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I. Introduction 

Modem gas turbines used for aero-propulsion and power generation all have hot 
section components that consist of a single crystal Ni alloy with a superposed bilayer 
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Fig. 1. A schematic of a thermal barrier system, consisting of the superalloy substrate, the bond coat, the 
thermally grown oxide (TGO), and the thermal barrier coating (TBC). 

that provides both thermal and oxidation protection (DeMasi-Marcin and Gupta, 1994; 
Miller, 1984; Stiger et al., 1999; Strangman, 1985). Moreover, during operation, a 
third layer forms due to oxidation. The general consequence is a multilayer (thermal 
barrier) system that consists of four constituents (Fig. 1): (i) a thick Ni-super-alloy 
substrate, (ii) a relatively thin (30–100 �m thick) bond coat layer next to the substrate 
that imparts the oxidation protection, (iii) a very thin (2–10 �m thick) thermally grown 
oxide (TGO), preferably �-Al2O3, because of its low permeability to oxygen, and (iv) 
a thermal barrier coating (TBC), typically comprising a 120–200 �m thick layer of 
yttria stabilized zirconia. The system evolves during its lifetime due to TGO-formation 
and the consequent inuence on the other layers. 
The bond coat function can be achieved using several alternative Ni-based alloys 

and associated microstructures. One widely used system contains Ni, Al, Cr and Pt, 
chosen to exist as a single phase, based on the � (NiAl) structure: it is referred to 
as Pt-aluminide. The merits of this system include its ability to form a relatively pure 
�-Al2O3, which grows slowly and bene�ts durability. A large body of recent informa
tion has identi�ed the predominant failure mode in such a system. It involves a cyclic 
displacement instability occurring in the TGO (Fig. 2), (Evans et al., 2001; Gell et al., 
1999; Johnson et al., 1998; Mumm and Evans, 2000; Mumm et al., 2001; Ruud et al., 
2001; Spitsberg et al., 2002; Tolpygo and Clarke, 2000; Wright and Evans, 1999). A 
similar instability has been observed in other systems: most notably alloys with con
stituents, FeCrAlY (Karlsson et al., 2002a; Rebello and Levi, 2002), used as heating 
elements for furnaces. The instability happens because the TGO is a thin layer subject 
to large levels of residual compression. The compression is caused by a combination of 
growth strain (converting the Al in the alloy to �-Al2O3) and low thermal expansion 
coe�cient that results in mis�t upon cooling. The compressions reach several GPa at 
ambient (Karlsson and Evans, 2001; Tolpygo and Clarke, 2000). The thin TGO seeks 
mechanisms to relieve the compression, by means of out-of-plane displacements. The 
sign and magnitude of the displacements are dictated by the mechanical properties of 



Fig. 2. An example of the displacements of the TGO that accompany thermal cycling of a thermal barrier 
system with a Pt-aluminide bond coat (courtesy D.R. Mumm). The arrows identify the instability sites. 
Note the downward displacement of the TGO layer into the bond coat as the fraction of life (indicated as 
percentages) increases from (a) to (c). 

the bond coat and the TBC. In practice, at high temperature, the bond coat is relatively 
soft, while the TBC layer remains elastic. Thus, the displacements occur preferentially into 
the bond coat, as evident in Fig. 2. The salient experimental �ndings are as follows: 

(i) The instability is prevalent upon thermal cycling. 
(ii) The growth rate of the instability per cycle, dA=dN , decreases with the increase 

in the number of cycles, N , in a manner corresponding to the growth of the TGO, 
dh=dN (Mumm et al., 2001). 
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Fig. 3. Example of �nite element model previously used to simulate the displacements in Fig. 2 (Karlsson 
et al., 2002b). The shape of the imperfection is varied by changing the ratio between the two characteristic 
radii R2=R1. 

(iii) Removing the geometric imperfections suppresses the mechanism and enhances 
the durability (Spitsberg et al., 2002). 

(iv) Enhancing the high temperature strength of the bond coat diminishes dh=dN and 
enhances durability (Spitsberg et al., 2002). 

An approach for �nite element simulation that captures these primary features has 
been devised, using the model depicted in Fig. 3 (He et al., 2000, 2002; Karlsson 
and Evans, 2001; Karlsson et al., 2002a, b). The model embodies an initial geometric 
imperfection, inspired by the morphology found on actual turbine components (Evans 
et al., 2001; Gell et al., 1999; Mumm et al., 2001; Spitsberg et al., 2002; Wright and 
Evans, 1999). These imperfections are governed by a pre-conditioning treatment used 
before the TBC layer is deposited. The simulations have revealed that the propagation of 
the instability depends on the interaction between three di�erent strains: cyclic plasticity 



