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ALTERED CORTICO-CORTICAL BRAIN CONNECTIVITY  

DURING MUSCLE FATIGUE 

ZHIGUO JIANG 

ABSTRACT 

Traditional brain activation studies using neuroimaging such as functional 

magnetic imaging (fMRI) have shown that muscle fatigue at submaximal intensity level 

is associated with increased brain activity in various cortical regions from low- to high-

order motor centers. However, how these areas might interact remain unclear since 

previous activation studies related to motor control could not reveal information of 

between-area interaction. This issue can be addressed by evaluating brain activation data 

using the framework of connectivity analysis. Three types of brain connectivity, 

functional connectivity (FC), effective connectivity (EC) and structural connectivity (SC) 

have been examined to investigate the effect of voluntary muscle fatigue on the 

interaction within the cortical motor network. The aim of the study was to propose a new 

framework to reveal adaptive interactions among motor regions during progressive 

muscle fatigue. We hypothesized that the brain would exhibit fatigue-related alterations 

in the FC and EC. Ten healthy subjects performed repetitive handgrip contractions (3.5s 

ON/6.5s OFF) for 20 minutes at 50% maximal voluntary force (MVC) level using the 

right hand (fatigue task). Significant MVC reduction occurred at the end of the fatigue 

task, indicating muscle fatigue. Histogram and quantile analysis confirmed that FC of the 

brain increased in the severe fatigue stage (the last 100s of the fatigue task) compared 
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with the minimal fatigue stage (the first 100s of the fatigue task). Structural equation 

modeling (SEM) was used to evaluate the EC of the brain during fatigue. We found the 

path from the prefrontal cortex (PFC) to the supplementary motor area (SMA) decreased 

during fatigue while the path from the premotor area (PMA) to the primary motor cortex 

(M1) increased. We also found supporting evidence from SC analysis using diffusion 

tensor image (DTI). The new framework of connectivity analysis, combining the work of 

SC, FC and EC, provides greater insights into the dynamic adaptations of interaction in 

motor-control network during voluntary muscle fatigue. The change in the interaction 

might relate to cortical modulation of peripheral fatigue that alters muscle force 

production and sensory feedback. This framework may serve as a tool to understand 

mechanisms of vast clinical fatigue symptoms. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1. Muscle fatigue 

Muscle Fatigue is a natural part of life. One lifts weights in a gym and feels tired 

after doing six reps of 100lbs chest press. He/She is experiencing muscle fatigue. The 

person can barely continue the workout due to a reduction in force-generation capability 

of the muscles, which could increase the chance of injury and decrease the productivity.  

Although one may experience fatigue every day, it is still not well known about 

the underlying mechanism of fatigue. In the past 50 years researchers have been striving 

to understand various factors contributing to fatigue. Numerous theories and models have 

been proposed to explain fatigue but none of them is precise [Noakes, 2000]. There are 

two sources of motor fatigue, ‘peripheral’ and ‘central’ fatigue. Peripheral fatigue refers 

to fatigue occurring distal to the spinal cord, including that within the muscle and at the 

neuromuscular junction. In contrast, central fatigue is defined [St Clair Gibson, et al., 
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2001] as the failure to sustain a muscle contraction with reduction in neural drive to the 

muscle or the inability to reproduce the original force with increased perception of effort. 

Both peripheral and central fatigues are present under most circumstances. Thus, it is 

difficult to distinguish one from the other. The peripheral fatigue model highlights 

metabolic changes in the working muscle in the absence of the central nervous system 

(CNS) adaptation. However, accumulating evidence [St Clair Gibson, et al., 2001] shows 

that the CNS can contribute to the inability of a human being to sustain a motor task. The 

CNS is thought to play a ‘governing’ role to protect vital organs from injury or damage. 

The brain attempts to take different strategy to avoid any possible ‘disaster’. Central 

fatigue can be demonstrated by an increment of force introduced by direct electrical 

stimulation of the motor nerve during a maximal voluntary effort. Nevertheless, there is 

no single global mechanism which could explain muscle fatigue. In this thesis, only the 

central aspect of muscle fatigue was addressed. 

Although fatigue may be explained by peripheral mechanism, sometimes there is 

no physiological cause for fatigue. For example, patients with cancer often complain 

about fatigue. However, regular physical examination could not explain this. It is our 

hope that by examining brain dynamic of healthy subjects during fatigue we may gain 

more insight of central mechanism of muscle fatigue. 

To compensate for the loss of force productivity, the brain employs different 

strategies to increase the central drive to the motor neuron pool depending on the task. 

This is referred as ‘task-dependency’ [Enoka, 1995] of muscle fatigue. During maximal 

voluntary contractions, all motor units are thought to be recruited to generate the force. 

Thus the brain can only increase the firing rate of the motoneurons/motor units. During 
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submaximal voluntary contractions, not all motor neurons are recruited. As initially 

recruited motor neurons become fatigued, additional motor units are recruited to sustain 

the force production.  

It is believed that submaximal fatiguing contractions are accompanied by 

increased cortical activity in the brain [Enoka, 1995]. The motor cortex and the other 

cortical areas in the brain must be able to sustain a central command signal that drives the 

motor unit involved in the task. Our previous study [Dai, et al., 2001] has shown that 

stronger muscle contractions correlate well with higher activation of primary sensory 

cortex (S1), primary motor cortex (M1), premotor area (PMA), supplementary motor area 

(SMA) and prefrontal cortex (PFC). Another study [Liu, et al., 2003] demonstrated that 

the brain increased its output to reinforce the muscle to continue the performance after 

fatigue set in using functional magnetic resonance imaging (fMRI). Significant increased 

blood-oxygen-level-dependent (BOLD) signals were observed in bilateral M1, S1, 

cingulate and PFC. However, it is not clear that activations in these brain regions are 

associated with a common brain motor control network. If so, how do different brain 

regions interact during muscle fatigue? What are the directional relationships between 

these brain regions? In another word, how does the information flow within this network? 

The present study addressed these issues from the perspective of connectivity. 

1.2. Traditional fatigue-related brain activation studies 

Traditionally, most human fMRI studies employ univariate statistical method to 

identify and characterize functionally segregated or specialized brain regions associated 

with muscle fatigue.  This mapping approach usually addresses issues like what part of 

brain is active during fatigue.  A follow up analysis often examines the magnitude of the 
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brain activation in a set of brain regions revealed in the activation study. Parameters like 

the intensity of the BOLD signals ([Benwell, et al., 2007]) and the size of the activation 

(number of activated pixels [Liu, et al., 2002] or number of activated voxels [Benwell, et 

al., 2005] ) of regions of interests (ROIs) are usually assessed over time. Inferences are 

usually made on effect of fatigue on distinct brain regions or the brain activity changes 

over time. It should be noted that these are all reported as ‘increased/decreased brain 

activation’ in publications. Extra attention should be drawn to the detailed description of 

the parameters examined in the literature.  

The brain functions as multiple regions work together simultaneously at large-

scale network levels. Traditional activation studies cannot suggest any relationship of the 

concurrent neuronal events in different brain regions. They cannot give any information 

on how the underlying brain network contributes to the change of brain activity. 

Interregional relationship remains unclear as a result.  

Functional integration, compared to functional segregation, is gaining more 

interest in fatigue studies [Deshpande, et al., 2009; Peltier, et al., 2005]. Functional 

integration focuses on interregional relationship among brain areas and this allows 

investigations of interaction of the brain network regions during fatiguing motor tasks. 

This method is also referred to as connectivity analysis. It addresses issues like how 

different brain regions are functionally connected and what are the directions of the 

connections. The next section discusses the connectivity in detail.  

1.3. Brain connectivity 

Generally speaking, there are three basic types of brain connectivity: structural 

connectivity (SC), functional connectivity (FC) and effective connectivity (EC). It can be 
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summarized as illustrated in Figure 1. Compared to traditional brain activation/mapping 

studies, connectivity analysis can reveal more meaningful information on a larger scale of 

functionally connected network. Multivariate statistics are usually used to analyze brain 

activity of different ROIs simultaneously. By studying integration of the brain, 

connectivity analysis can provide greater insight into the neuronal mechanism of muscle 

fatigue. 

As shown in Figure 1, simple lines connecting a pair of regions stand for 

anatomic connections. These connections are based on structural connections between 

two regions via nerve fiber pathway. SC can be investigated by tracing anatomical 

connections. Double-head arrows indicate FC. FC can be studied by computing the 

correlation between different brain activation foci. EC is represented by single-head 

arrows. A causal relationship is assumed for each connection. Friston [Friston, 1994] 

described the brain as an ‘ensemble of functionally specialized areas that are coupled in a 

nonlinear fashion by effective connections’. 

Compared to traditional brain activation/mapping studies, connectivity analysis 

can reveal more meaningful information on a larger scale of a functionally connected 

network. Multivariate statistics are usually used to analyze brain activity of different 

ROIs simultaneously. By studying integration of the brain, connectivity analysis can 

provide greater insight into the neuronal mechanism of muscle fatigue.  

Although it is unlikely that the brain will undergo any change in terms of SC 

during muscle fatigue (due to its short time scale), recent neuroimaging studies 

[Deshpande, et al., 2009; Peltier, et al., 2005] have shown modulation of FC and EC 

when fatigue develops during continuous muscle contractions.  
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Figure 1 : Three types of connectivity in the brain: structural connectivity (SC), functional 

connectivity (FC), and effective connectivity (EC). Simple lines stand for anatomical connections. 

Double-headed arrows stand for functional connections. Single-headed arrows stand for effective 

connections. Note: brain regions shown in the figure do not represent true brain areas. Numbers are 

for illustration purpose only.  

 

1.4. Objective of this thesis 

The primary goal of this thesis was to investigate the brain connectivity during 

muscle fatiguing by sustaining a submaximal motor task. We hypothesized that the FC 

would increase among motor areas such as the SMA because the brain needs to increase 

its command to make up for the reduced force production capability during the fatigue 

process. The EC would change as a result of the increased functional connectivity and 
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‘fatigued’ motor network.  The SC was examined to evaluate the FC and EC on the 

anatomical basis.  

The proposed brain connectivity would help better understand the central aspect 

of fatigue, especially the fatigue symptom experienced by subjects with no obvious 

physiological causes such as cancer related fatigue. It is expected that the successful 

application of brain connectivity framework would provide more insight into the brain 

dynamic of healthy subjects during fatigue. Thus it can help diagnose even treat the vast 

fatigue symptoms experienced by patients especially those with cancer. 

1.5. Organization of this thesis 

The material presented in this thesis covers a number of the aspects concerning 

the brain connectivity analysis. The analysis is organized into four different procedures 

(in the order of appearance in this thesis): brain activation, FC, EC and SC analysis.  

The second chapter covers the experiment setup and protocol used in this thesis, 

including the subjects’ information and the fMRI acquisition. Pre-processing of the fMRI 

data are explained in detail. 

Chapter III is concerned with the brain activation pattern during fatigue. It starts 

with a brief review of functional brain studies of muscle fatigue.  Then the result of 

performance of maximal voluntary contraction (MVC) is presented and the brain 

activation map was compared with other studies.  

Chapter IV deals primarily with the FC analysis of muscle fatigue. The current 

status of FC analysis is summarized followed by an introduction of cross-correlation 

method. The results are then presented and discussed in detail.  
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Chapter V is the most important chapter in this thesis. The theory of structural 

equation modeling (SEM) is covered and the stacked model method is explained as a tool 

to examine the significance of change in EC coefficients. The results are then presented 

and discussed. Interpretations are given in an effort of combining the results from 

chapters four and five.  

Chapter VI describes supportive evidence of the path model proposed in chapter 

five using diffusion weighted imaging. This chapter attempts to address the anatomical 

basis of EC in terms of SC. 

