleyn-Fortuin
expansion [20,21] we can rewrite the partition function,
Eq. (3), as

Z = Trσ e−(H/kBT ). (11)

FIG. 4. (Color online) Isothermal modulus m versus interatomic
distance r for E0 = −0.5, q = 10, T = 0.2 (upper) and 0.26 (lower).
The Potts transitions are indicated by the vertical lines with crosses,
while the solid lines show the stability limits. The region between the
solid lines is the stable region. The compression region to its left and
the expansion region to its right are unstable.

The Hamiltonian is

− H

kBT
=

∑
〈i,j〉

J (r)δ(si,sj ), (12)

where si is a Potts [22] spin at the lattice site i taking q values.
The coupling constant J (r) is related to the original parameters
by

J (r) = ln(1 + w) = ln(1 + e−[E(r)−E0]/kBT ). (13)

To get the equation of state from Monte Carlo simulations
for a given T , r , and E0, we calculate the Potts coupling
constant J (r), using Eq. (13). Then we rewrite Eq. (8) to get
the stress. The number of live bonds b is obtained from the
Potts energy

u = −δ(si,sj ). (14)

The equation of state becomes

σ = −u(e[E(r)−E0]/kBT + 1)−1 dE(r)

dr
. (15)

FIG. 5. (Color online) Stress and modulus versus interatomic
distance at the critical temperature corresponding to r = 1. The Potts
critical point is indicated by the line with crosses. No anomaly occurs
because of the vanishing of dE

dr
. The region between the solid lines is

the stable region. The compression region to its left and the expansion
region to its right are unstable.
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FIG. 6. Phase diagram (T ,r) plane for E0 = 0.5, q = 10. Lines
displayed by crosses are instability lines and the line with black circles
is the Potts transition line. The model solid is thermodynamically
unstable outside the instability lines.

In all numerical results that will be presented next in Sec. III
from renormalization-group calculations and in Sec. IV from
Monte Carlo simulations, we express energy in units of ε,
temperature in units of ε/kB , distance in units of r0, and stress
in units of ε/r0.

FIG. 7. Phase diagram (T ,r) plane for E0 = −0.5 (upper) and
E0 = 0.5 (lower) for q = 1. Lines displayed by crosses are instability
lines and the line with black circles is the Potts transition line. The
model solid is thermodynamically unstable outside the instability
lines.

FIG. 8. Averaged Potts energy U and order parameter Q vs
temperature T for q = 10, r = 0.96 (black circles), 1 (void circles),
and 1.04 (black triangles), with Nx = Ny = 100 and E0 = −0.5.
Lines are guides to the eye.

III. RENORMALIZATION GROUP

The Migdal-Kadanoff [14,15] recursion equation for two
dimensions is

w′ =
[

1 + w2

2w + q

]2

− 1. (16)

The free energy f = ln Z/NB , NB being the number of
lattice edges, is

f =
∑
N

CN

4N
, (17)

where

C = 2 ln(2w + q). (18)

The recursion equations (16)–(18) represent the exact
solutions [16] for the diamond hierarchical lattice [17,18].

The renormalization-group flows are governed by the
following fixed points: (i) w = 0 (nonpercolating live bonds),
(ii) w = ∞ (percolating network of live bonds), and (iii)
w = wc (Potts critical point). Using the free energy we
can compute the number of live bonds b, their fluctuation
(variance), stress, thermal expansion, and modulus. Each

051106-4
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FIG. 9. Stress vs r for q = 10 at T = 0.36 (upper left), 0.38 (upper right), 0.40 (lower left), and 0.46 (lower right), with Nx = Ny = 100
and E0 = −0.5. Lines are guides to the eye. See text for comments.

of those quantities is scaled by the total number of lattice
bonds.

