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HYBRID KALMAN/MINIMAX FILTERING IN PHASE-LOCKED 
LOOPS 

D. Simon* and H. El-Sherief** 

*TRW Test Laboratory, 4051 N. Higley Road, Mesa, AZ 85215, USA (d.simon@ieee.org) 
**TRW Systems Integration Group. 1111 E. Mill Street, San Bernardino, CA 92408. USA 

Ablltract. A method of combining Kalman filtering and minimax filtering is proposed and demon-
strated in an application to phase-locked loop design. Kalman filtering suffers from a lack of robust-
ness to departures from the aaaumed noise statistics. Minimax filtering, however, has the drawback of 
ignoring the engineer's {admittedly incomplete) knowledge of the noise statistics. It is shown in this 
paper that hybrid Kalman/minimax filtering can provide the "best of both worlds'~ Phase-locked 
loop filter design is used in this paper to demonstrate an application of hybrid estimation. 

Key Words. Hoo control; Kalman filters; Global positioning systems; Missiles; Aerospace trajec-
tories 

1. INTRODUCTION 

H 2 filtering, also known as Kalman filtering, is 
a well-established technology which dates back 
to the 1960s and has its roots in the late 
1700s (Sorenson, 1985}. H2 filtering is an esti-
mation method which minimizes the variance of 
the estimation error, and assumes that the noisy 
inputs have known statistical properties. 

Unfortunately, the assumption that the statistical 
properties of the noise are known limits the ap-
plicability of Kalman filters. This limitation has 
given rise to a recent interest in minimax estima-
tion, also known as H 00 filtering. The optimal-
ity measure which is used in H 00 filtering is the 
magnitude of the maximum singular value of the 
transfer function from the noise to the estimation 
error. No knowledge of the noise statistics is as-
sumed. H 00 filtering appears to have first been 
introduced in 1987 (Grimble, 1987), with roots 
dating back to 1981 (Zames, 1981). 

If the H 2 approach to filtering assumes too much, 
the H 00 approach assumes too little. Generally, an 
engineer has less knowledge about the noise than 
an H 2 filter requires, but more knowledge than an 
H 00 filter can use. This motivates an interest in 
designing an estimation filter which uses the best 
characteristics from each type of filter. This type 
of cross between H 2 and H 00 filtering can be called 
a hybrid filter. 

The motivation in this paper for using a hybrid 

filter is digital phase-locked loop (PLL) design. 
PLLs are used to track the phase and frequency of 
the carrier component of a sinusoidal signal (Lind-
sey, 1986; Simon, 1994). The development of dig-
ital PLLs began in the late 1960s, and reached a 
reasonable state of maturity by the early 1980s. 
Many different approaches have been taken in the 
past to PLL filter design. Perhaps the most suc-
cessful approach for highly dynamic trajectories, 
based on comparisons in (Vilnrotter, 1988; p. 55), 
is the use of the Kalman filter. 

PLLs are of particular interest to the Global Po-
sitioning System (GPS} community. GPS is a 
satellite-based navigation system developed and 
maintained by the United States Department of 
Defense. In its final configuration it will con-
sist of 24 satellites in semi-geosynchronous orbit, 
which will provide position and velocity informa-
tion to any user with a GPS receiver (Janiczek, 
1980). The user position is obtained by tracking 
a known binary pseudo-rand nn (PR} code trans-
mitted by the GPS satellit ,s, and the user veloc-
ity is obtained by tracking the sinusoidal carrier 
which modulates the PR code. Because of its con-
tinuous global coverage and the passive nature of 
the receiver, GPS is being used in a wide range 
of aerospace applications (Dougherty, 1993}. It 
is clearly desirable to provide robust algorithms 
for the GPS receiver's PLL, or the user's velocity 
information may be lost. 

This paper is organized as follows. Section 2 pro-
vides a brief overview of H2, H 00 , and hybrid 
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H 2/H 00 ffitering. Section 3 discusses the details 
of the application of hybrid filtering to PLL de-
sign, and Section 4 provides simulation results. 
Section 5 provides concluding remarks. 

2. OPTIMAL FILTERING FUNDAMENTALS 

This section reviews some of the fundamental the-
ory of optimal filtering. First the problem is de-
fined, and then H2 filtering and H 00 filtering are 
discussed. Finally, a method of combining these 
two approaches is proposed. 