Chapter VII summarizes the major finding of this thesis. Limitations of this thesis 

are also discussed. Possible modifications are also proposed at the end. 
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CHAPTER II 

DESCRIPTION OF EXPERIMENT 

 

 

2.1. Subjects 

Ten healthy, right-handed subjects without any neurological or psychiatric 

diseases and current medications were recruited for the study (10 male, age =32.8±8.4 

years old). The subject handedness was determined by the Edinburgh inventory [Oldfield, 

1971]. All subjects gave written consents of participation prior to the experiment. All 

procedures were approved by the Institutional Review Board at the Cleveland Clinic 

Foundation.   

2.2. Fatigue motor task 

All subjects performed intermittent handgrip contractions at 50% maximal 

voluntary contraction (MVC) level using the right hand while their brains were scanned.  
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Figure 2 shows the device used in the experiment. Handgrip force was measured 

using a pressure transducer described in [Liu, et al., 2000]. The MVC force level of 

handgrip contraction was measured three times prior to the fMRI session and was 

determined by the average of the three measurements. This average MVC level was then 

used to determine the submaximal forces for the fatigue and control motor tasks. Visual 

cues projecting onto the monitor screen hung above the subject’s eyes were used for 

subjects during task performance. On the screen, the force output level and the target line 

were displayed to guide the subject to match the desired force output. The duration of 

each contraction was 3.5s followed by a 6.5s inter-trial interval (rest) in an alternating 

ON/OFF fashion. The entire motor fatigue task lasted 20 minutes and each subject 

completed a total of 120 contractions. The MVC handgrip force was measured again 

immediately upon each subject’s completion of the task to determine the level of muscle 

fatigue. 

2.3. Control motor task 

Four subjects (4 male, age=38.75±9.1) were asked to perform a control motor 

task at 8% MVC force level. The 8% MVC level was chosen to make sure no fatigue 

would be induced within the 20-min time frame. Other protocols remain unchanged from 

the fatigue motor task. 

2.4. Image acquisition 

All images were acquired on a 3T Siemens Trio scanner (Siemens, Germany). 

Subjects were instructed to lie in a supine position and to remain still in order to reduce 

head motion. Functional images were acquired using a T2* weighted gradient-echo, EPI 
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sequence. Each brain volume consisted 30 slices (slice thickness=4mm) with an in-plane 

resolution of 3.44 ×3.44mm2. Pulse sequence parameters were: repetition time (TR) = 

2s, echo time (TE) = 30ms, flip angle (FA) =50º. A total of 600 volumes of images were 

collected during the 1200-s execution of the motor task completed by each subject. T1 

weighted images were also acquired after the functional image collection. The parameters 

for the T1 weighted images were:  TR/TE/FOV = 2600ms/3.93ms/256mm, respectively. 

Figure 4 illustrates the fMRI setup scheme used in this study.
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Figure 2: Illustration of the handgrip device used in the experiment 

 

 

Figure 3: Schematic illustration of the experimental motor task paradigm. Maximal 

voluntary contraction (MVC) force was determined before the scan session. The greatest force 

among the 3 MVC trials was used as the MVC force. After resting for 2 minutes, subjects performed 

the handgrip contractions at 50% MVC level during which the fMRI data were collected. The 

duration of each contraction was 3.5 s followed by a 6.5 s rest. Subjects performed another MVC 

immediately after the 120th handgrip contraction to determine the level of muscle fatigue. 
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Figure 4: Illustration of the system used in the experiment. Subjects were laying supine and 

remaining still during scanning.  

2.5. Preprocessing of functional data 

We used Brainvoyager QX 1.7 (http://www.BrainVoyager.com) to preprocess and 

analyze the functional images. Motion correction was applied first to all subjects’ data. 

Six parameters (three translation parameters in x, y and z directions and three rotation 

parameters in x, y and z directions) were estimated for every subject. Three subjects were 

excluded from fatigue group due to excessive head motion (subjects having any of the 

translational parameters >2mm or rotational parameters >2º were considered to have 

excessive head motion). No excessive head motion was found on subjects in the control 

group. Slice time correction was then performed on the remaining subjects’ data to 

correct the time delay of scanning between slices followed by a linear trend removal. 
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Low-frequency nonlinear drifts of 3 or fewer cycles (0.0025 Hz) per time course was 

removed by temporal high-pass filtering.  

2.6. Preprocessing of the anatomical data 

The anatomical data of each subject was transformed into Talairach standard 

space first. Then the gray/white matter boundary was segmented by using automatic 

cortex segmentation routine implemented in Brainvoyager QX.  Folded reconstructions 

of each subject’s cortical surface were created by following procedures described in 

[Formisano, et al., 2004]. All reconstructed surface meshes were aligned to each other 

using cortex-based inter-subject alignment routine implemented in Brainvoyager QX. 

This method aligns subjects to each other by localizing cortical feature based on 2-D 

representation of cortical regions. This surface-based approach offers much higher 

accuracy of inter-subject alignment of the human brain [Fischl, et al., 1999]. 

2.7. Co-registration of functional and anatomical data  

Functional slice time course (STC) data were registered to corresponding 3D 

anatomical volume data in Talairach standard space resulting in functional volume time 

courses (VTCs).  VTCs were then mapped into the reconstructed cortical surface meshes 

to generate mesh time course (MTCs) to enable overlaying statistic map results on T1 

brain images in surface mode.  
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CHAPTER III 

BRAIN ACTIVATION DURING MUSCLE FATIGUE 

 

 

3.1. Introduction 

Before the issue of brain connectivity can be addressed, it is necessary to examine 

the general brain activation pattern during muscle fatigue. A voluntary muscle 

contraction usually involves activation in cortical areas such as primary motor area (M1) 

and premotor area (PMA). In our previous study, we have demonstrated that [Liu, et al., 

2002; Liu, et al., 2003] brain regions of the M1 (primary area), PMA, supplemental 

motor area (SMA; association area) and prefrontal cortex (PFC) were active during the 

voluntary handgrip contractions and the activation level in these areas changed when the 

muscles were fatigued.  
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Although positron emission tomography (PET) [Dettmers, et al., 1996] can be 

used to study brain activity, more studies [Liu, et al., 2003; Peltier, et al., 2005; Post, et 

al., 2009] have used fMRI to dynamically monitor the brain signal changes to take 

advantage of its excellent spatial resolution together with relatively good temporal 

resolution. A traditional way of detecting brain activation is subtracting images of ‘ON’ 

condition from ‘OFF’ (baseline or rest) condition. But fMRI time-series data contained 

noise which renders subtraction method less effective to detect brain activation. 

Furthermore, the delay of fMRI responses makes this method less attractive. A more 

accurate and more promising general linear model (GLM) method was proposed by 

Friston [Friston, et al., 1995] to capture more precise brain activations. 

 

Figure 5: Traditional way to localize brain activation during a cognitive or behavioral task. 

Grey blocks represent baseline condition with no stimulus and blue blocks represent the time periods 

when a stimulus (e.g., motor activity) occurs usually initiated by visual or auditory cues. By 

comparing the fMRI signals between the two blocks for each voxel, we can map those voxels showing 

significant difference between the two conditions. Then, the “activated” voxels are coded with color 

(orange to yellow in ascending order) and overlaid on high-resolution 3D T1 image for better 

visualization. 
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Since our major interests in this study were brain activities during muscle fatigue, 

the cerebral cortex was the main target of analysis. One fifth of the voxels recorded from 

fMRI session lie within the cortex [Formisano, et al., 2004].Thus, restricting the analysis 

to this subset of the voxels would reduce the computation load significantly. It has also 

been shown that a cortical-based matching approach could reduce the subjects’ 

anatomical variability in the statistical analysis across subjects [Fischl, et al., 1999].  

More statistical power can be achieved for analysis of group effect. 

3.2. Methods 

3.2.1. Cortex-based segmentation and group alignment 

The segmentation of the white and gray matter was done using the built-in auto-

segmentation routine in Brainvoyager QX 1.7 (http://www.BrainVoyager.com). This 

procedure was performed for each subject. Subsequently, the reconstructed folded 

cortical representation of each subject and each hemisphere (left and right hemispheres) 

were morphed into a spherical representation. Then, a group alignment procedure was 

performed to allow the best major gyri and sulci pair-wise matching.  

3.2.2. Group activation detection 

After segmentation and group alignment, a second-level group analysis using a 

GLM method was performed. A model based on the convolution of canonical 

hemodynamic response function (HRF) with motor task paradigm and its first derivative 

was used to detect any active voxel in the brain during the task.   A threshold of P<0.005 

(uncorrected) for random effect analysis and a minimal cluster size threshold of 50 voxels 
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were adopted. Patch of interest (POI) template (ROI template in surface mode) provided 

by Brain Innovation Inc. was used to identify and label activated brain areas. 

 

Figure 6 illustrates the procedures performed to enable group-level cortex-based 

brain activation detection. Figure 7 shows how the MTC was obtained from original 2D 

functional images. 

 

 
Figure 6: Summary of the major procedures before submitted to group-level analysis. 

Structural scans were warped to align with Talairach template. Then a gray/white matter 

segmentation was performed on the transformed scans. After reconstructing the brain surface using 

the segmented gray/white matter boundary information, we inflated each brain surface into a sphere 

representation of the brain and aligned them pair-wise for group alignment based on cortex 

landmarks.  After group alignment, a group averaged brain surface for both hemispheres were 

obtained for further visualization of statistic results.  
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Figure 7: Illustration of the time course data transformation. Slice time course (STC) data were 

extracted from the original 2-D functional scans. They were brought into 3-D Talairach space using 

the transformation matrix saved from structural warping described in Fig 6. They were further 

mapped into the mesh mode to enable cortex-based statistics.  

3.3. Results 

3.3.1. Force 

There was no significant MVC force loss (force difference = 2.5%±0.7%; mean

±SD) after the non-fatiguing task (8% MVC).  After fatiguing task (50% MVC), the 

MVC of hand grip force declined significantly (force difference = 31.9%±15.5%, mean

±SD) from the initial MVC force measured before the fatigue task. The significant 

decrease in MVC force indicated the presence of muscle fatigue. 

3.3.2. Brain activation during fatiguing task 

Figure 8 shows the brain activation map during fatiguing task (50% MVC, P< 

0.001; uncorrected). A second-level random effect analysis was applied to this group of 

data to reveal any group-level activation pattern. Activations were found in the primary 
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visual areas (V1/V2), bilateral primary sensory cortex (S1), M1, PMA, SMA and 

dorsolateral PFC (DLPFC) for both hemispheres. 

 

Figure 8: Brain activation maps of fatigue task (50% MVC, P<0.005; uncorrected; random effect). 

The color bar shows the color coded t-test statistics. 

3.3.3. Brain activation during non-fatiguing task 

Figure 9 shows the brain activation map during control task (8% MVC, P<0.01; 

uncorrected). Fixed effect analysis was used instead of random effect analysis due to the 

actual small number of the subjects (4 subjects in total participated for this task) 

performed the control task. Random effect analysis did not reveal significant group 

activation unless the threshold was lowered. Activations were observed in bilateral S1, 

M1 and V1/V2 areas.  
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Figure 9: Brain activation map of control task (8% MVC, P<0.01; uncorrected; fixed-effect). 

The color bar shows the color coded t-test statistic. 

3.4. Discussion 

Overall, both fatigue and control tasks showed similar brain activation patterns in 

bilateral M1, S1, PM and SMA. And for both tasks, predominant activation can be 

observed in left M1 and left S1. However, we found some differences of brain activation. 

Larger size of brain areas were involved in the fatiguing task than in the non-fatiguing 

task. It should be noted that fixed effect analysis was used to create the activation map for 

control task, which is less strict about revealing brain activation on the group level than 

the random effect analysis. The larger size of activation during the fatigue task was a 

result of higher level of effort in performing the fatigue task (50% MVC vs 8% MVC). 