For given values of E0 and q, the phase diagram in the
plane (T ,r) includes two types of singularity lines. In Fig. 1
we fixed the threshold energy at E0 = −0.5 and the cluster
fugacity at q = 10. The Potts-percolation line separates the
region where the probability for formation of an infinite cluster
of live bonds is nonzero from the region where the probability
is zero. On this line the probability weight defined in Eq. (2)
is equal to wc. On the instability line the solid becomes soft,
as its modulus vanishes ∂σ/∂r = 0. The minimum of stress
versus interatomic distance under compression (r < 1) and
its maximum under expansion (r > 1) provide the limits of
stability for the solid. The solid becomes soft at these points.
Beyond this line the solid is thermodynamically unstable since
∂σ/∂r < 0. Note that a large portion of the Potts transition line
(diamonds) is situated in the unstable region.

We show in Fig. 2 the stress versus interatomic distance for
two isotherms T = 0.2 and T = 0.26, respectively. Figure 3
contains zooms close to the Potts transitions that show the van
der Waals loops. The modulus is shown in Fig. 4 for the same
values of the model parameters.

The T = 0.2 isotherm is in the region of phase diagram
where the Potts transition is in the instability region, while
the T = 0.26 one is in the region where the Potts transition is
in the stable region. A zoom view on the isotherm T = 0.26
in the neighborhoods of the two Potts transitions (see Fig. 3)
reveals van der Waals loops [13] that yield weak discontinuous
transitions (small discontinuity) by means of the Maxwell

construction. Hence discontinuous transitions replace the
continuous transition of the Potts model for the hierarchical
lattice. The modulus and the thermal expansion (Fig. 4) show
anomalies at the Potts transition that are connected to the
divergence of �b2 (or of the heat capacity) in the Potts model
on the diamond hierarchical lattice for q = 10. The modulus
becomes negative, and thus the solid is thermodynamically
unstable, when �b2 is large enough [see Eq. (8)]. For the
square lattice we expect the same phenomenon for q = 2,3,4

FIG. 10. Stress vs T for q = 10, at three values of r: 1.04 (black
triangles), 1 (void circles), and 0.96 (black circles), with Nx = Ny =
100 and E0 = −0.5. Note the discontinuities in the cases r = 0.96
and 1.04. Lines are guides to the eye. See text for comments.

051106-5
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where the heat capacity (and thus �b2) is infinite at the Potts
critical point. This will be confirmed through Monte Carlo
simulations in Sec. IV below.

In Fig. 5 we show the isotherm where the temperature equals
the critical temperature for r = 1 (equilibrium interatomic
distance for zero stress). We also show the corresponding
modulus. The anomaly apparent in Figs. 2–4 is not present
at r = 1 because the derivative of E with respect to r [see
Eq. (9)] is zero at r = 1 and thus the negative contribution on
the right-hand side of Eq. (10) vanishes.

To illustrate the dependence of the phase diagram on the
parameters q and E0 we show, in addition to the phase diagram
for E0 = −0.5, q = 10 of Fig. 1, the phase diagram for E0 =
0.5, q = 10 in Fig. 6 and the phase diagrams for E0 = −0.5,
q = 1 and E0 = 0.5, q = 1 in Fig. 7. The Potts line in the
(T ,r) plane is obtained by substituting in Eq. (2) the critical
value wc(q), r0 = 1 and using Eq. (1):

(
1

r

)12

− 2

(
1

r

)6

= E0 − T ln[wc(q)]. (19)

For the self-dual square lattice the critical value [20] is
wc(q) = √

q and this will be used in Sec. IV below to verify
the accuracy of the Monte Carlo simulations. The instability
line originates at zero temperature at the two values of r for
which E(r) = E0 provided the threshold energy is −1 < E0 <

−0.787. The energy value of −0.787 is the energy at the
inflexion point r = 1.11. If the threshold energy E0 > −0.787
the instability line in the expansion region r > 1 originates

FIG. 11. Averaged Potts energy U and order parameter Q vs
temperature T for q = 4, r = 0.96 (black circles), 1 (void circles),
and 1.04 (black triangles), with Nx = Ny = 100 and E0 = −0.5.

FIG. 12. Stress (upper curve) and zooms (lower curves) vs r for
q = 4, T = 0.67 931, with Nx = Ny = 60 and E0 = −0.5.

from the inflexion point of E(r), while under compression the
starting point is at the r for which E(r) = E0.