2.1. Problem Description 

Consider a linear, discrete, time-invariant system 
given by 

(1) 

Xk E Rn is the state vector, Yk E R,. is the mea-
surement, and Vk and nk are noise processes. An 
augmented noise vector is defined as 

(2) 

It is desired to find an estimate xk for x k based 
on measurements Yi, i ::; k. This is known as 
the a posteriori filtering problem. The estimator 
structure is assumed to be 

(3) 

where K k is a gain to be determined. Define the 
estimation error as 

(4) 

The transfer function matrix from the noise Wk to 
the estimation error ek is denoted G ew· If K k = K 
is a constant, this transfer function is given by 

Gew(z) = [zi- (I- KH)tP]- 1 x (5) 
{(I- KH}[In Onm]- K(Omn Im]z} 

where In is then x n identity matrix and Opq is 
the p x q zero matrix. 

2.2. H 2 Filtering 

In H 2 ffitering, also known as Kalman filtering, it 
is assumed that the noise processes vk and nk are 
zero-mean. The gain Kk is computed according 
to the formulas 

Kk Pk(-)HT(HPk(-)HT + Rk)- 1 

Pk(+) (I- KkH)Pk(-) (6) 
pk+I(-) = AtPPk(+)tPT + Q k 

where Rk = E(nknr), Qk = E(vkvD, and).. is a 
forgetting factor. If ).. = 1. then the Kalman fil-
ter is the affine ffiter which minimizes E(ekS~ceD 
for any positive semidefinite weight matrix se-
quence {Sk}· This is commonly expressed by 
stating that the Kalman filter is the linear min-
imum variance estimator (Anderson, 1979; chap. 
5). If Wk is white and wide-sense stationary with 
a power spectral density of Sw(w) = S, then 
the Kalman ffiter is also the affine ffiter which 
minimizes the S-weighted 2-norm of Gew (Khar-
gonekar, 1992),(Kwakemaak, 1972; sec. 6.5),(Pa-
paloulis, 1984; sec. 10.4). The S-weighted 2-norm 
of a discrete transfer funcdon matrix is given by 

where tr indicates trace, and G • is the Hermitian 
transpose of G. If the system (1) is completely 
observable and completely controllable, the gain 
K k will reach a unique steady state, denoted by 
K(2}: 

lim Kk = K<2>. 	 (8)
k--+oo 

In order to save computational expense, the 
steady-state gain (which can be computed off-line) 
is often used in real-time systems. The resulting 
filter is identical to the Wiener filter (Gelb, 1984; 
sec. 4.7). If ).. > 1, then greater emphasis is given 
to more recent data (Anderson, 1979; sec. 6.2). 
This results in greater stability and improved per-
formance in many practical cases. 

2.3. H 00 Filtering 

The fact that the Kalman filter is the linear mini-
mum variance estimator is a powerful and attrac-
tive result, but several facts may indicate against 
the use of a Kalman filter (Shaked, 1992): 

1. 	The Kalman filter minimizes E(ekeD, while 
the user may be more interested in minimiz-
ing the worst-case error. 

2. 	The Kalman filter assumes that E(nknD and 
E(vkvD are known. 

3. 	The Kalman filter assumes that E(nk) and 
E(vk) are known. 

These considerations have led to the statement of 
the H 00 filtering problem. Several H 00 problem 



formulations have been presented in the litera-
ture (Shaked, 1992). The problem which is consid-
ered in this paper can be posed as follows (Yaesh, 
1991). Given the system in (1) and the estima-
tor structure in (3), find a gain K1c such that 
IIGewlloo < -y, where (as before) Gew is the transfer 
function matrix from the noise w1c to the estima-
tion error e1c, and IIGIIoo is the magnitude of the 
largest singular value of G (over all frequencies). 

IIGIIoo = sup >.maz[G(ejw)G*(eiw)]. (9) 
wE[-11",11"] 

It can be shown that if this problem has a solution 
for a given -y, then it can be solved by a constant 
gain, denoted by K(oo) (Zhou, 1988). Amazingly 
enough, as -y-+ oo, the solution of the H 00 prob-
lem is identical to the steady-state Kalman filter 
when R1c = Q~o =I. The H 00 filtering solution for 
a specified -y is given by 

(I+ Ph2)-1PHT 


M-1_ Ih2 +HTH (10)  
4>P4>T +I. 