Our group has reported similar finding in a brain activation study during force 

modulation task [Dai, et al., 2001]. More motor units were recruited and/or active motor 

units increased firing rates to generate higher level of force. This increase of brain 
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activation is often perceived by human subjects as making more effort. This is in line 

with the observed greater size of activation in bilateral S1.  

We found that the brain activations revealed by random effect analysis during 

fatiguing task have a bilateral pattern.  In a previous study [Liu, et al., 2002] our group 

reported that motor cortex in both left and right hemispheres showed an increase-then-

decrease pattern. This bilateral brain activation was also observed in another fMRI study 

employing a 30% MVC motor task. This bilateral activation may reflect the mirror 

activity associated with contra-lateral hand (left hand in this study) as suggested from a 

combined EMG/fMRI study [Sehm, et al., 2009]. They demonstrated that muscle activity 

may extend to the resting hand during unimanual motor tasks. Thus by inhibiting the 

contra-lateral movement, the brain shows a bilateral activation pattern. 

Another interesting finding was that unique activation was observed in the 

bilateral DLPFC for the fatigue task. We did not find brain activation in DLPFC for the 

control task. This indicated that the DLPFC may play a crucial role during fatigue. An 

fMRI study of motor fatigue [van Duinen, et al., 2007] has also reported this unique brain 

activation when comparing brain activity data in sustained fatiguing contractions with 

brief non-fatiguing contractions. The DLPFC is known to be involved in working 

memory performance [Schlosser, et al., 2006] and willed actions [Badgaiyan, 2000]. Its 

executive role makes the DLPFC a promising candidate to monitor the underlying brain 

network, which generates the motor command for the ongoing motor task and processes 

sensory feedback from the fatiguing muscles. 

In summary, our results confirmed the location of brain activation from our 

previous findings, in which increased brain activity was observed in a number of brain 
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areas of the motor network during muscle fatigue. There is good reason to believe that the 

brain motor network is regulated by the DLPFC during progressive fatigue. However, 

how the activity from each cortical area relates to one another remains unknown. In the 

following chapters the brain connectivity analysis is introduced to address this issue. 
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CHAPTER IV 

FUNCTIONAL CONNECTIVITY 

 

 

4.1. Introduction 

Recent functional magnetic resonance imaging (fMRI) studies of human brain 

during voluntary muscle fatigue at submaximal intensity levels have shown increased 

brain activity in areas such as Brodmann Area (BA) 1, 2 and 3 (primary sensory cortex); 

BA 4 (primary motor cortex, M1); BA 6 (SMA and PMA); and PFC [Benwell, et al., 

2007; Liu, et al., 2003; van Duinen, et al., 2007] . These data may reflect an increased 

voluntary drive from the cortical centers to spinal alpha motor neurons controlling the 

working muscles to maintain the target force as fatigue develops. Due to the substantial 

stress and voluntary effort involved in the fatigue process, especially when the fatigue 

becomes severe, the cortical modulation may involve all levels of motor control 
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hierarchy, i.e., the primary, secondary and association motor cortices. How the various 

level motor control centers interact with each other during voluntary muscle fatigue, 

however, remains unclear.   

FC analysis has recently gained many interests in human brain mapping studies 

[Liu, et al., 2008]. Although almost any measures of brain activity can be used to study 

FC  [Rykhlevskaia, et al., 2008], fMRI data are better suited for FC analysis because they 

provide both high spatial and reasonable temporal resolution especially for submaximal-

intensity muscle fatigue tasks that usually last for minutes. A common approach to 

measure FC of the brain is based on cross-correlation of activation time course of a 

cortical region with the time course of a reference ROI. This type of FC analysis has been 

successfully applied to studies in reward processing [Camara, et al., 2008], phrase 

formation [Schafer and Constable, 2009], language and sleep [Liu, et al., 2008]. [Peltier, 

et al., 2005] reported diminished FC between interhemispheric BA4s during resting state 

after comparing with before a submaximal fatiguing motor task. A recent study by our 

group [Yang, et al., 2009] investigated FC between cortical and muscular signals during 

muscle fatigue and found a fatigue-related FC reduction between the two signals. No 

studies, however, has assessed FC among the cortical motor control regions during 

muscle fatigue. Given the fact that activities in many cortical fields change significantly 

with fatigue over time during a fatigue motor task at a submaximal intensity level 

[Benwell, et al., 2007; Liu, et al., 2003; van Duinen, et al., 2007], we hypothesized that 

the FC among the participating brain regions would alter with fatigue. The aim of this 

study was to determine the level of FC over time between the BA4 contralateral to the 
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fatiguing muscles and other primary, secondary and association motor areas participating 

in a prolonged submaximal motor task. 

 

4.2. Methods 

4.2.1. Reference region 

We chose left BA4 to be the reference region in this study. The BA4 lies along 

the precentral gyrus and sends command through the long axons that connect the BA4 

with alpha motoneurons in the spinal cord. The alpha motoneurons project to their target 

muscle and activate it to generate force and make joint movement. Since most of these 

axons cross over to the contralateral side in the medulla oblongata, contralateral BA4 

shows activation during unimanual motor movement. In this study, left BA4 was the 

major neural output center that controlled the right handgrip and it is a good candidate to 

study the functional coupling in the brain. Any other areas show highly correlated activity 

to the left BA4 are considered to be part of the motor network and involved in controlling 

the submaximal handgrip contractions.  

4.2.2. FC analysis 

A reference VTC was extracted by first finding the activation maximum (seed 

area) in the left BA4 and then averaging the voxels’ VTCs in the neighboring 2-mm 

volume.  Since subjects did not start the motor task at the exact same image volume at the 

beginning of the scan, the VTC was realigned based on the actual starting volume and the 

remaining data that trailed after the 550th volume were discarded to make sure every 

subject had the same amount of the image volumes. Thus, each subject’s data consisted 
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of 550 volumes of VTC data. To determine the strength of the FC among the brain 

regions with prominent activation, we cross-correlated the VTCs of all activated voxels 

in the regions to the reference (seed) VTC. Five lags were used to capture any time 

delayed correlation of VTC.  Figure 10 shows an illustration of how the FC analysis was 

performed. 

 

 

Figure 10: Illustration of the FC analysis with the seed area (left BA4) shown as a red circle. 

The color bar shows the cross-correlation values. 

 

Figure 11: Illustration of the minimal fatigue stage (the first red box) and severe fatigue (the 

second red box) overlaid on sample VTC data. The X axis shows the volume number of the images 

and Y axis shows the intensity of the fMRI signal. 
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To test the effect of fatigue on the FC, the VTC FC of the first 50 volume data  

(the first 100s during which subjects experienced minimal fatigue) and the VTC FC of 

the last 50 volume data (the last 100s, during which subject experienced severe fatigue) 

of final VTC data were analyzed. (See Figure 11 for an illustration of the stages). A 

histogram analysis was first used to visualize the distribution of the correlation data; then 

both standard analysis of variance (ANOVA) and quantile regression analysis were 

performed to compare the magnitude of the FC (i.e. the correlation coefficient of VTC of 

the all voxels) between the minimal and sever fatigue conditions in the ROIs. Quantile 

regression is a novel statistic tool for analyzing the relationship between certain quantile 

of response variable and predictor variable. The ordinary least squares regression analysis 

is to obtain a summary of the relationship between a response variable Y and a set of 

covariates X. It captures how the mean of Y changes with X. Often times, a single mean 

curve is not informative enough. Conditional quantile functions can provide a more 

complete view. Quantile regression [Koenker, 2005] extends the regression model to 

conditional quantiles of the response variable, such as the median or the 90th percentile.  

This study proposed to use quantile regression because it was particularly useful with our 

heterogeneous data where the tails and the central location of the conditional distributions 

vary differently with the covariates. Especially among all the voxels in a given brain 

region, investigator was more interested in the voxels that had higher correlation values. 

Those voxels were more likely to be active during the motor task. 

4.2.3. Quantile regression analysis 

Quantile regression is a type of regression analysis proposed by Koenker and 

Bassett (1978) to allow estimation of various quantile functions of a conditional 
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distribution (usually a heterogeneous distribution).  This approach is very useful for data 

having non-standard distribution shapes. Least square method frequently used in 

traditional regression analysis estimates the mean of the response variable. However, in 

quantile regression, median or other quantiles of the population are estimated. Before 

addressing the concept of this regression approach, a brief introduction of quantile and 

conditional quantile is provided below, followed by a description of quantile regression 

estimation in a nut shell. Interested readers are refer to [Koenker, 2005] for more details. 

A quantile is a statistical method that involves sorted data. Let X be a random 

variable with a distribution function of FX. The kth q-quantile for X is the boundary value 

x that divides the ordered X into subsets in a way such that the probability that the 

random variable will be less than x is at most k/q and the probability that the random 

variable will be larger than x is at most (q−k)/q. Some special quantiles are the first 

quartile (0.25 quantile), the median (the 0.5 quantile).  Let qY(n) denote nth quantile (with 

distribution of Fx.  The value of qY(n) can be solved by minimizing  Equation 1 regarding 

to q. 

    
Equation 1 

If X has conditional distribution (FX|Y, its nth quantile can be determined by 

minimizing the same equation by replacing the corresponding distribution function with 

FX|Y(X). 

Thus, for a classic linear regression problem  

      Equation 2 

The βis estimated based on the mean value of X, Y. If the estimate of βbased on 

the median is significantly different from the mean-based estimate, the distribution is 
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asymmetric. Classic regression may not reveal the true response relationship between X 

and Y.   

    

Equation 3 

The above function can be minimized using simplex method and the solution can 

be denoted as . (See [Koenker, 2005] for detailed description of the method). Different 

regression coefficient can be computed this way for different quantiles. If these  

values are quite different from each other, it is probably because the regressor (X) has 

different impacts on different quantiles of the dependent variables (Y).  

4.3. Results 

4.3.1. Functional connectivity map 

Figure 12 shows a sample of time course of the BA4 of the left hemisphere used 

in functional connectivity analysis.  

 

Figure 12 : A sample of time course of the left primary motor cortex (BA4) used for the FC 

analysis. The X axis shows the brain image volume number. The Y axis shows the intensity of the 

BOLD signal. 
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Figure 13 shows the FC maps (averaged across all subjects) during minimal and 

severe fatigue stages overlaid onto the averaged T1 images. Temporal lag values used in 

the cross-correlation were coded in colors (ranging from yellow to green) in the map. 

Green clusters indicate longer delay or time lag relative to the time course of the left BA4 

than the other color clusters. The orange color indicates the shortest delay. Bilateral BA4, 

bilateral sensory areas, SMA and PFC (not shown in the map) were found to show 

significant FC with the left BA4.  The FC maps showed similar brain activations to the 

activation map computed by correlating to the task paradigm. Since the left BA4 is highly 

associated with the right-hand motor task, it is not surprising to see the similarities 

between the two brain activation maps. Bilateral symmetrical activation was observed as 

well as in the previous chapter (See Section 3.4 ).   
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Figure 13 : Upper panel: averaged functional connectivity (FC) activation map of all 

subjects overlaid on the averaged structural images across all ten subjects during minimal fatigue 

stage; Lower panel: average FC activation map of all subjects overlaid on the averaged structural 

images across all ten subjects during severe fatigue stage. Lag values of the cross correlation were 

coded in colors from yellow to green. A= Anterior; P=Posterior R=right hemisphere; L=left 

hemisphere, TRA=transaxial plane. 

4.3.2. Histogram analysis 

To evaluate the effect of fatigue on FC, we examine the distribution of the 

correlation coefficient of each ROI pooled for all subjects in both the minimal fatigue 

stage and severe fatigue stage. We plotted one histogram for each ROI and overlaid the 

histogram from minimal stage on top of the severe stage (see Figure 15). Voxels having 

correlation less than 0.001 were not included in the plots to better visualize the 
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distribution of the more strongly correlated voxels (see Figure 14 for illustration). 