in the bond coat, growth in the TGO, and the thermal expansion mis�t between the 
TGO and the substrate. Moreover, the model demonstrates that the TBC layer provides 
constraint that inhibits the instability unless crack-like imperfections are present in the 
TBC (Karlsson et al., 2002; Ruud et al., 2001). While the model appears to duplicate 
the e�ects observed in the experiments, the interactions are su�ciently complex that the 
simulations have not been amenable to deconvolution of the inuences of the properties 
of the individual material constituents. The intent of this study is to devise an analytic 
model that highlights the roles of each constituent. 
Several �ndings from the prior simulations and experimental observations discussed 

above are critical. Most relevant are the plastic strains occurring in the bond coat in 
the vicinity of the imperfections (Ambrico et al., 2001; He et al., 2000, 2002; Karls
son and Evans, 2001; Karlsson et al., 2002a, b). These strains have a dominant ra
dial component that facilitates the outward (downward) displacement of the instability 
(Fig. 4). A circumferential component also exists, but is only appreciable at the extrem
ities, where plastic pile-up occurs (Fig. 4). Accordingly, as in analogous indentation 
problems (Begley et al., 1999, 2000), it is surmised that the dominant phenomena 
can be adequately understood by using a spherically symmetric model (Fig. 5). In
deed, there are close geometric correspondences between the present problem and the 
elastic=plastic indentation of a half space. It will be shown that the sphere model al
lows the steps in the deformation history to be solved analytically, enabling a basic 
understanding of some of the key �ndings from the simulations. Such results are re
garded as an augmentation to the simulations (He et al., 2000, 2002; Karlsson and 
Evans, 2001; Karlsson et al., 2002a, b), which have been essential to the development 
of realistic models, but have not provided insight. 
Prior observations (Evans et al., 2001; Mumm and Evans, 2000; Mumm et al., 2001; 

Ruud et al., 2001; Rebello and Levi, 2002; Spitsberg et al., 2002; Wright and Evans, 
1999) and simulations (He et al., 2000, 2002; Karlsson and Evans, 2001; Karlsson 
et al., 2002a, b) have suggested �ve prerequisites for the instability. (a) The tempera
ture must be cycled. (b) There should be a thermal expansion mis�t between the TGO 
and substrate to generate large compressions in the TGO upon cooling. (c) The stresses 
induced in the bond coat must exceed its yield strength. (d) A TGO growth strain is 
needed that interacts with the thermal expansion mis�t to vector the process. (e) An 
imperfection is required to initiate the instability. Beyond suggesting these basic re
quirements, the simulations and experiments indicate characteristic tendencies. Namely, 
the TGO extends primarily at curved or discontinuous segments of the interface (Karls
son et al., 2002a). 
The simulations (He et al., 2000, 2002; Karlsson and Evans, 2001; Karlsson et al., 

2002a, b) have indicated that the instability is a�ected primarily by lateral strains caused 
by new TGO forming on the internal grain boundaries, as depicted on 
Fig. 6. The thickening is less important. Guided by this �nding, the following analyses 
emphasize lateral strains, designated  �g per cycle (no thickening). This di�ers from 
a previous analysis by Ambrico et al. (2001), which examined the role of thickening. 
Stress relaxation in the TGO at the highest temperature in the cycle is important and 

is modeled by imposing a high temperature yield strength, �tgo. At lower temperatures, Y 
the TGO is considered elastic. It will be shown that the stress in the TGO builds 



up during a “transient” stage, with the TGO remaining elastic, resulting in a stress 
increase per cycle. This stress elevation causes rapid displacement changes (He et al., 
2000, 2002; Karlsson and Evans, 2001; Karlsson et al., 2002a, b). Thereafter, a “steady-
state” develops. This happens once the stress induced in the TGO at the peak temper-
ature attains �tgo Y . Such yielding limits the stress in the TGO. Nevertheless, the force 
imposed by the TGO on the bond coat increases on a cycle-by-cycle basis. After cy-
cling down to ambient, and upon returning to the peak temperature, the stress in the 
TGO is below yield and some of the lateral straining occurs while it is still elas-
tic. Indeed, it will be shown that the essential di�erence between the isothermal and 
multicycle response found experimentally relates to the relative proportions of TGO 

A R2/R1 = 0.05 R2/R1 = 0.9B 
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ε g / εt = 0.5 
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Original
 Interface Bond Coat 
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Fig. 4. Typical results from �nite element simulations of the change in shape of the bond coat and TGO 
for two geometries (see Fig. 3) and various ratios of thickening to lengthening growth strain show that 
the displacement in the bond coat is down ward=radial around the base of the imperfection (Karlsson et 
al., 2002a). Only near the periphery are upward=circumferential displacements observed, accompanied by 
pile-up. 
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Fig. 5. A schematic of a hemispherical imperfection and of the spherical shell model. 
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Fig. 6. Schematic indicating the matter deposition that causes thickening and lengthening of the TGO during 
oxidation (Evans et al., 2001). The latter results in a lateral growth strains, which motivate the instabilities 
depicted in Fig. 2. 