IV. MONTE CARLO SIMULATIONS

A. General remarks

We perform here Monte Carlo simulations of the Potts
model governed by the Hamiltonian in Eq. (12) with the
nearest-neighbor interaction J (r) given by Eq. (13). For a
given q, the main parameters are T , r , and E0. As in the
previous section, we fix q and E0 and make simulations in the
space (T ,r).

The details of the simulations are the following. We
consider a square lattice of size Nx × Ny , where Nx = Ny =
40,60,80,100. Each lattice site is occupied by a q-state Potts
spin. We use periodic boundary conditions. Depending on the
location of the studied point in the phase space, we used an
equilibrating time from 105 to 106 Monte Carlo (MC) steps
per spin and an averaging time of the order of 106 MC steps
per spin.

051106-6
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FIG. 13. Averaged Potts energy U and order parameter Q vs
temperature T for q = 3, r = 0.96 (black circles), 1 (black triangles),
and 1.04 (black squares), with Nx = Ny = 100 and E0 = −0.5.

One purpose here is to test the renormalization-group
prediction of Sec. III for the cases when the heat capacity of
the Potts model is divergent at criticality: q = 2,3,4. Although
the renormalization-group analysis is exact for the diamond
hierarchical lattice, its predictions for the square lattice are to
be checked. The other goal of the simulations is to learn about
the influence of the discontinuous Potts transition for q > 4
on the equation of state of our model. To achieve this we
simulate the q = 10 on the square lattice.

To verify the accuracy of our simulations we compared
the critical temperature estimated from our simulations to the
exact critical temperature. For r = 1 it is

Tc = 1 + E0

ln(
√

q)
. (20)

With q = 4, E0 = −0.5, we find Tc � 0.721. The Monte Carlo
simulations give the same result up to four digits.

In MC simulations, we work at finite sizes, so for each
size we have to determine the “pseudo” transition which
corresponds, in general, to the maximum of the specific heat
or of the susceptibility. The maxima of these quantities need
not to be at the same temperature. Only at the infinite size, they
should coincide. The theory of finite-size scaling permits one
to deduce properties of a system at its thermodynamic limit.
In this work we have used a size large enough to reproduce
the bulk transition temperature up to the fourth decimal. We
define the Potts order parameter Q by

Q = [q max(Q1,Q2, . . . ,Qq) − 1]/(q − 1), (21)

FIG. 14. Stress (upper) and zoom (lower) vs r for q = 3, T = 0.5
(black circles), 0.55 (black triangles), and 0.6 (void circles), with
Nx = Ny = 60 and E0 = −0.5.

where Qn (n = 1, . . . ,q) is the averaged value defined by

Qn =
〈∑

j

δ(sj − n)/(NxNy)

〉
, (22)

sj being the Potts spin at site j .

B. Results for q = 10

We recall that the Potts model shows a first-order transition
[20] for q > 4 at a finite temperature. This is seen in Fig. 8
where the averaged Potts energy U defined by Eq. (14)
and the order parameter Q are shown for three values
of r .

Note that these quantities show a large discontinuity at the
transition temperature. These results confirm the first-order
character of the transition. Repeating the simulations for other
values of r , we determine the Potts transition line in the space
(T ,r) which agrees up to four digits with the exact critical
line of Eq. (20), using wc = √

10. Note that unlike in some
first-order transitions, the slow heating and slow cooling of the
system do not result in a hysteresis. The energy barrier between
the two phases is believed to be therefore not so high.