 

Figure 14: Histogram after removing low (r<0.001) correlated voxels.  Original histogram 

data are scaled down heavily because of the huge population of low correlation voxels. By zooming in 

we get more detailed visualization at the distribution of the data.  

Histogram analysis results showed a consistent ‘shift’ to higher correlation end in 

all ROIs during the 50% MVC fatigue task. More voxels appeared on the higher end of 

the histogram in the severe fatigue stage (the first 100s) than the minimal fatigue stage 

(the last 100s) of the fatigue task. This indicates an increased FC in the severe fatigue 

stage. We did the same histogram analysis for the control group (8% MVC) as well and 

the results (see Figure 16 for detail) showed mixed time effect on FC. For ROIs in the 

right hemisphere, the FC shifted to the more highly correlated side (to the right) while for 
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ROIs in the left hemisphere and PFC a shift to opposite direction was observed. This 

discrepancy of the FC shifting between the two tasks indicated a different time effect on 

the FC. One possible explanation is the inducing of fatigue in the 50% MVC task 

compared to the 8% MVC task. The comparison results suggest that fatigue influenced 

the FC in the left hemisphere (contralateral to the working limb) for the fatigue task, but 

the non-fatiguing (8% MVC) task seemed to induce an effect on the FC in the right 

hemisphere (ipsilateral to the performing arm).  

To further investigate the effect of fatigue on FC of the brain, we used ANOVA 

and quantile analysis to compare the FC between minimal fatigue stage and sever fatigue 

stage. We did not perform the same analysis to the control group (8% MVC) because of 

the absence of muscle fatigue. 

Additionally, this observed ‘shift’ in histogram for the fatigue task may help us 

better understand the two central strategies employed by the brain to increase the force 

production capability: recruiting more motor neurons and increasing the rate of motor 

neuron firing.  
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Figure 15: Comparisons of histogram of correlation coefficients over all subjects in various 

ROIs during 50% MVC motor task. Blue bins = data from minimal fatigue stage; Red bins = data 

from severe fatigue stage. Voxels with low correlation (r<0.001) are not included due to their scaling 

down effect on the whole histogram.  
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Figure 16: Comparisons of histogram of correlation coefficients over all subjects in various 

ROIs during 8% MVC motor task. Blue bins=minimal stage (the first 100s); Red bins=severe stage 

(the first 100s). Voxels with low correlation (r<0.001) are not included due to their scaling down 

effect to the whole histogram.  
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Figure 17: Illustration of the first bin of histogram analysis result of various ROIs.  First bin 

of histogram refers to the first bin (lowest correlation coefficient range, r=0-0.001). BA4_R= 

Brodmann Area 4 in right hemisphere; BA4_L=left Brodmann Area 4; BA6_R=right Brodmann 

Area 6; BA6_L=left Brodmann Area 6; BA1+2+3_R=right Brodmann Area 1,2 and 3; 

BA1+2+3_L=left Brodmann Area 1,2 and 3.  

It’s interesting to notice that there is little change of the height of the first bin 

between minimal fatigue and severe fatigue. Considering the low correlation coefficient 

of the first bin, we may think of the first bin as the voxels associated with the untouched 

motor neuron pool since these voxels are almost non-active during the task (r<0.001). A 

decrease of the height of the first bin can be associated with the recruiting of the motor 

neuron pool. While the shift of the rest bins in the histogram can be thought as the 

increased synchronization of the motor neuron firing rate because they are becoming 

more related to the left BA4 (see Figure 18 for detailed illustration). By combining 

Figure 15 and Figure 17, we may conclude that the brain relies more on the 

synchronization of the motor neurons to increase the force production capability to 

counteract the effect of fatigue. An action potential study demonstrated that almost all 
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motor units are activated in hand muscles when subjects are engaged in low force level 

motor task (30% MVC, [Kukulka and Clamann, 1981]). This might explain why we did 

not see big changes in the height of the first bin of the histogram. Thus to overcome the 

effect of fatigue, the only way to increase the central drive is to increase the firing 

frequency. Shifting to the higher end of the correlation indicates the increase of the firing 

rate as well. However, this is by no means conclusive evidence for the increased firing 

frequency. More carefully planned quantitative statistical method must be adopted to 

evaluate the change of distribution of correlation coefficient. One useful tool is quantile 

analysis.   
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Figure 18: Illustration of the interpretation of the histogram by associating voxel 

distribution with motor neuron population. Blue bins represent the population distribution of motor 

neurons in the minimal fatigue stage. Red dashed bordered bins represent the distribution of motor 

neurons in the severe fatigue stage. Shifting of the distribution to higher correlation can be spotted 

from the emerging red dashed line on higher end of the distribution topped by the blue bins. Slight 

differences between the first bins of both task stages may indicate the brain relies mostly on 

increasing the synchronization of firing rate of motor neurons to increase the force production 

capability instead of recruiting more motor neurons. 

4.3.3. ANOVA and quantile regression analysis 

We also performed both standard ANOVA and quantile regression analysis to 

evaluate the magnitude of the FC during the fatigue task (50% MVC). We modeled 

conditional quantiles of the magnitude of FA with the categorical variable as an indicator 
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for severity of fatigue. Figure 19 shows the ANOVA and quantile analysis results from 

comparison of the minimal fatigue (first 100s) and severe fatigue (last 100s) stages. A: 

right BA 4); B: right BA 6; C: left BA 6; D: right sensory area (BA1, 2 and 3); E: left 

sensory area (BA1, 2 and 3); F: prefrontal cortex (PFC). In each subplot, the solid line 

and dashed lines denote the estimated mean difference of the magnitude of FC between 

the two stages and its 95% confidence bands based on a standard ANOVA model. The 

dot-dashed line denotes a sequence of coefficient estimates for quantile regressions with 

varying quantiles (from 0.05 to 0.95). The gray filled areas indicated their 95% 

confidence bands. The quantile analysis results provided a more complete picture of the 

conditional distribution of the magnitude of FC associated with the covariate; where 

upper (high correlated areas) quantiles should be closely watched.  

The ANOVAs showed that the magnitude of FC did increase for the severe 

fatigue stage for all the six areas. All of the tests from the standard ANOVA models were 

significant. The quantile regression analysis supports that heteroscedasticity existed in the 

FC data sets. Fatigue has much more significant impact on upper quantiles of the 

magnitude of FC than the lower quantiles for areas of the right BA4, BA6, right BA 1,2,3 

and PFC.  The results illustrate that the higher magnitude of FC in these areas will have 

larger reaction with the fatigue. It is interesting to see that the PFC is the area that has the 

largest changes of the magnitude of FC. This indicates that the PFC is the most sensitive 

area responding to muscle fatigue. It is reasonable to predict that the PFC may play an 

important role in modulating muscle fatigue. This is also confirmed by observation of the 

different distribution shifting patterns between the fatigue and non-fatiguing tasks. When 

fatigue was not present, the PFC showed little shift (see Figure 16) in the histogram 
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analysis of the FC. When fatigue was induced by increasing the force level of the task 

(from 8% to 50%MVC), the histogram results demonstrated an obvious shift to the higher 

correlation end (see Figure 15). This result also confirmed our finding in the previous 

chapter in which we found unique brain activation of the DLPFC during the fatigue task.  

The quantile processes for area the left BA6 and right BA1, 2, 3 were close. These areas 

had more significant impact on the middle quantiles rather lower or upper quantiles. 

These effects would be hidden if only the standard ANOVA analysis was performed. 
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Figure 19 : Quantile analysis results from comparisons of minimal stage fatigue (1st time 

block) and severe stage fatigue (11th time block,). A: Right BA 4; B: right BA 6; C: left BA 6; D: 

right BA1, 2, 3; E: left BA1, 2, 3; F: PFC. Grey filled area indicates 95% confident interval. 
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4.4. Discussion 

4.4.1. FC during non-fatiguing task 

Although FC during the non-fatiguing task was not our primary interest in this 

study, it is worth to knowing the FC pattern when subjects experience no fatigue during a 

motor task. A histogram analysis revealed mixed response of FC for various ROIs. FC 

seemed to increase for ROIs in the right hemisphere and decrease for ROIs in the left 

hemisphere and PFC.  This may be a result of a combination of the adaptation of the 

brain to the low force level task and the need to sustain the attention to the task. The 

motor performance was not impaired so the ROIs in the left hemisphere (involved in the 

execution of the right hand task) showed decreased FC. The little change of the 

distribution of the PFC suggested little time effect on the FC of the PFC. The increase of 

FC in other ROIs in the right hemisphere may indicate stronger inhibition of the 

ipsilateral (left) muscle group as a result of sustained attention to the task.  

4.4.2. FC during fatiguing task 

In this study, the FC analysis was combined with the quantile regression analysis 

to evaluate the brain FC during the fatigue task. The 50% MVC force level task was 

chosen to induce fatigue in a 20 min time window so the effect of fatigue on the FC could 

be examined. Our primary finding was that the FC in the severe fatigue stage (the last 

100s) increased significantly compared with the FC in the minimal fatigue stage (the first 

100s).  

FC here is a measure of how activities of various cortical areas interact 

functionally with each other. Our study was the first to assess FC adaptations among 
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cortical control centers during muscle fatigue. Although resting-state fMRI data is often 

used for FC analysis [Li, et al., 2009], we used fMRI data during prolonged motor 

performance in the present study. Resting-state is sometimes referred as ‘default’ mode 

[Raichle, et al., 2001] in which the slow oscillations of the fMRI signal reflect the 

underlying neural event. However, resting-state data is not suited for examining dynamic 

interaction of multiple brain regions during a progressive fatigue motor task. 

Our data showed that the brain FC increased during the fatigue task. Peltier, et al., 

2005 assessed the inter-hemispheric resting-state FC of motor cortex before and after a 

fatiguing task. They reported a decreased FC between the bilateral motor cortices. This 

seems to be contradictory to our finding but in fact it is not. FC is a measure of dynamic 

system and it is not determined solely from the underlying structural connections. It has 

been shown that FC can change even from wakefulness to sleep [Massimini, et al., 2005]. 

In other words, the interpretation of FC is task dependent. Since we investigated the 

change of FC during the execution of muscle contractions rather than in resting state, our 

results are not comparable to theirs.  

 The observed increase of the FC during the fatigue task is in accordance with our 

previous study [Liu, et al., 2003] in which we showed increased activated pixel (AP) 

numbers in similar cortical areas as reported in this study.  This suggests a strengthened 

cortical motor network as fatigue progressed. The brain increases its central demand to 

motor units to compensate for the diminishing force production capability. Other 

functional brain studies [Post, et al., 2009; van Duinen, et al., 2007] also reported similar 

increased brain activation during fatigue. However, none of these studies adopted the 

concept of FC to analyze fatigue-related brain activation adaptations. Co-activations of 
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various brain regions, as observed in these studies, are assumed to be random and 

distributed independent events with no underlying network required. The FC analysis 

considered the brain as a systematic large-scale network with functional interconnections 

linking spatially distributed brain regions. This analysis provides us more insights into 

how different brain regions of the underlying motor network interplay with each other. 

Our data revealed strengthened functional coupling throughout the cortical motor 

network. This finding not only confirmed observations of increasing activity of the 

bilateral sensorimotor areas (BA1,2 and 3), SMA, PFC during submaximal fatigue 

muscle contractions, but also indicated that activities of all these areas became more 

temporally correlated to the left BA4, the primary neural output center of the brain to the 

target muscles. Increased FC from the sensory areas to the left BA4 may indicate more 

sensory input to the BA4 as fatigue progressed and more peripheral feedback information 

were sent through afferent neurons to the brain. This increase of FC in sensory areas may 

contribute to the increase in ‘sense of effort’ as reported by [Jones and Hunter, 1983].  

An increase in the FC between the right BA4 and left BA4 was also observed. 