growth that occur (a) at yield and (b) while it is elastic. A small contribution to 
the force on the bond coat arises because volume is conserved and the extra TGO is 
redistributed into thickening by plastic ow (Karlsson et al., 2002b). This redistribution 
results in a thickening per cycle: 

 h = h( �g −  �′ ); (1)g



′ where  �g is the incremental growth per cycle before yielding occurs (0 6  �′ g 6  �g). 
This e�ect is neglected in the following analytical model, but is included in the 
numerical simulation. 
Finally, some semantics are clari�ed. The event depicted in Fig. 2 is termed an in

stability in the thermally grown oxide. Previously, for two reasons, it has been referred 
to as ratcheting. (a) It is often accompanied by cyclic yielding of the adjacent bond 
coat (He et al., 2000; Karlsson and Evans, 2001). (b) At higher levels of yield strength 
and at smaller imperfections it has characteristics indicative of shakedown. The present 
model demonstrates that, while cyclic yielding accelerates the process, the displace
ments occur without reversed plasticity. Such a response does not coincide with the 
conventional de�nition of ratcheting (Bree, 1968). Hereafter, the event is referred to 
as an instability of a form dominated by propagation, since substantial imperfections 
pre-exist that negate initiation requirements. 

2. Model de�nition 

The hemispherical undulation representative of actual imperfections (Figs. 2 and 3) 
is modeled by a fully spherical geometry (Fig. 5). The TGO is represented as a thin 
spherical shell of thickness h and radius R0 attached to an in�nite matrix of bond coat 
(Fig. 5). Growth of the TGO shell radius is interpreted as undulation growth, since the 
plastic strains around imperfections are primarily radial in nature (He et al., 2000, 2002; 
Karlsson and Evans, 2001; Karlsson et al., 2002a, b). A comprehensive summary of 
the cyclic stresses and strains that arise in a related spherically symmetric model in the 
absence of a growth strain was developed by Olsson et al. (1995). In this analysis, no 
attempt is made to characterize the temperature-dependent creep behavior of the bond 
coat. Instead, it is modeled as elastic–perfectly plastic with temperature-independent 

bc bcyield strength �Y . The temperature dependence of � a�ects the growth rate (Karlsson Y 
and Evans, 2001), but the phenomenon remains the same. To facilitate the analysis, 
the bond coat is taken to be elastically incompressible with Young’s modulus, Ebc. 
Except at the highest temperature in the history (the growth temperature T0, Fig. 8), 
the TGO undergoes only elastic deformations governed by its Young’s modulus, Etgo, 
and Poisson’s ratio, �tgo. At  T0, the TGO is elastic–perfectly plastic with yield strength 
�tgo 1 Y . As already mentioned, TGO yielding plays a central role. Lateral (in-plane) 
growth of the TGO is emphasized, since this gives rise to the compressive stress that 
drives the increase in radius. The lateral growth strain over the entire thermal history 

0is denoted by �g. Two basic thermal histories are addressed (Fig. 7). (a) A single 
0thermal cycle, wherein the full strain �g occurs while the system is at the growth 

temperature. (b) A multicycle scenario, with N cycles, wherein the growth strain per 
0cycle is  �g = �g=N (Fig. 7). Minor di�erences exist in the cycles chosen for the 

analytical and numerical models, as evident from Fig. 7. These di�erences do not 

C, �tgo1 This is achieved in the numerical model by letting �tgo = 10 GPa for T ¡ 900◦ = 1 GPa for Y Y 
T ¿ 1000

◦
C, and letting �tgo vary linearly in between. Y 
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Fig. 7. The two thermal histories used to conduct calculations with the analytical and numerical models. 

a�ect the basic phenomena. The cycle for the analytic model has been chosen to 
facilitate the presentation of results. That chosen for the numerical model is taken to 
be consistent with previous simulations (He et al., 2000, 2002; Karlsson and Evans, 
2001; Karlsson et al., 2002a, b). 
At the peak temperature, T0, the system is driven by the increment of growth strain. 

During cooling to room temperature, TRT, and reheating to T0, no growth strain occurs, 
and the system is driven by the thermal expansion mis�t,  � = �bc − �tgo ( �¿ 0). 
The presentation of results is simpli�ed considerably by the precise equivalence of in
crements of lateral growth strain,  �g, and increments in thermal expansion mismatch, 
 � T . Each is equivalent to a transformation strain,  �T, in the TGO, with due 
regard for sign. 
The following additional notation is needed. The equi-biaxial stress in the TGO shell 

is �tgo, the pressure between the shell and the matrix is p ≡ −�rr , and the radius of 
the plastic zone in the bond coat is RP. For presentation of the results, it is convenient 
to let u be the increase in the radius of the TGO shell, with the uniform expansion of 
the bond coat subtracted. That is, the actual change in the radius of the shell at any 
temperature T would be: u+ �bc(T − T0)R. 