One method to solved these equations is given 
in (Yaesh, 1991): 

1. Form the matrix 

z 4>-T(HTH- I/"Y2) 
4> + rT(HTH- Ih2) 

] 

E (11) 

2. 	 Find the eigenvectors of Z. Denote those 
eigenvectors corresponding to eigenvalues 
outside the unit circle as Xi (i = 1, ... ,n). 

3. 	 Form the matrix 

(X1 	 {12) 

where X1,X2 E Rnxn. 

4. 	 Compute M = X2X! 1 . 

Alternatively, (10) can be solved iteratively. Note 
from the problem statement that as -y gets larger, 
the problem is "easier'' to solve. If -y is too small, 
the problem will not have a solution, and X 1 will 
be singular. 

2.4. Hybrid H2/H00 Filtering 

H 2 and H 00 filters both have pros and cons. The 
H 2 filter assumes that the noise statistics are 
known. The H 00 filter does not make this assump-
tion, but further assumes that absolutely nothing 
is known about the noise characteristics. 

Suppose that although the noise statistics are not 
perfectly known, the user does have a rough idea 
of these statistics. Also suppose that a user desires 

to minimize some combination of the H 2 and H 00 

objective functions. What could be done? Per-
haps a hybrid H 2/H 00 filter could be used. 

Several approaches to hybrid ffitering have been 
proposed in the literature. For instance, (Khar-
gonekar, 1992) considers a system driven by two 
independent noise processes - one with known 
statistics and one with unknown statistics. Then a 
filter gain is found which simultaneously satisfies 
two objectives: (1) bounding the 2-norm of G 1 , 

where G1 is the transfer function from the noise 
with known statistics to the estimation error, and 
(2) bounding the oo-norm of G2, where G2 is the 
transfer function from the noise with unknown 
statistics to the estimation error. Since this ap-
proach does not fit the problem considered in the 
following section, a more heuristic, hybrid filter-
ing approach is proposed. Simply use a weighted 
combination of the steady-state H 2 and H 00 gains 
in the estimator. That is, 

K 	 = d K(2) + (1- d)K(oo) (13) 

where [0, 1] 3d= the relative weight given to H 2 

performance. K(2) is given by the steady-state 
solution of (6) and K(oo) is the solution of (10). 
The key design parameter in the hybrid filter is 
the weight d. This weight must be chosen so as 
to ensure stability. A convex combination of two 
stable estimators is not necessarily stable, as is 
shown in Section 4.1. So the first criterion for the 
choice of d is stability. The second criterion is 
the relative weight given by the user to H 2 per-
formance versus H 00 performance. This relative 
weight can be determined on the basis of the en-
gineer's confidence in the a priori statistics. 

3. APPLICATION TO PHASE-LOCKED 
LOOP DESIGN 

Consider the problem of tracking a sinusoidal sig-
nal with an unknown, time-varying phase B(t): 

s(t) =A cos B(t). 	 (14) 

This signal is corrupted by noise. The device used 
to track such a signal is called a phase-locked loop. 
PLLs are of particular interest in Global Position-
ing System receivers. A GPS satellite transmits a 
sinusoidal signal modulated by a known pseudo-
random binary code. After the PR code is re-
moved from the signal, the receiver has access to 
the sinusoid. Since the sinusoid is transmitted at 
a known frequency, the frequency which the re-
ceiver tracks can be used to compute the doppler 
between the user and the satellite. The satellite 
orbit is known fairly accurately, so the doppler fre-
quency can be used to obtain the user's velocity. 
A GPS receiver can therefore be used as a nav-



Fig. 1. Phase-locked loop architecture. 

igational instrument in place of more expensive 
and complex inertial instruments. The receiver 
architecture considered in this paper is shown in 
Fig. 1. 

Note from Fig. 1 that the output of the arctan 
phase discriminator is modulo 21r. That is, the 
phase discriminator does not know the difference 
between 8 radians and 8+211" radians. If the phase 
estimation error suddenly goes from zero to some 
multiple of 211", it is said that a cycle slip has oc-
curred. So it is more important in a PLL to pre-
vent cycle slips than it is to maintain a small phase 
error. If the PLL maintains lock on the phase, 
the PLL contribution to a GPS receiver's velocity 
error is small compared to other sources of veloc-
ity error (Simon, 1993a; Simon, 1993b ). For in-
stance, the velocity error due to a typical4° RMS 
PLL tracking error may be of the order of 0.01 
feet/second, but the velocity error due to all other 
sources may be of the order of 0.10 feet/second. 
If a cycle slip occurs, then the velocity error due 
to the PLL tracking error momentarily jumps to 
0.90 feet/second. So undetected cycle slips can be 
catastrophic. In some cases, the noise is so high 
or the phase dynamics are so severe that the es-
timation error begins growing without bound. In 
this case it is said that loss of lock has occurred, 
and the user loses all velocity information from 
the GPS receiver. Therefore, for a GPS receiver, 
it is primarily loss of lock and secondarily cycle 
slips which are of greatest concern (rather than 
phase error). 