This may suggest that as fatigue developed during the motor task, the right BA4 

(ipsilateral to the working muscles) got more involved in the motor task execution. This 

bilateral activation was also reported in [Post, et al., 2009] and Liu et al. [2003]. This 

increasing activity in the ipsilateral motor cortex was confirmed in  a readiness potential 

(RP) study [Schillings, et al., 2006]. Our data showed that the FC from BA6 to the left 

BA4 increased as well. BA 6, consisted of the SMA and premotor area, lies rostrally to 

the BA4 and is believed to be associated with motor planning and preparation 

[Frackowiak, 2004]. Another fMRI study [Post, et al., 2009] reported similar increased 



47 

brain activity in the bilateral SMA and premotor area as well. Interestingly, the PFC 

showed the most sensitive response to the left BA4 in this study. This area has been 

widely recognized as the brain area in the highest level of motor hierarchy [Rushworth, 

2000]. It is also reported that the PFC is involved in the selection of action [Frackowiak, 

2004]. A macaque brain study [Luppino, et al., 1993] revealed that there are projections 

from PFC to BA6 and BA6 to BA4. This may suggest that the PFC may play an 

important role in regulating fatigue information and integrating the sensory feedback with 

the descending command during muscle fatigue. 

Increased FC from the motor regions with the left BA4, as observed in this study, 

may reflect the decreased central efficiency during the fatigue motor task. In our 

protocol, subjects needed to produce 50% MVC force in a repetitive fashion. Although 

the force level did not change during the entire task, the FC with the left BA4 increased 

significantly in aforementioned areas. As a result, the force production capability 

decreases relative to the FC with the left BA4. Schillings, et al., 2006 also observed this 

reduction of force production capability using RP analysis of fatiguing repetitive 

contractions at 70% MVC level. It seems that the FC may be used as an indicator of 

central fatigue.   

The coherence study published by our group [Yang, et al., 2009] reported a 

weakened corticomuscular FC during muscle fatigue. Other than fMRI time series as 

used in this study, electroencephalography (EEG) and electromyography (EMG) data 

were used to examine the FC. This weakening of functional cortiomuscular coupling may 

be due to the diminishing motor performance as a result of muscle fatigue. Together with 

our finding in the present study, it is reasonable to speculate that the declined motor 
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performance during the fatiguing task, as demonstrated in declined MVC force, may be a 

combined result of increased cortical FC and weakened corticomuscular FC. It’s well 

known that muscle fatigue is a process involving both CNS and peripheral system. No 

single mechanism alone could explain muscle fatigue [Enoka and Duchateau, 2008]. Our 

finding suggests a promising mechanism reconciling the central and peripheral models. 

While fatigue develops gradually after the onset of motor task, the coupling between 

central and peripheral systems, as implied by the EEG-EMG coherence, declines as a 

result of impaired peripheral system. At the same time, the brain tries to compensate for 

the decreased corticomuscular coupling by increasing the central command to the motor 

units, as suggested by the BA4-based FC data. Thus, the brain maintains the desired force 

output level in spite of the fatigue. This confirms the co-existence of the two mechanisms 

(central fatigue and peripheral fatigue) during fatigue. 

However, the FC analysis we used in this study does not necessarily imply any 

causal relationship [Rykhlevskaia, et al., 2008]. To infer any causal relationship between 

brain regions, a more informative tool called effective connectivity (EC) analysis needs 

to be adopted. EC analysis would allow us to study the direction of the interaction 

between regions. To further investigate how the information flows in motor network 

during fatigue, it would be worthwhile to examine the influence of one brain region over 

another. Thus, by combining FC with EC analysis, one would gain more knowledge of 

the local circuit in which brain regions communicate to each other during fatigue. From 

the histogram analysis of both the fatigue and non-fatiguing tasks, we were more 

interested in the left hemisphere since distinct time effect on FC distribution was 
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observed. A path model explicitly include the ROIs from left hemisphere may provide us 

more insight into this issue.   

A limitation of this study comes from the fMRI signals. The fMRI BOLD signals 

do not directly reflect underlying neuronal activity [Logothetis, 2008]. Thus it makes 

fMRI based FC analysis a limited tool to infer functional integration between brain 

regions. Since all measures of brain activity can be used for FC analysis [Rykhlevskaia, 

et al., 2008], measures other than fMRI can be paired with fMRI to further investigate the 

dynamic functional adaptations in the brain during progressive  muscle fatigue. 

4.5. Conclusion 

This study applied FC analysis to the fMRI time course data during a muscle 

fatigue task as well as a non-fatigue task. Statistical quantile analysis was employed to 

compare the FC in the severe fatigue stage with that in the minimal fatigue stage to reveal 

changes. A significant increase in the cortical FC during muscle fatigue was observed, 

which may suggest an enhanced synchronized effort to increase the central drive to the 

motor units to prolong the muscle contraction. The result is consistent with previous 

findings that show similar activation level increases in many cortical fields. However, our 

finding is the first to demonstrate strengthened functional coupling among motor control 

centers in the brain during muscle fatigue. The data indicate that the PFC, especially 

DLPFC, may play a crucial role in monitoring muscle fatigue during long-lasting 

submaximal motor actions.  

However, FC analysis did not provide information of causal relationship among 

the functionally coupled brain areas. To further investigate the interaction among brain 
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regions, effective connectivity (EC) analysis was performed to better understand the 

function integration of the brain during fatigue. 
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CHAPTER V 

EFFECTIVE CONNECTIVITY 

 

 

5.1. Introduction 

Recent neuroimaging studies [Liu, et al., 2002; Liu, et al., 2003; Post, et al., 2009; 

van Duinen, et al., 2007] involving prolonged motor tasks that led to muscle fatigue have 

shown increases in brain activities in areas ranging from association (highest order in the 

motor control network) to secondary (medium order) to primary motor(lowest order) 

cortices. These findings suggest that the brain increases its voluntary drive, distributed 

through the network of functionally coupled cortical network, to the muscle in order to 

maintain desired force output. This increase in central drive is often perceived by subjects 

as making more effort.  However, it is still unclear how these functionally connected 

active brain areas influence each other (i.e. direction of information flow in the cortical 
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network) and whether the strength of the influence changes over time during fatigue. This 

knowledge of functional integration requires a comprehensive understanding of human 

brain. Information such as what cortical areas and how these areas communicate during 

the fatigue process are very important to understand.  

Recent advances in fatigue studies using tools such as fMRI have identified some 

brain regions that may help better understand brain strategies in modulating muscle 

fatigue.  The M1 and PMA have long been known to be involved in execution of 

voluntary motor tasks. Our group’s previous study [Liu, et al., 2003] demonstrated that 

the number of activated voxels increases over time in the SMA, PFC against the trend of 

decreasing handgrip force during an intermittent fatigue isometric handgrip task. One 

recent published fMRI study [van Duinen, et al., 2007] reported significant activation of 

DLPFC in a fatiguing motor task while this activation was not observed in a non-

fatiguing motor task. This observation was confirmed in this study as described in 

Chapter III. Other studies [Post, et al., 2009; van Duinen, et al., 2007] also reported 

similar increases in brain activity level, which is consistent with our group’s findings. 

These findings suggest the SMA and PFC, especially DLPFC (see Section 3.4), may play 

a role in regulating the motor network relaying the fatigue information. 

Effective connectivity (EC) , defined as “ the influence one neuronal system 

exerts over another” [Friston, 1994], has gained increasing interests in neuroimaging-

based human brain mapping studies in recent years [Buchel, et al., 1999; Buchel and 

Friston, 1997; de Marco, et al., 2006; Fu, et al., 2006; Gavrilescu, et al., 2004; Horwitz, 

2003; Schlosser, et al., 2003]. Structural equation modeling (SEM) [Buchel, et al., 1999; 

Erickson, et al., 2005] has been successfully used as an approach to study EC from 
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functional brain imaging data. It can be used to investigate the causal relationship 

between different brain regions in fatigue and examine the change of this relationship as 

fatigue progresses.  

In the previous chapter, the effect of muscle fatigue on FC among cortical regions 

was assessed. The histogram and quantile analyses demonstrated strengthened FC in the 

brain during a time when the muscles were significantly fatigued. The finding suggested 

enhanced synchronized cortical effort (indicated by increased FC) but declined central 

efficiency while subject sustained the desired force. 

The aim of EC analysis was to further investigate how the M1 (lowest order in 

motor network), PMA/SMA (medium order in motor network) and DLPFC (highest order 

in motor network) influence each other during progressive muscle fatigue. It was hoped 

that the SEM analysis could reveal a directional relationship among these areas. To our 

best knowledge, no EC studies investigating such influence among the motor network 

during muscle fatigue have been published. This study was expected to find altered EC in 

some of the paths specified in the models as a result of modulation of the top-down 

central motor control network by fatigue. 

5.2. Methods 

The data used in this study were the same set of data analyzed in the FC study 

reported in the previous chapter and had not been published before.  

5.2.1. Structural equation modeling (SEM) 

The SEM model is basically a covariance structure model [Bollen, 1989]. It is a 

comprehensive statistical methodology for testing hypothesis about relations among 
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variables. It was first used in genetics and econometrics, then it was introduced to social 

science during 1960s [Schlosser, et al., 2006]. With the help of advancements in 

computer technology, SEM has been found useful in PET and fMRI studies in the 1990s 

[Buchel and Friston, 1997; McIntosh, et al., 1994] for human brain mapping. It is 

essentially a multivariate path analysis tool which is based on a priori assumptions made 

by specifying the model.  

SEM consists of p×p sample variance matrix S. The S is an estimator of the 

population covariance matrix ∑. An SEM model can also be represented by a vector of q 

unknown parameters θ. A covariance matrix ∑(θ)  can be computed fromθ. The null 

hypothesis is that ∑=∑(θ). To estimate the parameters Maximum Likelihood (ML) is 

used.  

   Equation 4 

The goodness of fit of the model is assessed by performing a χ2 test with a 

degree of freedom (df) of (p(p+1)/2-q ). Statistical inference about the model is made 

based on this test result. The resulting path weight stands for the units of standard 

deviation of the target brain region for a change of one standard deviation of the source 

brain region holding other activity constant.  

5.2.2. EC Analysis 

The application of SEM in this study involved several steps. The first step was the 

specification of the model based on current understanding of the mechanism of fatigue 

and findings from the previous chapters. After meeting with experts in neurophysiology 

and reviewing literature a priori model was specified (see Figure 20). For simplicity the 
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model was restricted to the M1, PMA, SMA and DLPFC although controlling a voluntary 

motor action involves more brain regions than those selected for this study.  From the 

histogram analysis results of the previous chapter, the ROIs were restricted to the left 

hemisphere where the motor command to execute activities of the left limb muscles was 

generated.  Only feed forward connections were modeled.  

 

Figure 20: Proposed path model for structural equation modeling (SEM) analysis. The 

arrows connecting the areas represent the causal relationship. DLPFC = dorsolateral prefrontal 

cortex; PMA = premotor area; SMA = supplementary motor area and M1 = primary motor cortex 

The second step was to extract representative time course data for each ROI in the 

specified SEM model. First eigenvector (identified by using a singular value 

decomposition) of all voxel time course data centered on the local maximum (2mm 

radius) in the activation map created by the GLM analysis was used for the representative 

time course for an ROI. Representative time course was then concatenated across all 

subjects in the same group to enable group effect analysis.  

Finally, path weights were estimated using the maximum likelihood (ML) 

implemented in Amos 7.0 (SPSS Inc.) software. To test the hypothesis of significant 
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changes in EC during fatigue, the whole fMRI scanning session was partitioned into three 

stages, minimal fatigue, medium fatigue and severe fatigue stages. Changes of path 

weights were tested by comparing the goodness of fitχ2 from the two estimates based on 

data from a pair of stages. Two stacked models were developed: a free model with all the 

paths other than the path of interest were set to be equal and a restricted model with all 

path weight set to equal. The significance was assessed with the degree of freedom (df) of 

n, where n was the difference in the df between the two stacked models.  This stacked 

model method was also used to compare the difference between control and fatigue 

groups to examine any group differences in effective connectivity.  