3. Analytical model 

3.1. Basic relations 

Results are obtained by coupling the solution for a shell to the exact spherically 
symmetric solutions for an in�nite matrix. Segments of the cyclic thermal history are 
de�ned by the occurrence of yielding in the bond coat and TGO. The yield condition 
for the bond coat under spherically symmetric conditions is |�rr − ���| = �Ybc. For the 
TGO, the yield condition at the growth temperature is |�tgo| = �tgo. To assemble the Y 
complete thermal history, four possible combinations must be considered: (a) the bond 
coat and TGO both deform elastically; (b) both deform plastically; (c) the bond coat 
remains elastic while the TGO is plastic and (d) vice versa. 
When the bond coat responds elastically the increments of pressure, TGO stress and 

relative displacement are given by  −13 R0(1 − �tgo) p = �T 4Ebc 
+ 

2hEtgo
; (2a)

 �tgo = − 
R0 p 
2h 

; (2b)

 u 
R0 
= 
3 p 
4Ebc 

: (2c) 

The change in transformation strain,  �T, is either − � T or  �g, depending on the 
segment of the thermal history (cooling/reheating or growth, respectively). When the 
TGO is at yield, the situation changes, because the lateral growth exerts no pressure 
change: requiring that  �T = 0 during that part of the growth segment. 
Next, consider increments when a portion of the bond coat is at yield. The change 

in the stress in the bond coat at location, r = R0, that a�ects its yielding response is

 ��� − �rr = 3 p: (3)2

In the thermal histories being considered, plastic yielding of the bond coat is found to 
occur during TGO growth and/or during cool-down. Reversed plasticity during heat-up, 
if it occurs, has only a small e�ect on the phenomenon of interest (as demonstrated in 
the following numerical assessment) and will be neglected: whereupon, plastic straining 

= �bcproceeds subject to radial compression with the yield condition, ��� − �rr Y . The 
region undergoing plastic deformation is R0 6 r 6 RP (where RP the radius of the 
plastic zone). Under these circumstances, the analysis simpli�es, because RP increases 
monotonically and can be directly connected to p; �tgo and u, independent of the prior 
history, apart from knowledge of the accumulated transformation strain, �T. Note that 
�T is the sum of all increments in − � T and  �g when the TGO is not at yield. 
When the bond coat is at yield, the nonlinear equation relating RP to the accumulated 
transformation strain, �T, is        31 RP (1 − �tgo)EbcR0 1 RP �T+ + ln = ; (4)

�bc2 R0 Etgoh 3 R0 Y 



    

  

  

 

= �bcwhere �bc Y =Ebc. The corresponding results for p, �tgo and u areY 

�tgo 
�bc Y 

= − 
R0 
h 

1 
3 
+ ln  

RP 

R0 
; 

p = − 
2h�tgo 
R0 

; 

�bcu RP
3 

= Y : (5)
R0 2 R0 

For purposes of presenting the numerical results in Section 3.2, (5) can be rewritten 
in the non-dimensional form: 

u �T EbcR0(1 − �tgo)= − � ;
R0�bc �bc Y Y Etgoh 

�tgoh = −�; (6)
�bc Y R0 

where � ≡ 13 + ln(RP=R0) is a slowly varying function of �T=�Y
bc. Note that �Y

tgo does 
not enter (6) explicitly. It enters implicitly through its e�ect on �T, as explained below. 
As already noted, two basic problems are analyzed. In one, the system is subjected 

to a single cycle and in the other, to multiple thermal cycles, for identical total TGO 
growth (Fig. 7). It will be demonstrated that yield of the TGO plays an essential role 
in the di�erence between the responses found in these scenarios. For both examples, 
the following numerical values are used for the material parameters, temperature range 
and normalized TGO thickness: 

Ebc = 190 GPa; Etgo = 380 GPa; �tgo = 0:2; 

�bc = 200 MPa; �tgo = 1 GPa(T = T0);Y Y 

� = 6  × 10−6=C; T0 − TRT = 1000◦C; h=R0 = 0:1: (7) 

To simplify the presentation of results, the thickening of the TGO that occurs while it 
is yielding (1) is ignored. 

3.2. Single cycle response 

The cycle being considered (Fig. 7) begins with a stress-free system at the growth 
temperature T0. There are �ve stages. Three occur at T = T0 as the TGO grows. 

(i) Initially the bond coat responds elastically to the lateral growth strain in the TGO 
and (2) applies, until the bond coat begins to yield, as ascertained from (3). 

(ii) Under continuing TGO growth, Eqs. (4) and (5) are operative with the bond coat 
at yield until the TGO yields (when �tgo attains −�tgo).Y 

(iii) Once the TGO yields, �T does not change, even though TGO growth continues, 
whereupon RP, p, �tpo, u remain constant. 



  

 
 

 

 

The fourth and �fth stages occur during cool down and reheating. 