Optimal filtering can be used in PLL design by a 
metho~ similar to that used in (Vilnrotter, 1988). 
Create a state vector from successive derivatives 
of the incoming phase. 

(15) 

where 

8(t~c) 

81 (t~c) 

811 (t~c) 	 (16) 
8"' (t~c). 

This leads to the state transition equations (Vil-
nrotter, 1988) 

where the approximations are valid for a small 
sample period T. This gives rise to the system 
description 

Zk+l = tPXk + Vk 	 (21) 
Yk = Hz~c+nk 

where the system matrices are given by 

1 T T 
2 
/2 T3/6 ) 

0 1 T T 2 /2 (22)0 0 1 T( 
0 0 0 1 

H = (1000). (23) 

As a further approximation, the fourth derivative 
of the phase is modelled as a white noise process 
with variance N. 

(24) 

Similarly, the continuous-time phase measure-
ment noise is modelled as a white noise process 
with variance No, so the variance of the sampled 
version is No/T. 

E[n(t)n(r)] 	 Noo~t- r) (25) 
No

E[n(t~c)n(tj)] r6k-j· 

These considerations lead to the assumed noise 
statistics 

(26) 

(27) 

The filter structure used to obtain a state estimate 
is given by 

(28) 



---
A constant gain K will be used due to real-time 
computational constraints. Note that the esti-
mate O~c {the first component of x~c) is actually 
an estimate of the phase modulo 21r. This esti-
mate can be placed in the proper phase cycle by 
using the frequency estimate wk. Conceptually, 
this process can be viewed as follows: 

i = sign{Bk-1 +Twk-1- B~c) 

do while IBk-1 + Twk-1- ok I > 7r 

ok = ok + 21ri. 

If the noise processes nk and vk are zero-mean, 
Q1c and R~c are known, and the user wants to min-
imize the variance of the phase estimation error, 
then the steady-state Kalman filter gain can be 
used. If, on the other hand, the noise processes 
may or may not be zero-mean, Qk and R~c are 
not known, and the user wants to minimize the 
worst-case effect of the noise on the phase estima-
tion error, then the H 00 filter gain can be used. 
If the user has some idea of the noise statistics 
{but does not know them exactly) and wants to 
minimize some combination of the H 2 and H 00 

objective functions, then the hybrid H2/Hoo filter 
discussed in Section 2.4 can be used. 

4. SIMULATION RESULTS 

The hybrid H 2/H 00 filter discussed in this paper 
was simulated for a GPS receiver used for missile 
navigation. The simulated missile trajectory orig-
inated at Vandenberg Air Force Base in Califor-
nia, and ended in the South Pacific. The behavior 
of the H 2/H 00 PLL was investigated by examining 
its ability to track the phase between the missile 
and one GPS satellite for the first 60 seconds of 
boost (i.e., during Stage I burn). The filter rate 
was fixed at 50 Hz. The satellite-to-missile range, 
range rate, and range acceleration are depicted in 
Figs. 2-4. The relationship between the phase 8 
and the range p is given by 

p(t) = c8(t) (29)
271" f 

where c is the speed of light and f is the frequency 
of the sinusoid. This paper concentrates on track-
ing the GPS L1 carrier at a frequency of 1.575 
GHz. It can be assumed without loss of general-
ity (see Fig. 1) that the magnitude of the carrier 
is unity. 