 

Figure 21: Illustration of the minimal fatigue stage (the first red box), medium fatigue stage 

(the second red box) and severe fatigue stage (the third red box) overlaid on a sample time course. X 

axis shows the image volume number and Y axis shows the intensity of the fMRI signal.  

Additionally, in order to assess the goodness of the fit for the model, the 

goodness-of-fit index (GFI) was evaluated for each group. A model with a GFI higher 

than 0.85 was considered as a good fit to the data.  
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5.3. Results 

5.3.1. Non-fatigue task versus fatigue task 

For group model fitness of all the stages, although not all P values exceeded 0.05 

(minimal fatigue stage: χ2(7)=12.2;P<0.1;medium fatigue stage: χ2(7)=24.7.2;P<0.01; 

severe fatigue stage: χ2(7)=12.2; P<0.02) , the goodness-of-fit index indicated a very 

good fit of the model to the time course data (early stage: GFI=0.989; middle stage: 

GFI=0.979; late stage: GFI=0.985).  

Table I lists the path coefficients from the comparison of control and fatigue 

groups in all the stages. The table is organized into three sections with one pair-wise 

stage comparison in each. 
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Table I : Path coefficients, χ2 (diff) and P values for control (8% MVC) and fatigue (50% 

MVC)group compared pair wise in all stages (stacked model analysis).    

STAGE PATH CONTROL FATIGUE df(diff) χ2 (diff) 

PMA→M1 0.34 0.36 1 0.6 

SMA→M1 0.39 0.47 1 1.3 

DLPFC→SMA 0.3 0.35 1 0.1 

DLPFC→PMA 0.16 0.11 1 0.6 

MINIMAL  

SMA→PMA 0.55 0.56 1 1.5 

PMA→M1 0.19 0.39 1 11.9 

SMA→M1 0.39 0.52 1 3.9 

DLPFC→SMA 0.04 0.17 1 2.6 

DLPFC→PMA 0.2 0.09 1 2.0 

MEDIUM 

SMA→PMA 0.48 0.63 1 4.0 

PMA→M1 0.26 0.42 1 6.3 

SMA→M1 0.33 0.44 1 4.5 

DLPFC→SMA 0.11 0.33 1 3.6 

DLPFC→PMA 0.09 0.23 1 2.3 

SEVERE 

SMA→PMA 0.54 0.53 1 0.1 

 

M1, primary motor cortex; PMA, premotor area; SMA, supplementary motor area; DLPFC, dorsolateral 

prefrontal cortex; df(diff)=difference of degree of freedom between the two SEM models; bold type indicates a 

significant difference with P <0.05. 

5.3.2. Comparisons of EC among different stages during fatigue task 

Results from the stacked model analysis, as shown in Table II, revealed an 

increase in the path coefficient for the path from the PMA to M1 (χ2 diff (1) = 6.8; 

P<0.05) between the minimal fatigue stage and medium fatigue stage. A significant 

decrease in path coefficient of path from DLPFC to SMA (χ2 diff (1) = 5.6; P<0.05) was 

found as well. Comparisons between the minimal fatigue stage and severe fatigue stage 

showed that the path coefficient of the path from the PMA to M1 (χ2 diff (1) = 4.7; 
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P<0.05) increased. But no significant difference in path coefficient was found for the path 

from DLPFC to SMA.  Comparisons of path coefficient between medium fatigue stage 

and severe fatigue stage did not show any significant difference in any paths of the 

model. 

Table II: Path coefficients, χ2 (diff) and P values for fatigue group (50% MVC) in all stages 

(stacked model analysis).  

STAGE PATH MINIMAL MEDIUM df(diff) χ2 (diff) 

PMA→M1 0.32 0.4 1 6.8 

SMA→M1 0.44 0.52 1 3.6 

DLPFC→SMA 0.35 0.17 1 5.6 

DLPFC→PMA 0.08 0.08 1 0.0 

MINIMAL 

vs 

MEDIUM 

SMA→PMA 0.57 0.64 1 0.6 

 PATH MINIMAL SEVERE df(diff) χ2 (diff) 

PMA→M1 0.33 0.4 1 4.7 

SMA→M1 0.45 0.46 1 1.8 

DLPFC→SMA 0.35 0.33 1 3.4 

DLPFC→PMA 0.09 0.22 1 2.5 

MINIMAL 

vs 

SEVERE 

SMA→PMA 0.55 0.54 1 0.3 

 PATH MEDIUM SEVERE df(diff) χ2 (diff) 

PMA→M1 0.4 0.4 1 0.1 

SMA→M1 0.47 0.41 1 0.1 

DLPFC→SMA 0.17 0.33 1 0.1 

DLPFC→PMA 0.08 0.22 1 2.8 

MEDIUM 

vs 

SEVERE 

SMA→PMA 0.62 0.54 1 0.0 

 

M1, primary motor cortex; PMA, premotor area; SMA, supplementary motor area; DLPFC, dorsolateral 

prefrontal cortex; df(diff)=difference of degree of freedom between the two SEM models; bold type indicates a 

significant difference with P <0.05) 
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5.3.3. Comparisons of EC among stages during non-fatigue task  

Results from the pair-wise comparison of path coefficients in all the stages in the 

control group, as shown in Table III, revealed decreases of path coefficients of the path 

from the PMA to M1 (χ2 diff (1) = 4.2; P<0.05) and the path from the DLPFC to SMA (

χ2 diff (1) = 8.7; P<0.05). Similar decreases were also found in the path coefficients of 

the path from the DLPFC to SMA (χ2 diff (1) = 5.4; P<0.05) in the comparison between 

minimal fatigue stage and severe fatigue stage. However, no significant difference was 

found in the path coefficient of path from the PMA to M1. The comparison between the 

middle stage and the late stage did not show any significant difference in any paths of the 

model.  
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Table III : Path coefficients, χ2 (diff) and P values for control group (8% MVC) in all stages 

(stacked model analysis) 

STAGE PATH MINIMAL MEDIUM df(diff) χ2 (diff) 

PMA→M1 0.35 0.24 1 4.2 

SMA→M1 0.4 0.42 1 0.1 

DLPFC→SMA 0.3 0.04 1 8.7 

DLPFC→PMA 0.19 0.21 1 0.0 

MINIMAL 

vs 

MEDIUM 

SMA→PMA 0.53 0.48 1 0.0 

 PATH MINIMAL SEVERE df(diff) χ2 (diff) 

PMA→M1 0.39 0.31 1 2.3 

SMA→M1 0.37 0.34 1 0.0 

DLPFC→SMA 0.3 0.11 1 5.4 

DLPFC→PMA 0.17 0.09 1 1.0 

MINIMAL 

vs 

SEVERE 

SMA→PMA 0.14 0.13 1 1.3 

 PATH MEDIUM SEVERE df(diff) χ2 (diff) 

PMA→M1 0.21 0.25 1 0.4 

SMA→M1 0.45 0.41 1 0.1 

DLPFC→SMA 0.04 0.11 1 0.4 

DLPFC→PMA 0.21 0.09 1 1.7 

MEDIUM 

vs 

SEVERE 

SMA→PMA 0.48 0.54 1 1.4 

 

M1, primary motor cortex; PMA, premotor area; SMA, supplementary motor area; DLPFC, dorsolateral 

prefrontal cortex; df(diff)=difference of degree of freedom between the two SEM models; bold type indicates a 

significant difference with P <0.05.  
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5.4. Discussion 

5.4.1. Difference of effective connectivity between non-fatigue and 

fatigue task  

During minimal fatigue stage of the motor task, there was no significant 

difference between non-fatigue and fatigue task. This was not surprising because of the 

short duration of the contractions (3.5sec for every 10sec). Under this condition, fatigue 

developed slowly during this stage even for the task at the higher force level (50% 

MVC). With the minimal effect of fatigue, the EC of the brain remains unmodified in 

both tasks. That is, the same amount of change in voluntary effort was met with same 

relative amount of change in the M1.  

However, as fatigue continued to progress, the EC between the PMA and M1 and 

between the SMA and PMA showed significant difference from non-fatigue and fatigue 

tasks during medium fatigue stage. Furthermore, during severe fatigue stage, the EC 

between the PMA and M1, and the SMA and M1 for the fatigue task became greater than 

the non-fatigue task. These observed differences in the EC during the medium and severe 

stages between the two tasks were probably dependent on whether the fatigue was 

present during the task. The greater EC observed in the fatigue task compared to non-

fatigue task suggests that the brain needs to function more effectively to sustain the motor 

task that induced muscle fatigue.  

It should be noted that the larger EC should not be translated directly to the level 

of the force output.  The discrepancy in the modulation of EC between fatigue task and 

non-fatigue task should not be mistakenly interpreted by the difference in force levels in 

the tasks. If this difference was a result of different force output, a difference of EC in the 
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first stage should have been seen. But the difference observed in the later stages 

suggested different modulations of EC between the two tasks. One possible explanation 

is the presence of fatigue. This intriguing question may be answered by examining the 

EC over different stages during each task.  

5.4.2. Modulation of EC 

The decrease of EC in the path from the DLPFC to SMA from the minimal to 

medium stages observed in both the non-fatigue and fatigue task suggested repetition 

suppression resulted from repeated stimulus (handgrip contractions). Another fMRI study 

showed decreased brain activity in several regions including right lateral fusiform region 

and left inferior occipital region in the implicit task of a face repetition experiment 

[Henson, et al., 2002]. This seems to be contradictory to the previous finding that the 

brain activation volume increased when fatigue developed [Liu, et al., 2003]. However, 

results from traditional brain activation studies could not be translated directly into 

inference in connectivity studies [Stoeckel, et al., 2009].    

Although similar trend of decrease was observed for the path from DLPFC to 

SMA, the discrepancy in the path from the PMA to M1 indicated different strategies 

during the non-fatigue task and fatigue task. During the non-fatigue task, repetition 

suppression still occured due to the lack of fatigue. It is known that as fatigue develops 

the brain must increase the descending motor drive to compensate the loss of force 

production. Our group’s coherence study [Yang, et al., 2009] reported that functional 

corticomuscular coupling decreases during muscle fatigue.  Together with the observed 

increase in EC from the PMA to M1, it suggests new evidence of coexisting peripheral 

and central fatigue. The declined MVC force level after the fatigue exercise may be the 
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net effect of the increased EC in the motor path and the decreased brain-muscle 

coherence. And it is reasonable to conclude that peripheral (brain-muscle connectivity) 

fatigue is dominant and it determines the motor performance despite the central 

reinforcement (cortico-cortical connectivity). 

The EC analysis did not show any change in EC from the medium to severe 

stages for the fatigue task. This indicated that the damage control was done in an early 

stage once the brain sensed the presence of fatigue.  

5.4.3. DLPFC 

The DLPFC was modeled as the highest level in the motor control network for the 

EC path models. It has been proposed that the DLPFC plays numerous executive 

functions [Abe and Hanakawa, 2009]. In a top-down process, DLPFC’s attentional 

selection allows the body to behave more efficiently toward a preset goal. This is 

consistent with our data presented in this study. The DLPFC, which receives extensive 

projections from sensory area, appears to be a nice candidate mediating the EC based on 

the demand of the task. This offers an explanation of fatigue mechanisms from a new 

perspective of EC involving DLPFC. While the DLPFC is considered the board of 

directors of the company, PMA may serve as the chief executive officer. Judging from 

the difficulty of the task, the DLPFC makes a willing decision for the rest of the brain 

areas in the motor network. If the task becomes demanding and fatigue develops, the 

DLPFC is activated and the whole network adjusts the EC to counteract the declining 

force generation capability of the muscle. The most significant change happened in the 

path from the PMA to M1, where the most central drive is sent to the lower motorunits. 