(iv) The TGO responds elastically and its compressive stress can exceed �tgo (sinceY 
T ¡T0). The bond coat continues to deform plastically, with (4) and (5) in force 
and with �T increasing by − � T . The maximum extent of the plastic zone and 
the maximum compressive stress in the TGO occur at the minimum temperature. 

(v) During heat-up, the bond coat is assumed to respond elastically (reversed yield 
does occur, but it is neglected) and the variable changes are governed by (2) 
and (3). 

Speci�c results for 4 cycles are presented in Fig. 8, computed using (7). The horizon
tal axis is numbered according to the �ve distinct steps in the deformation history. Yield 
of the TGO in the �rst cycle occurs when �g=0:0029. Additional lateral growth strain in 
the TGO in this cycle produces no further change in any of the model variables. Thus, 
the plots of �tgo and u in Fig. 8 for the �rst cycle are equally applicable if the entire 

0lateral growth strain, �g=0:02, had occurred in the �rst cycle. Accordingly, the stresses 
and displacements during cooling are found by inserting �T =0:0029 + �(T0 − T ) into 
(4) and (5), where � is given by (7) and T is the current temperature. 

3.3. Multiple thermal cycles 

The preceding single cycle response is contrasted with that for a 4-cycle history 
(Fig. 8) for the same total growth strain, �0 = 0:02, such that the growth strain per g 
cycle is, �g = 0:005. The behavior in the �rst cycle is identical to that described 
above with yielding of the TGO beginning when �g = 0:0029. The steps in subsequent 
cycles di�er. To aid interpretation, those steps in the history when the bond coat is at 
yield are highlighted as thinner lines in the �gure. In the �rst step of the subsequent 
cycles, at T = T0, the TGO growth strain increases and the bond coat responds elas
tically. In the second step, the TGO yields and grows without changing the stresses 
and displacements. As cool-down occurs, in the third step, the bond coat initially re
sponds elastically, but then reaches yield. In the fourth step, during the remainder of 
cool-down, the bond coat is at yield throughout. The additional irreversible expansion 
of the TGO shell into the matrix occurs in this step. In the �fth and �nal step in 
the cycle, the bond coat responds elastically during reheating to T0. Note that, even 
though the growth of the TGO occurs while the bond coat is elastic, the growth in
creases the stress in the matrix and in the TGO (prior to yielding) and sets the stage 
for a signi�cant additional increase in the TGO radius during cool-down. 
The expansion of the TGO radius, as measured by u at the end of the fourth cycle, 

is many times its value at the end of the �rst cycle. Recall that u is de�ned as the 
displacement of the TGO shell minus the uniform thermal expansion of the matrix 
referenced to the growth temperature: namely, u is the increase of the radius of the 
TGO at T0. After the �rst cycle, with �g = 0:005, u is identical to the expansion 

0that occurs when the full growth strain, �g = 0:02, occurs in a single cycle. This is 
the origin of the di�erence between the isothermal and cyclic response, as elaborated 



Fig. 8. A summary of the analytical results obtained using the parameters from (7). (a) Changes in the 
displacement of the TGO shell upon cycling, indicating the �ve stages de�ned in the text. (b) Changes in 
the tangential compression in the TGO. The thinner lines demark the stages wherein the bond coat is at 
yield. Otherwise, the bond coat responds elastically. Note that the response within the �rst cycle is equally 
applicable for both of the thermal histories indicated on Fig. 7, since the TGO yields once the growth strain 
reaches 0.0029. Notations: GS—Growth stress: C—cooling, H—heating. 

below. Note that, if the thermal history had involved more than four cycles, with the 
same total growth strain, �0=0:02, the expansion of the TGO at the end of the history g 
would have been even larger. 

3.4. The role of TGO yield in the cyclic expansion 

In the preceding scenarios, had the TGO remained elastic, there would have been 
no di�erence between the expansion of the TGO under single and multiple cycle 



 

 

 

histories. This assertion, which is veri�ed by the following numerical calculations 
(Section 4), can be appreciated by referring to (4) and (5) with the aid of the fol
lowing argument. If the TGO responds purely elastically during growth strain, the 
net transformation strain just before the end of the single cycle, prior to heat-up 
(when T = TRT), is �T = �g0 − �(T0 − TRT). The radius of the plastic zone and 
the magnitudes of the other variables are given by inserting this �T into (4) and 
(5). For the cyclic thermal history, when T = TRT, the net transformation strain is 
again �T = �0 − �(T0 − TRT), provided that the TGO does not yield. The last step, g 
heating-up to T0, involves only elastic deformations and is the same for the two 
histories. 
To summarize, yielding of the TGO at the growth temperature accommodates the 

growth strain without incremental expansion of the radius of the TGO shell. When 
growth occurs in a single thermal cycle, most of that growth takes place with the TGO 
at yield. Conversely, when the same growth is spread over multiple thermal cycles, 
a greater fraction of growth takes place when the TGO is elastic, and the e�ect of 
growth on the expansion of the TGO shell is greater. As seen from the example, the 
di�erence in expansion between the two histories can be substantial. 