We calculate the stress σ using Eq. (15) with u obtained
from MC simulations shown above in Fig. 8, E(r) and
dE(r)/dr being given by Eqs. (1) and (9). This is done
for many values of r and T around the Potts transition
curve in search of the unstable regions predicted by the
renormalization-group analysis shown in Figs. 1–7. In prac-
tice, we fixed a temperature and then changed the value of r

051106-7
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FIG. 15. Averaged Potts energy U and order parameter Q vs
temperature T for q = 2, r = 0.96 (black circles), 1 (void circles),
and 1.04 (black triangles), with Nx = Ny = 100 and E0 = −0.5.

across the Potts transition line by following a vertical line in
Fig. 7. In doing so, we obtained for each T the stress as a
function of r . At a given T , if there is no crossing of the Potts
transition line then the stress behaves as shown in the curve
for T = 0.46 in Fig. 9: σ goes smoothly through a minimum
at a compression position to a maximum at a dilatation one.
The solid is stable in the region between the minimum and
the maximum since the modulus dσ/dr is positive. On the
other hand, when the system crosses the transition line by
varying r , the stress exhibits jumps as seen in the three curves
at T = 0.36, 0.38, and 0.40 in Fig. 9. The discontinuity in
stress is due to the Potts energy discontinuity associated with
the first-order transition of the ten-state Potts model. The
first-order nature in the case q = 10 observed above enhances
the instability. As will be seen below, a qualitatively different
instability occurs for q = 2,3,4 where the transition is of
second order.

It is interesting to show now in Fig. 10 the stress versus T

at a given r . As seen the stress undergoes a discontinuity at
the Potts transition temperature if r 	= 1, but the discontinuity
vanishes for r = 1.

To close this section, we emphasize that for the system
studied here, the size effects are indistinguishable from Nx =
Ny = 60 up.

C. Results for q = 2,3,4

Let us consider the case where q = 4. We show in Fig. 11
the averaged Potts energy Eq. (14) and the order parameter
Q obtained by MC simulations as described above for q = 4,
E0 = −0.5 and three values of r . The Potts transition is con-

FIG. 16. Stress vs r near the instability region (upper) for q = 2
with several temperatures from T = 0.535 to 0.675: data points for
T = 0.65 are marked with void squares. This case is shown for a
large region of r in the lower figure. Nx = Ny = 60, E0 = −0.5.

tinuous with diverging heat capacity [20]. As a consequence of
Eq. (10) the modulus becomes negative close to the transition
temperature. This instabilty implies the emergence of a van der
Waals loop in the dependence of the stress on r . We show this
in Fig. 12. Hence the transition becomes weakly first order.

For q = 3 and q = 2, the results are shown in Figs. 13 and
14 and Figs. 15 and 16, respectively. The replacement of the
Potts continuous transition with a weakly first-order transition
occurs here also because the Potts heat capacity is divergent
for q = 2,3,4. As seen, the van der Waals loops, though weak,
are present.

V. CONCLUSIONS

In this paper, we have used renormalization-group and
Monte Carlo simulations to study the phase diagram of a
two-dimensional solid by using a model in which the inter-
action between neighboring atoms follows the Lennard-Jones
potential. We have mapped the model into a q-state Potts model
and investigated the effect of both a uniform compression
and a uniform expansion of the volume of the solid. In the
temperature, interatomic distance plane we find a line of
Potts transitions and stability boundaries where the stress as
a function of interatomic distance has an extremum. For the
cases where the Potts heat capacity is divergent (q = 2,3,4
for the square lattice, q > 6.8 for the hierarchical diamond
lattice) a van der Waals loop (instability) occurs close to the
Potts transition and thus a weak first-order transition (using
Maxwell construction) replaces the continuous transition. This
is a remarkable result that warrants further analysis. Monte

051106-8



EQUATION OF STATE FROM THE POTTS-PERCOLATION . . . PHYSICAL REVIEW E 84, 051106 (2011)

Carlo simulations for large q values (where the square lattice
Potts transition is discontinuous) indicate that the discontinuity
in the Potts energy translates into a discontinuity in the stress
as a function of the interatomic distance at the transition
temperature. The influence of interatomic distance fluctuations
on the nature of the phase transitions in this model will be
addressed in a future study. Finally, let us note that while it
is known that the solid phase cannot survive at finite T in
two dimensions with continuous degrees of freedom of atom

motions, our present study with discrete degrees of freedom
shows some interesting behaviors which would serve as a
starting point to study three-dimensional solids where melting
mechanisms are not well understood [1,2].
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