The commonly observed alteration in the path from DLPFC to SMA indicated that 
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repetitive motor task improves the performance of motor network which may be a result 

of motor learning.  

5.4.4. Effective connections in our path model 

Supporting anatomical evidences will be discussed in next chapter. This chapter 

focused on results from other EC studies. Since this is the first EC study of muscle 

fatigue, the EC studies of cognitive or behavioral tasks by other investigators are 

reviewed bellow. 

5.4.4.1 DLPFC→SMA 

This top-down path was tested in [Rowe, et al., 2002] as well. A significant 

increase in the path coefficient between the PFC and SMA was reported in a task subjects 

were required to pay attention to action, which indicated a modulating role of the PFC. 

This finding was consistent with our result. It provided supporting evidence of the 

mediator role of the DLPFC.   

5.4.4.2 DLPFC → PMA 

This same path was also studied in the SEM path model for an attentional 

selection task  using fMRI data [Rowe, et al., 2002]. Enhanced EC from dorsal PFC to 

SMA were reported in an attention to action task. Another fMRI study [Mostofsky, et al., 

2002] of attention-deficit/hyperactivity disorder reported smaller volume of PFC and 

PMA in boys. This suggested a potential anatomical-functional link between these two 

areas in which abnormal function may have contributed to the reduced volume or vice 

versa. An animal lesion study [Passingham, 1993] demonstrated that the PFC influences 

the PMA through a cortical pathway via the basal ganglia. 

5.4.4.3 SMA → PMA 
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An EC study [Chen, et al., 2009]using granger causality mapping also studied this 

path to investigate the role of SMA in motor imagery. Their results suggested forward 

and backward EC between SMA and bilateral PMA during both left-hand and right-hand 

motor imagery tasks. This path was modeled  [Rowe, et al., 2002] as well. But in our path 

model, only the direction from SMA to PMA was modeled. It is known that both the 

SMA and the PMA are involved in planning and preparation of the movement. Another 

EC study [Gao, et al., 2008] reported early activation of the SMA prior to the PMA 

during bimanual movement. 

5.4.4.4 SMA → M1 

A network study[Solodkin, et al., 2004] reported a weak EC from the dorsal part 

of the PMA to the M1 in the brain during a motor imagery task. Another EC study 

[Kasess, et al., 2008]using dynamic causal modeling demonstrated a suppressive 

inhibition of the SMA on M1. This indicated the existence of a brain feedback circuit 

between the SMA and M1. Although our EC analysis did not reveal a negative path 

weight between the SMA and MA, our data confirmed the existence of the path. 

5.4.4.5 PMA →M1 

The PMA is known to receive reciprocal input from the M1 due to its rostral 

localization to the M1. The PMA cells influence motor behavior via this pathway as well 

as the cortico-spinal pathway projecting to the spinal motoneurons. This pathway from 

the PMA to M1 was examined in [Rowe, et al., 2002] to test the top-down modulation 

network during attentional selection task. Both the animal study[Riehle and Requin, 1989] 

and human study [Crammond and Kalaska, 2000] have demonstrated activities in the 

PMA (planning of the motor task) prior to the M1(execution of the motor task) during a 
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delayed motor task. These findings supported the path from the PMA to the M1 specified 

in current EC analysis.  

5.4.5. Comparison with an effective connectivity study in muscle 

fatigue by another group 

Another similar fatigue study [Deshpande, et al., 2009] used multivariate granger 

causality analysis to examine the underlying temporal causal relationship among several 

brain regions. Similarly, they divided the fatiguing task into three time windows to 

examine the change of the brain connectivity over time. However, the methodology they 

adopted was different from ours. Firstly, they assumed different models for different 

stages in the fatiguing task while the current study assumed a fixed model for all the 

stages, allowing only the difference between strengths of the path weight in the model. 

Secondly, different nodes were chosen for the connectivity model. They selected more 

nodes (more than 14 nodes) than we did in our study (4 nodes).  Last, the nature of the 

methodology was different. Multivariate granger causality is a data-driven approach 

which finds the optimum connections between nodes based on the temporal relationship 

of the data. SEM relies on a priori model specified before the analysis which renders this 

approach more confirmatory. It is difficult to say which approach is more appropriate 

since the brain functions in a more complicated way than both approaches modeled. 

Nevertheless, with the concept of EC, investigators have better chances to untangle the 

intricate brain network on a system level. 



68 

5.5. Conclusion 

This study proposed an EC model to understand cortical modulation of muscle 

fatigue. This is the first fatigue study using SEM-based EC analysis based on fMRI data. 

The DLPFC was demonstrated to be active in the fatigue modulation. The brain 

modulated its EC through a top-down process mediated by the DLPFC in accord with the 

demand of the motor task. During the non-fatigue task, a significant decrease was 

observed in the EC of both the path from the DLPFC to SMA and PMA to M1. During 

the fatigue task, a similar decrease was observed in the EC of the path from DLFPC to 

SMA but an increase of the EC was found in the path from PMA to M1. The SEM was 

successfully used to assess effective connectivity in this study. Future studies may further 

understand the complex mechanism of muscle fatigue by using more complicated models 

that include more ROIs.   

To further verify the existence of the path within the proposed SEM diagram, 

structural connectivity (SC) needs to be examined. Also, anatomic base of the bilateral 

activation observed in brain activation and FC studies need to be investigated. In the next 

chapter, SC was examined for ROIs used in SEM path model in this chapter and ROIs 

with bilateral activation pattern revealed in FC study. We expected these functional and 

effective connectivity have corresponding underlying SC which provided an anatomical 

basis for interaction among different brain areas. 
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CHAPTER VI 

STRCUTURAL CONNECTIVITY 

 

 

6.1. Introduction 

Structural connectivity (SC) is the lowest level of connectivity in terms of the 

brain connectivity. It’s also used interchangeable with the term anatomical connectivity. 

SC is relatively more stable compared to FC and EC on short time scales. Therefore, 

unlike evaluating the FC and EC, SC analysis doesn’t require a functional task when 

collecting brain scans.  

Traditionally, invasive tracing study [Middleton and Strick, 2001] is the only way 

to be used to provide proof of direct axonal connections. However, diffusion weighted 

imaging techniques, such as diffusion tensor imaging (DTI), can now be used to track 

fiber tracts in the brain non-invasively.  
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6.2. Diffusion tensor imaging (DTI) 

In the brain, water tends to diffuse along the direction of fiber tract consisting of 

fibers of continuous orientation. This phenomenon is also called anisotropy. Combined 

with nuclear magnetic resonance and magnetic gradient, scientists and engineers have 

worked out a system which can measure diffusion constant in multiple directions on the 

order of millimeters. Thus, if the brain has uniform fiber orientation in the whole voxel 

one could deduce the fiber structures. Figure 22 illustrates how to estimate the diffusion 

in three principle orthogonal directions (λ1,	
  λ2 and λ3), which determine an ellipsoid that 

water diffuse in, from a 6 direction measurement. This estimation usually is done by 

finding the eigenvectors and Eigen values of diffusion tensors from a 3x3 tensor matrix, 

which fully characterize the ellipsoid.  

 

Figure 22 : Illustration of estimation of diffusion ellipsoid from 6 directions 

To be able to track the direction of the tract, the principle diffusion direction in 

each voxel needs to be determined. For a sphere, the λ1, λ2 and λ3 have the same values. 
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For a non-sphere shape, fractional anisotropy (FA) is often used to determine the 

direction of the tract (see Equation 5). 

     Equation 5 

After finding FA for each voxel, the brain white matter (fiber tracts) is usually 

coded with three colors: blue, red and green which represent three standard anatomical 

directions (see Figure 23). By connecting neighboring voxels with same orientation, we 

are able to reconstruct the tract.  Interested reader can find more details about DTI in 

[Mori, 2007].  

 

Figure 23: Upper panel: conventional MRI (T1-weighted image); Lower panel: DTI-based 

map overlaid on the same T1 image. SAG = sagital; COR = coronal; TRA = transaxial; A = Anterior; 

P = posterior; R = right and L = left. Colors represent fiber orientations: Red = right-left; Green = 

anterior-posterior and Blue = superior-inferior. 
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Figure 24 shows an illustration of reconstructed fiber tracts passing through the 

corpus callosum, the white matter structure that connects the two hemispheres of the 

brain. To track the fiber tracts, a seed ROI must be selected first. Due to the advanced 

computing power of personal computer nowadays, investigators are able to identify the 

entire diffusion gradient crossing the ROI. 

 

Figure 24: Illustration of reconstructed fiber tubes passing through the corpus callosum.   

One important application of the DTI is to improve the precision of manual ROI 

drawing [Mori, 2007]. However, this study tried to establish a structure-function 

relationship by examining the subcortical connections with the help of DTI. One DTI 

study demonstrated a significant correlation between the FA and interhemispheric 

inhibition between the hand areas of the M1. This novel technique suggested a promising 

structure-function relationship exploration feature of DTI. It’s worth noting that this type 

of study is still in its preliminary stage. More systematic investigations need to be done 

before it can offer convincing and useful insight into the brain EC-SC relationship. Issues 
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such as fiber crossing over and limited resolution need to be addressed. It is our hope that 

DTI can be employed to support our findings described in the previous chapters. 

6.3. Methods 

6.3.1. Subjects 

The DTI data were from the same subjects as described in Chapter II (see 2.1 for 

more detail).  

6.3.2. Imaging 

The DTI was performed using an EPI sequence on a 3.0T Siemens Trio scanner 

(Siemens, Germany) with a standard head coil.  Subjects were instructed to keep still 

while axial slices were obtained using the following parameters: flip angle (FA) = 90°; 

slice thickness = 4mm with no gap; repetition time = 86ms; and matrix = 256×256 

matrix. Twelve noncollinear directions were used to apply diffusion weighting. A b-value 

of 1000 s/mm2 was used for all subjects. 

6.3.3. ROI template aided Fiber tracking 

T1-weighted structural images collected from same subject were used to overlay 

the DTI fiber tract data to give better visualization of the brain anatomical locations. For 

each subject the structural images were normalized to the Talairach space in 

Brainvoyager in order to use ROI template provided by Brain Innovation Inc. Then DTI 

data were coregistered with the transformed T1-weighted structural images. 

Transformation matrix parameters were saved to transform FA maps to be overlaid on the 

structural images for visualization. 
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Motion correction was not performed to avoid any contamination of the DTI data. 

Diffusion tensors and FA maps were computed using the Diffusion Weighted Data 

Analysis tool implemented in Brainvoyager. The FA maps were superimposed on 

structural images to enable ROI based fiber tracking. Fiber tracking was carried out in 

Brainvoyager by a combination of ROI (template ROI) and interactive tracking (hand 

drawn ROI). 

 

Figure 25: A sample tensor visualization of one subject’s DTI data. Each line was coded with 

mixed three color representing three orientations. (Red=right-left; Green=anterior-posterior; 

Blue=superior-inferior).  

Tracking was terminated if the angle of two consecutive tensor was larger than 50

° or the voxel had a FA smaller than 0.2.  
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To select the seed ROI, the template ROI was overlaid with Brodmann area labels 

provided by Brain Innovation. Then the ROI was drawn by interactively painting with 

mouse and the aid of templates.  A combination of template and hand drawn ROIs was 

chosen because of the template ROIs didn’t fit for every subject’s data due to individual 

structural variations.  