4. Numerical simulations 

The �nite element code ABAQUS has been used to perform spherical shell simula
tions (Fig. 5), utilizing large deformation theory. The goals are to a�rm the analyt
ical results and to address the consequences of the simpli�cations. Initially, the same 
properties (7) are used and later varied in a sensitivity study. Growth of the TGO is 
simulated by imposing stress-free strains in accordance with a user subroutine, uexpan 
(Karlsson and Evans, 2001). The in-plane strain, �g, is imposed uniformly through 
the TGO-thickness. Thickening of the TGO by growth is neglected (but it does thicken 
in accordance with (1)), except in the sensitivity analysis. To be consistent with prior 
analyses (He et al., 2000, 2002; Karlsson and Evans, 2001; Karlsson et al., 2002a, b), 
all calculations start with a cooling-heating sequence before the growth strain is applied 
(Fig. 7). 

4.1. Comparisons with analytic results 

Numerical results amenable to direct comparison with the preceding analytical results 
(Fig. 8) are presented in Fig. 9. The numerical results are presented in terms of cycles 
rather than growth steps. Nevertheless, the same sequence of steps is still apparent. 
Moreover, there is an almost exact overlap of the numerical and analytical predictions: 
both the displacements (Figs. 8a and 9a) and the tangential stresses in the TGO (Figs. 
8b and 9b) are essentially identical. 2 Note that the simulation predicts reverse yielding 

2 The slopes of the individual segments are di�erent in the two �gures. This is because the abscissa for 
the analytical model (Fig. 8) is presented with respect to steps in the thermal cycle, while the abscissa for 
the numerical model relates to the number of cycles. 
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during reheating, as apparent from a plot of the development of stresses and strains 
in the bond coat (see Fig. 12): an e�ect neglected in the analytical model. Yet, this 
neglect appears not to have adversely inuenced the good correspondence between the 
numerical and analytical results. Accordingly, it may be concluded that reverse yielding 
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the same radial change occurs for isothermal and cyclic conditions. 

has a minor e�ect on the system response. The situation will be discussed further in 
connection with the sensitivity analysis. Note that the TGO yields when the tangential 
TGO stress is about −1:2 GPa, even though �Ytgo = 1 GPa. This is due to the tri-axial 
state of stress, which is neglected in the analytical model. 
The location of the TGO surface is also plotted in Fig. 9a and the di�erence between 

the interface and surface curves corresponds to a thickness change in the TGO. A 
permanent increase in TGO thickness commences when the TGO yields, as elaborated 
below. At room temperature, the thickness change in the TGO at ambient, relative 
to that at the elevated temperature, is also due to the thermal contraction. Both these 
e�ects have been subtracted in the analytical model. 
The analytical model implies that, when the TGO does not yield, the change in 

the shell radius, u, is the same for multiple and single cycle histories, but di�ers 
when the TGO yields. This implication is a�rmed by the simulations summarized 
in Fig. 10. Note that, when �tgo = 1 GPa, u after 24 cycles is almost �ve times Y 
larger than after a single cycle. The e�ect is rationalized upon comparing the radial 
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incipience of yielding in the bond coat for elastic TGO. For the case of yielding in the TGO, the positions 
designated B refer to the onset of TGO yielding for single cycle simulations, while positions C refer to 
TGO yielding in multicycle simulations. Note that, in the isothermal scenario, the changes in displacement 
and stress stop once the TGO yields. Under cyclic conditions, displacements and stresses continue to change 
upon TGO yielding, albeit at a lower rate. In this scenario, C designates the transition from “transient” to 
“steady-state” responses. 

expansion, the tangential stress in the TGO, �tgo �� , and the tangential strain in the TGO, 
�tgo for an elastic TGO and for a TGO that yields, with �tgo = 1 GPa (Fig. 11). For�� Y 
the elastic TGO (Figs. 11A–C), after a settling-in stage, the strains and displacements 
increase with increase in growth strain at precisely the same rate for isothermal and 
cyclic conditions. Also, the stress in the TGO continues to increase, quickly attaining 
levels (→ 4 GPa) that cannot be sustained without yielding or creep. Introducing 
TGO yielding causes dramatic changes in response (Figs. 11D–F). For isothermal 
conditions, the displacements and strains per growth strain increment, �g, decrease 
dramatically once the TGO yields. For the corresponding cyclic simulation, the stresses 
in the TGO remain elastic. This di�erence arises because the plasticity in the bond 



 

 

Fig. 12. The relationship between the radial stress and strain in the bond coat next to the TGO for single and 
multicycle conditions (�bc = 200 MPa): (a) elastic TGO, (b) yielding TGO, �tgo = 1 GPa. For the multicycle Y Y 
simulations, the response in the 11th cycle is highlighted for clarity. The locations 1 through 4 coincide with 
those indicated on Fig. 7. For the isothermal simulations, the locations A through D are those presented 
on Fig. 7. For the elastic TGO, note that the end point is exactly the same for the two thermal histories. 
Conversely, when the TGO yields, the end point for the cyclic simulation occurs at a much larger strain 
level than that for the isothermal simulation. 