It was found, in agreement with {Vilnrotter, 
1988), that >. ~ 1.055 resulted in the best per-
formance for the Kalman filter. Typical carrier-
to-noise ratios {CNRs) for GPS are around 30 to 
40 dB-Hz {Hurd, 1987). But if atmospheric con-

i 13885 ························································································· 
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Fig. 2. Satellite-to-missile range. 
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ditions are severe or jamming is present, the CNR 
could drop into the 20's and biases could be intro-
duced into the measurement noise. The CNR is 
related to the variance of the measurement noise 
(R) by 

1
CNR=-	 (30)

2TR 

where T = 0.02 seconds is the filter 
rate (Jeruchim, 1992; p. 282). The interest in 
this paper is tracking the GPS L1 carrier in spite 
of the fact that the CNR is significantly different 
than expected and the noise is not zero-mean. It 
is assumed in this section that there is a constant, 
unknown phase measurement bias of 1 radian. So 
the true measurement equation is 

(31) 

where n~c is zero-mean noise, but the filters are 
designed according to the incorrect measurement 
equation 

(32) 

The simulated noise n~c was generated with a 
Laplacian (exponential) density, which has heav-
ier "tails" than a Gaussian density. 

4.1. Assumed CNR = 90 dB-Hz 

The steady-state Kalman filter gain for CNR = 
30 dB-Hz and.\= 1.055 was found to be 

0.5799 ) 
K(2) = 11.6510 (33)132.2306 .( 

728.8681 

The H 00 estimation problem was found numeri-
cally to be solvable for 'Y > 1, so 'Y = 1.01 was 
used in (10) to compute the H 00 gain 

0.9127 ) 
x<oo) = 1.8732 (34)1.7398 .( 

0.6833 

As discussed in Section 2.4, the user needs to 
choose a value of the Kalman weight gain d such 
that the hybrid filter is stable. Figure 5 shows the 
magnitude of the largest eigenvalue of the hybrid 
estimator as a function of d. It is seen that the 
estimator is unstable for 0.01 < d < 0.31. This 
shows that d must be chosen greater than 0.31 for 
satisfactory estimator performance. How much 
greater? For the pure H 00 filter, 1-Xma:~:l = 0.988. 
Note from Fig. 5 that as d increases, 1-Xma:~:l also 
increases at first, then begins decreasing. l>•m=l 
drops back down to 0.988 at d ~ 0.45. So in this 

-3 1.05 

I  ,..  
10.9 
• 
~OB5~;-~~--~+--r-+~r-+-~ 

0 0.1 0.2 0.3 OA 0.5 0.8 0.7 0.8 0.9 
relative weight of KalmM gain 

Fig. 5. The stability of the hybrid filter. The Kalman 
gain was designed for CNR = 30 db-Hz. 

0.5 0.6 0.7 OB 0.9 
relative weight of Killman glln 

Fig. 6. 	Probability of loss of lock. The Kalman gain 
was designed for CNR = 30 db-Hz. Note that 
the filter is unstable ford< 0.3. 

application, a rule of thumb for hybrid H 2/H 00 

filter design is to choose d ~ 0.45. This ensures 
that the hybrid filter is at least as stable as the 
pure H 00 filter. 

Recall that the primary goal is in maintaining lock 
during the mission. With this in mind, the prob-
ability of loss of lock was obtained experimentally 
for various values of the Kalman gain weight d 
in (13). Recall further that d = 0 corresponds 
to a pure H 00 filter, while d = 1 corresponds to 
a pure H2 filter. Probability of loss of lock was 
obtained by conducting 100 Monte Carlo samples 
for each data point. This probability is shown in 
Fig. 6 as a function of d for three values of CNR. It 
is seen that the use of hybrid H2/H00 (d < 1} fil-
tering results in a noticable improvement in phase 
lock over pure H2 or pure H 00 filtering. Further-
more, the advantage becomes more significant as 
the CNR decreases. For example, a pure Kalman 
filter with a CNR of 20 dB-Hz has a 55% chance 
of losing lock. But a hybrid H 2/H 00 filter with a 
weight d around 0.4 or 0.5 only has a 10% chance 
of losing lock. 

When the Kalman filter does maintain lock, it per-
forms better than the hybrid filter. This is seen in 
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Fig. 7. Average nwnber of cycle slips when the PLL 
maintains lock. The Kalman gain was designed 
for CNR = 30 db-Hz. Note that the filter is 
unstable ford< 0.3. 

Fig. 8. Probability of loss of lock. The Kalman gain 
was designed for CNR = 30 db-Hz. Note that 
the filter is unstable ford< 0.3. 

Fig. 7, which shows the average number of cycle 
slips 88 a function of d for various CNR. The num-
bers in Fig. 7 are derived only from those Monte 
Carlo samples which did not lose lock. So if the 
Kalman filter does not lose lock, the chances are it 
will have fewer cycle slips than the hybrid IDter, 
but the advantage is not significant. For exam-
ple, at a CNR of 20 dB-Hz, the Kalman IDter {if 
it maintains lock) slips an average of one cycle, 
while a hybrid filter with d around 0.4 or 0.5 slips 
an average of two or three cycles. 