Multiple ROI fiber tracking was performed on 8 ROIs: bilateral M1, bilateral 

PMA, bilateral SMA and bilateral DLPFC. Possible bilateral connections (Left M1 and 

right M1; left SMA and right SMA; left PMA and right PMA; left DLPFC and right 

DLPFC) and the connections proposed in our EC model (left DLPFC and left SMA; left 

DLPFC and left PMA; left SMA and left PMA ; left M1 and left SMA ; left M1 and left 

PMA) were examined. Any fibers linking each possible aforementioned connection were 

tracked in 2 directions. For example, for ROI A and ROI B, fibers connecting from A to 

B and from B to A were tracked. The results were combined without discriminating the 

direction.  
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Figure 26: An illustration of tracking fibers connecting ROI A and ROI B. Four fibers are 

found connecting from A to B and three fibers are found connecting from B to A. Thus resulting in 

total seven fibers connecting A and B.  

6.4. Results 

The results of fiber tracking among the ROIs are listed in Table IV . Connections 

among M1, PMA and SMA have been successfully found.  However, no connection was 

found between the DLPFC and any other ROIs. This may be explained by the relatively 

few numbers of the direction (12 directions were used in this study and now 60 directions 

are commonly used) used in this study due to the technical constraints. (Data were 

collected in 2003) Another explanation may be the long distance between DLPFC and 

other ROIs. The more distant the ROIs are, the more difficult we can track the fiber 

tracts. This may also be explained by the fiber crossing in the frontal areas of the brain 

[Fonteijn, et al., 2008].  

Table IV: Tractography results for possible paths. Each figure represents the number of 

subjects whosed the corresponding path confirmed by fiber tracking. Bilateral connections and 

connections proposed in previous EC study were tracked. (M1 = primary motor cortex; SMA = 

supplementary motor area; PMA = premotor area; PFC = prefrontal cortex and S1 = primary 

sensory cortex) 

Bilateral connection number of 

subjects 

EC connection number of 

subjects Left M1– Right M1 10 Left DLPFC – Left SMA 0 

Left SMA – Right SMA 10 Left DLPFC – Left PMA 0 

Left PMA – Right PMA 0 Left SMA – Left PMA 6 

Left DLPFC-Right DLPFC 0 Left SMA – Left M1 8 

  Left PRE – Left M1 10 



77 

All subjects were found to have fiber tracts connecting bilateral M1and SMA 

while no such bilateral connections were found between bilateral DLPFC and PMA.  The 

path connecting the left PMA and left M1 was confirmed in all subjects (Figure 28) . 

Eight out of ten subjects showed fiber connection between the left SMA and left M1 

(Figure 30) and six subjects were found to have fiber tracts connecting left SMA and left 

PMA (Figure 29). However, no fiber tracts had been successfully tracked in path between 

the left DLPFC and left SMA and between the left DLPFC and left PMA.  
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Figure 27: Bilateral fiber tract connections revealed using DTI. Upper panel: connections 

between bilateral supplementary motor areas (SMA); Lower panel: connections between bilateral 

primary motor cortex (M1). 
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Figure 28: Fiber tract connecting the left M1 and left PMA with zoom view (right side of the 

figure). (M1= primary motor cortex; PMA= premotor area) 

 

 

Figure 29: Fiber tract connecting the left SMA and left PMA with zoom view (right side of 

the figure). (SMA= supplementary motor area; PMA= premotor area) 
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Figure 30: Fiber tracts connecting the left M1 and left SMA with zoom view (right side of the 

figure). (M1=primary motor cortex; SMA= supplementary motor area) 

6.5. Discussion 

6.5.1. Bilateral cortical activations and bilateral brain SC 

Bilateral anatomical connections revealed by the DTI results (see Table IV) 

showed all subjects had fiber tracts connecting the bilateral M1, SMA through corpus 

callosum. This is in accord with the bilateral brain activation in M1 and SMA reported in 

Chapter II. The bilateral M1 and SMA could communicate between the two hemispheres 

by having the fibers connect each other via the corpus callosum.  The bilateral M1 and 

SMA activation was reported in many previous publications as well [Dai, et al., 2001; 

Liu, et al., 2003]. However, we did not find any pathway between the bilateral DLPFC 

and bilateral PMA. To our best knowledge, no such connections have been reported.  

The bilateral SCs found between the bilateral SMA regions in the current study 

also confirmed the known ‘coordinator’ role of the SMA. Being connected between the 
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two hemispheres by fiber tracts through corpus callosum, the SMA is important for 

bimanual coordination and bimanual motor task. The bilateral SCs between the M1 

regions revealed a possibility of interhemispheric inhibition of the ipsilateral brain motor 

area which resulted in a bilateral activation in M1 regions during a unimanual motor task 

(involving contralateral hand only).  Another fMRI study [Sehm, et al., 2009] reported a 

similar mirroring increased brain activity in the bilateral M1 and SMA regions during a 

unimanual force generation task. 

6.5.2. SC between the left M1 and left PMA 

The DTI tractography results revealed fiber tracts between the left M1 and the left 

PMA regions in all subjects. This is consistent with findings from a monkey 

study[Dancause, et al., 2006] in which connection from the ventral premotor cortex to 

M1 was revealed using intracortical microstimulation techniques. Groppa, et al., (2009) 

used TMS to demonstrate a premotor-to-motor temporal relationship between ipsilateral 

premotor and M1. Muakkassa and Strick (1979)  showed evidence that there are 

projections from ventral premotor cortex to M1.  

This pathway underwent significant changes during fatiguing task as shown in our 

EC study results. Our DTI finding supported this EC between the left M1 and left PMA 

by showing direct fiber tract connection.  This confirms the good fitness of the structural 

model to the underlying brain anatomy. 

6.5.3. SC between the left SMA and left M1 

Eight out of the ten subjects showed fiber tracts connecting the left SMA and left 

M1 regions. This is in line with previous primate studies [Muakkassa and Strick, 1979; 
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Pandya and Vignolo, 1971]. This finding also supported the observed activation of SMA 

in the FC study (Chapter II). The fiber tracts connecting these two regions may explain 

the strong functional coupling between them. An fMRI study [Kasess, et al., 2008] 

reported strong suppression from the SMA to M1 during motor imagery to suppress 

movements.  Dynamic causal modeling to assess the EC between these two regions in the 

brain and a negative influence of the SMA on the M1 was found. The current finding 

provides a plausible anatomical basis for the suppression role of the SMA and the EC 

model (described in Chapter V).  

6.5.4. SC between the left SMA and left PMA 

This study found fiber tracts connecting the left SMA and the left PMA in 6 out of 

10 subjects based on the DTI analysis. This finding supported the pathway from the left 

SMA to the left PMA in the EC model proposed in Chapter V. A non-human anatomical 

study [Marconi, et al., 2003] demonstrated the possibility of commissural fibers between 

the dorsal PMA and SMA regions in each of the two hemisphere . 

6.5.5. SC between the left DLPFC and left SMA 

Although our results revealed no fiber connection between the left DLPFC and 

left SMA, primate studies reported evidence of the DLPFC fibers projecting to SMA 

[Luppino, et al., 1993]. A possible reason of the absence of connections in the current 

study is the distance between the ROIs and technical limitations during the image 

collection. 



83 

6.5.6. SC between the left DLPFC and left PMA 

This study did not find any SC between the left DLPFC and left PMA. However, 

another DTI study using sixty independent directions [Leh, et al., 2007] provided 

evidence that the DLPFC and PMA are connected through putamen after reconstructing 

neural connections in the brain. The current study could not identify any indirect fiber 

connection in our study. This may be explained by the insufficient number of gradients 

used in this study (twelve directions were used in our study).   

6.6. Conclusion 

This study, by using DTI tractography, found supportive anatomical evidence for 

the brain activation during the fatigue task and for the path model proposed in Chapter V. 

Fiber tracts connecting the bilateral SMA and M1 were identified. Three Pathways from 

our EC model (Pathway between the left PMA and left M1, pathway between the left 

SMA and the left M1 and pathway between the left SMA and left PMA) were confirmed. 

However, the remaining two pathways (pathway between the DLPFC and left SMA and 

the pathway between the DLPFC and left PMA) were not found. This could be a result of 

the small number of gradient directions used in DTI. 



84 

 

 

 

 

CHAPTER VII 

CONCLUSIONS 

 

 

7.1. Summary 

In this thesis, a novel brain connectivity framework was proposed to analyze 

fMRI data and examine the underlying neural mechanisms of muscle fatigue. Three 

levels of connectivity analysis (FC, EC and SC) were performed in the framework to 

advance current understanding of central aspect of muscle fatigue.  The FC analysis in 

this thesis showed a strengthened cortical network in the brain during fatiguing task for 

the first time. The magnitude of FC was assessed using histogram analysis and quantile 

regression, which offered a new perspective to explore the statistical results within a 

specific ROI consisting of numerous voxels. The EC analysis suggested an increased EC 

of the path from left PMA to left M1 which indicated an increased central drive to the 

motoneurons. Both modulations of brain connectivity (FC and EC) were due to the 
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presence of fatigue. The SC analysis provided supportive anatomical basis for the FC and 

EC using a DTI based fiber tracking method. These three analysis tools gave us a 

comprehensive picture of the fatigue modulation of the brain dynamic. Cortical regions 

from low-order area (M1), medium-order area (SMA and PMA) to high-order area (PFC) 

were examined in the framework proposed in this thesis.  

During fatigue, the brain increases its drive to motoneurons by modulating the 

brain connectivity within the motor control network involving various brain regions from 

different levels. An important indicator of fatigue can be found in the decreased central 

efficiency suggested in the increased FC and EC. Histogram analysis results suggested 

that the brain may rely more on increasing the synchronized firing of motoneurons to 

increase the central command in order to compensate for the loss of force producing 

capacity induced by fatigue. 

7.2. Contributions 

This study is the first to investigate the brain dynamic in the cortical motor control 

network during muscle fatigue using brain connectivity framework. Important findings 

regarding to the fatigue modulation of the cortical network were reported in this study as 

an outcome of the application of the framework.  

Quantile regression was firstly proposed to analyze the statistic results from ROIs 

in the brain. This novel statistical tool doesn’t require an assumption of normal 

distribution and it allows a more complete view of the effect of fatigue on different 

quantiles of voxels in the ROIs. Histogram analysis was firstly used to visualize the brain 

strategies of increasing central command to the motoneurons. This offered a brand new 

perspective of interpreting FC coefficients data.  
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The proposed brain connectivity framework can be used as a promising diagnosis 

tool for the vast clinical symptoms of fatigue such as cancer related fatigue. Through the 

application of this framework on healthy subjects, more knowledge can be obtained to 

understand the central mechanism of fatigue in terms of brain connectivity.  

7.3. Limitations and future work 

However, this study is by no means a complete study of the central aspect of 

motor fatigue. Submaximal motor tasks were employed in this study to induce fatigue 

and motor fatigue caused by maximal force level tasks was not investigated.  

One limitation of this thesis is the experimental design of control task. To ensure 

there was no presence of fatigue, an 8% MVC (vs. 50% MVC) was used as a control 

motor task. Therefore, the connectivity analysis results could have been influence by both 

the fatigue level difference and force level difference. Better experimental design of 

employing a same force level for both the tasks while not inducing fatigue to the control 

task would improve the data quality. One possible solution is to make the inter trial 

interval longer and randomized (from 10s to 14s). However, the design of the control task 

remains problematic because of the complicated mechanisms of fatigue.  

Another limitation comes from the over simplified path model proposed in the EC 

study. The real world model involves more brain regions and more complicated 

connections. Moreover, more directions can be used in the DTI study in future work to 

allow more precise fiber tract tracking. 
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Abbreviations 

BOLD: blood oxygen level dependent 

DLPFC: dorsolateral prefrontal cortex 

DTI: diffusion tensor imaging 

EC: effective connectivity 

FC: functional connectivity 

fMRI: functional magnetic resonance imaging 

M1: primary motor cortex 

MTC: mesh time course 

MVC: maximal voluntary contraction 

PMA: premotor area 

PFC: prefrontal cortex 

ROI: region of interest 

SC: structural connectivity 

SEM: structural equation modeling 

SMA: supplementary motor area 

S1: primary sensory area 

VTC: volume time course 
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