coat on cooling diminishes the tangential stress induced in the TGO upon reheating 
to the growth temperature, enabling �g to be added without reaching �tgo. This large Y 
di�erence between the cyclic and isothermal responses continues until the stress in the 
TGO becomes su�ciently compressive on reheating that the strain addition �g causes 
yielding. This occurrence constitutes the transition to “steady-state” discussed above. 
The associated changes in the radial stresses and strains in the bond coat (�bc andrr 

�bc, respectively) next to the TGO are compared in Fig. 12. For the elastic TGO, the rr 
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Fig. 13. Numerical simulations showing that the radial enlargement increases with increasing incremental 
growth strain (after 24 cycles, �tgo = 1 GPa). Y 

�nal state of radial stress and strain is the same for isothermal and cyclic conditions, 
with large strains induced in the bond coat for both conditions. When the TGO is 
allowed to yield, there is a large di�erence, with substantially smaller strains induced 
under isothermal conditions, consistent with the discussion in Section 2.5. Since the 

(�bcchanges in �bc ) are intricate, clari�cation of Fig. 12 is provided in the appendix, rr rr 
where it will be shown that reverse yielding occurs upon reheating. 

4.2. Sensitivity study 

In order to a�rm the sensitivity of the instability to material properties predicted 
by the analytic solutions, and to explore several additional e�ects, simulations have 
been conducted for a wider range of yield strengths, �tgo, and �Ybc, and plotting the Y 
results in accordance with the non-dimensional coordinates suggested by (6) (Figs. 
13–16). Simulations of the radial expansion (Fig. 13) reveal that it does not increase 
with increasing growth strain in the strictly linear manner predicted analytically (2). 
Deviations occur once the TGO yields and are more pronounced at the higher bond 
coat yield strength (�bc = 400 GPa) and at larger growth strains. This discrepancy Y 
arises because the TGO thickens once it yields (1), resulting in a larger pressure, 
p, despite the constant stress in the TGO. This e�ect was ignored in the analytical 

model. 



 

bc
 

N
on

-D
im

en
si

on
al

 D
is

pl
ac

em
en

t, 
u/

R
o ε

 Y 

20 

15 

10 

5 

0 

20 

15 

10 

5 

0 
0.3	 0.4 0.5  

∆εg /εY
bc  

0.6 0.7 0.8 0.9 1 

σY 
tgo= 2 GPa 

σY 
tgo= 1 GPa 

(σY )tr 
bc 

ε t = 0 

1 GPa 

0.5 GPa 

ε t = 0 

ε t = 10-2 

(a) 

(b) 

Fig. 14. The non-dimensional radial enlargement (N = 24) as an inverse function of bond coat yield strain 
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The inuence of TGO yield strain for various bond coat yield strengths, at N = 24, 
is presented on Fig. 14a and the relative role of the thickening strain on Fig. 14b. 
The bond coat yield strength is normalized according to (6). The thickening strain in
creases the displacement, but does not change the general behavior. The slope, du=dN , 
increases abruptly at a “transition” yield strength [(�Ybc)tr ≈ 300 MPa for �t = 0]. This 
response led to the earlier notion of a transition from shakedown to ratcheting, asso
ciated with the onset of reverse yielding (He et al., 2002; Karlsson and Evans, 2001). 
Now, predicated on the preceding arguments, it is apparent that reverse yielding does 
not play a fundamental role. It simply signi�es a change from a slow to a rapid 
displacement-rate. 
The appreciable increase in displacement-rate upon increasing the TGO yield 

strength, �tgo (in the range 0.5, 1, 2 GPa) (Figs. 15 and 16) distinguishes the transition Y 
from transient to steady-state, which commences at Ntr cycles. Note that the transient 
stage, N 6 Ntr , enlarges as the TGO yield strength increases, with a small e�ect of 
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the bond coat yield strength. Furthermore, the transition coincides with a thickening 
of the TGO per cycle (Fig. 9), once TGO yielding commences, attributed to material 
redistribution described above (Karlsson and Evans, 2001). 