Figure 8, which shows the probability of loss of 
lock as a function of CNR for various values ofd, is 
another way of looking at the data. It is again seen 
that hybrid IDtering is most advantageous when 
the CNR is low. For a CNR above 24 dB-Hz or 
so, none of the filters has a problem with loss of 
lock. 

Figure 9 shows the RMS phase error 88 a function 
of CNR for various values ofd. {Again, the num-
bers in Fig. 9 are derived only from those Monte 
Carlo samples which did not lose lock.) Although 
the Kalman filter has an advantage over the hy-

57+--;--~--r-~--+-~--4---r--r~ 

~ ~ ~ n ~ ~ ~ v 3 ~ ~ 

c.rler-t~H~olse r111t1o (diWtz) 

Fig. 9. RMS phase error when the PLL maintains lock. 
The Kalman gain was designed for CNR = 30 
db-Hz. Note that the filter is unstable ford< 
0.3. 

brid ffiter, this advantage is not pronounced. For 
example, at a CNR of 20 dB-Hz, the Kalman filter 
has an RMS phase error of 61.0°, while the hybrid 
(d = 0.4) filter has an RMS phase error of 61.8°. 
At the nominal CNR of 30 dB-Hz, the Kalman fil-
ter has even less of an advantage over the hybrid 
filter- 57.7° versus 57.8°. 

4.2. Assumed CNR = £0 dB-Hz 

The steady-state Kalman filter gain for CNR = 
20 dB-Hz and~= 1.055 was found to be 

0.4926 ) 
K(2) _ 7.6403 (35)- 65.9854 .( 

274.1215 

As before, an unknown bias of 1 radian corrupts 
the phase measurement. The PLL performance as 
a function of Kalman gain weight d and CNR is 
shown in Figs. 10 - 13. Results are essentially the 
same as seen in Figs. 6- 9. Figure 10 shows that 
the use of a hybrid IDter decreases the probabil-
ity of loss of lock as compared to a pure Kalman 
filter, with the advantage being more pronounced 
for low CNRs. Figure 11 shows that when the 
Kalman IDter maintains lock, it will slip fewer cy-
cles on average than the hybrid filter. Figure 12 
shows the decrease of the probability of loss of 
lock with decreasing d and increasing CNR. Fi-
nally, Fig. 13 shows that the Kalman filter has a 
slight advantage over the hybrid ffiter relative to 
RMS phase error (again, only when the Kalman 
IDter maintains phase lock). 

5. CONCLUSION 

A hybrid H 2/H 00 filtering approach has been pro-
posed and applied to phase-locked loop design. 
This hybrid approach not only takes advantage 
of the noise statistics knowledge which is inherent 
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Fig. 10. Probability of loss of lock. The Kalman gain 
was designed for CNR = 20 db-Hz. Note that 
the filter is unstable ford< 0.3. 
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Fig. 11. Average number of cycle slips when the PLL 
maintains lock. The Kalman gain was de-
signed for CNR = 20 db-Hz. Note that the 
filter is unstable for d < 0.3. 
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Fig. 12. Probability of loss of lock. The Kalman gain 
was designed for CNR = 20 db-Hz. Note that 
the filter is unstable for d < 0.3. 
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Fig. 13. RMS phase error when the PLL maintains 
lock. The Kalman gain was designed for CNR 
= 20 db-Hz. Note that the filter is unstable 
ford< 0.3. 

in H 2 filter design, but also takes advantage of 
the robustness of H 00 filtering. It is seen from the 
simulation data that, in general, the hybrid filter 
provides a large advantage over the pure Kalman 
filter and the pure H 00 filter. This advantage is 
particularly noticable at low CNRs, even when the 
Kalman filter designer has perfect knowledge of 
the true CNR. The Kalman filter is not robust to 
departures from the assumed noise statistics, but 
the H 00 filter does not take advantage of the de-
signer's (albeit incomplete) knowledge of the noise 
properties. Hybrid filtering is an approach which 
combines the best of both worlds - or at least 
avoids the worst of both worlds. It is thus recom-
mended that the hybrid H 2/H 00 filter proposed in 
this paper be given serious consideration for PLL 
design in particular, and for state estimation in 
general. 
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