5. Concluding remarks 

A spherically symmetry model is devised to facilitate understanding of the prop
agation of morphological instabilities observed in a class of thermal barrier system. 
A thin shell represents the TGO. The surrounding medium is the bond coat. In the 
model, the expansion of the TGO is monitored as the system is subjected to vari
ous thermal cycling histories. An analytical model with some simpli�cations is used 
to establish the salient non-dimensional parameters and to provide basic insights. A 
numerical simulation, conducted with �nite elements, is used to a�rm the main impli
cations from the analytical model and to explore additional characteristics. The basic 
model reveals essential trends with the bond coat yield strain, the imperfection size, the 
elastic properties of the TGO and the bond coat, the thermal expansion mis�t, the TGO 
growth strain and the TGO thickness. The applicability of the model is justi�ed by the 
correspondence in trends with simulations performed for representative non-spherical, 
imperfections and their association with experimental �ndings. A further justi�cation 
is provided by the similarities with the elastic/plastic indentation of a half space. 
The importance of the TGO yield strength emerges from the analysis, embodying 

a coupling with TGO growth and bond coat yielding. It is manifest in the contrast 
between multiple thermal cycles and a single cycle (isothermal) conditions for the 
same TGO growth strain. Namely, while there are no di�erences between the two 
histories when the TGO behaves elastically, thermal cycling causes substantially larger 
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radial enlargement when the TGO is allowed to yield at the peak temperature. This 
e�ect is fundamentally dictated by the absence of stress changes and of displacements 
once the TGO yields. That is, without cycling, after the TGO reaches yield, further 
TGO growth has no e�ect on the stresses. With temperature cycling, if the bond coat 
yields on cooling and a plastic zone develops, the stress in the TGO on reheating 
to the peak temperature is reduced (become less compressive) and additional TGO 
growth occurs prior to TGO yielding. Accordingly, when TGO growth is spread over 
multiple thermal cycles, a greater fraction takes place when the TGO is elastic, and 
the expansion of the TGO shell is greater. 



The model reveals that the instability is not dependent on reverse yielding of the 
bond coat, contravening an inference from earlier numerical simulations (He et al., 
2000; Karlsson and Evans, 2001). However, reverse yielding is associated with low 
yield strength, and consequently does coincide with a rapid increase in the rate at 
which the instability enlarges. 
The preceding results and implications can be used to interpret simulations of the 

growth of instabilities in actual thermal barrier systems, with the proviso that some 
circumferential displacements occur at actual imperfections, which are not allowed in 
the sphere model. 

(i) Basic scaling tendencies with material properties can be ascertained directly from 
Eqs. (4) and (5). 

(ii) The di�erence found between cyclic and isothermal responses can now be explic
itly related to the in-plane growth strain in the TGO and its yield behavior. 

(iii) The role of bond coat yielding is now more clearly connected to its e�ect on 
the stresses in the TGO upon cycling. There is no explicit requirement that it 
experience reverse yielding upon reheating. 

Appendix A. Development of radial stresses and strains in the bond coat 

An elaboration of the results in Fig. 12 is presented to facilitate understanding. First, 
consider the simulation for the elastic TGO (Fig. 12A). Starting from stress-free con
ditions at elevated temperature, the bond coat yields upon cooling and exhibits reverse 
yielding upon reheating (Start–A–B). Upon returning to the elevated temperature (B), 
growth strain is applied. When this proceeds isothermally, appreciable plastic strain 
accumulates (B–C) and the stress follows a plastic pathway governed by the bond 
coat. This pathway is continued during cooling (C–D) leading to additional plastic 
strain accumulations. The �nal reheating (D–End) initially responds elastically, and is 
accompanied by a limited amount of reverse yielding. 
For multiple thermal cycles, the scenario changes after the initial cooling and heating 

sequence. Each subsequent cycle duplicates the preceding one, except for a shift to 
higher stress. On the �gure, the response is exempli�ed by the 11th cycle. The growth 
strain is applied between 1 and 2. It is su�ciently small that the bond coat remains 
elastic. Nevertheless, the strains introduced inuence the accumulation of plastic strain 
associated with yielding upon cooling (2–3) and reverse yielding on reheating (3–4), 
resulting in the stress/strain shift from the start of the preceding cycle. Recall that there 
is no di�erence in the �nal state between single and multiple cycles with elastic TGO, 
since the same net transformation strain is applied (Section 3.4). 
When the TGO yields (Fig. 12B), the responses change after the initial cooling-

heating sequence (Start–A–B). Now, when the growth strain is applied isothermally 
(B–C), the TGO yields before the bond coat. Once this happens, the additional growth 
strain is redistributed as TGO thickens (Fig. 16) and there are no further changes in 
the stress or strain in the bond coat, within the resolution of the �gure (there is a small 
unresolved change governed by the thickening). This e�ect rationalizes the substantially 
lower stress and strain at C, relative to the elastic TGO. 



For the cyclic scenario, the 11th cycle is again highlighted. Now, the preceding 
cooling/reheating phase of the cycle causes the TGO to be below yield when the next 
TGO growth step begins (1–2). Accordingly, until TGO-yield is reached, the addition of 
the TGO is able to increase the stress and the strain in the bond coat. This accounts for 
the extra strain per cycle relative to the isothermal scenario, leading to the appreciably 
larger �nal strain. Note that with further cycling, eventually, steps 1–2 will no longer 
allow the all stress in the TGO to diminish below yield. Thereafter, the only changes 
will be those associated with TGO thickening. 
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