
Cleveland State University Cleveland State University

EngagedScholarship@CSU EngagedScholarship@CSU

Electrical Engineering and Computer Science
Faculty Publications

Electrical and Computer Engineering
Department

11-1995

Fault Tolerant Training for Optimal Interpolative Nets Fault Tolerant Training for Optimal Interpolative Nets

Daniel J. Simon
Cleveland State University, d.j.simon@csuohio.edu

Hossny El-Sherief
TRW System Integration Group

Follow this and additional works at: https://engagedscholarship.csuohio.edu/enece_facpub

 Part of the Electrical and Computer Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Original Citation Original Citation
D. Simon and H. El-Sherief. (1995). Fault Tolerant Training for Optimal Interpolative Nets, IEEE
Transactions on Neural Networks, 6(6), 1531-1535, doi: 10.1109/72.471356.

Repository Citation
Simon, Daniel J. and El-Sherief, Hossny, "Fault Tolerant Training for Optimal Interpolative Nets" (1995). Electrical
Engineering and Computer Science Faculty Publications. 153.
https://engagedscholarship.csuohio.edu/enece_facpub/153

This Article is brought to you for free and open access by the Electrical and Computer Engineering Department at
EngagedScholarship@CSU. It has been accepted for inclusion in Electrical Engineering and Computer Science
Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please
contact library.es@csuohio.edu.

https://engagedscholarship.csuohio.edu/
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece_facpub
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece
https://engagedscholarship.csuohio.edu/enece_facpub?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/enece_facpub/153?utm_source=engagedscholarship.csuohio.edu%2Fenece_facpub%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Fault-Tolerant Training for Optimal Interpolative Nets
Dan Simon and Hossny EI-Sherief

Abstract-The optimal interpolative (01) classification network
is extended to include Cault tolerance and make the network more
robust to the loss oC a neuron. The 01 net has the characteristic
that the training data are fit with no more neurons than necessary.
Fault tolerance Curther reduces the number oC neurons generated
during the learning procedure while maintaining the geueraliza
tion capabilities oC the network. The learning algorithm Cor the
Cault-tolerant 01 net is presented in a recursive Cormat, allowing
Cor relatively short training times. A simulated Cault-tolerant 01
net is tested on a navigation satellite selection problem.

I. L"ITRODUCTION

ONE of the difficulties that a neural net trainer often faces
is deciding how many neurons to use in the network.

If too many neurons are used, training time may be much
longer than necessary, and the resultant network may have
poor generalization properties [1]. If too few neurons are
used, the learning algorithm may not converge to a suitable
configuration. It is clearly desirable to use a training method
which intelligently and automatically generates the optimal
number of neurons.

One solution to this difficulty is the optimal interpolative
(OJ) net [2]. The OJ net is a three-layer classification network
which grows only as many middle layer neurons as necessary
to correctly classify the training set. The efficient recursive
learning procedure presented in [3] and [4] makes the OJ net
an attractive architecture.

In the present paper we extend the OJ net learning algorithm
to include fault tolerance. Biological systems are inherently
fault tolerant due to the distributed nature of information
representation [5]. Fault tolerance has also been touted as an
inherent property of artificial neural systems. But this has often
been taken for granted rather than being explicitly provided
for in the learning method. In this paper we explicitly account
for fault tolerance in the choice of the optimal weights. This
increases learning time but makes the resulting network more
robust to failures.

Section II reviews the architecture of the 01 net and the
concept of fault tolerance. Section III presents a recursive
learning algorithm for a fault-tolerant 01 net. Section IV
presents some simulation results, and Section V presents
concluding remarks.

II. PRELIMINARIES

A. The Optimal Interpolative Net

Suppose we are given a training set with q sets of in
put-output pairs. Each of the q training inputs xi E Rn maps

into one of m classes Cj. Let yi E Rm be the desired output
corresponding to xi. The output yi is defined as

0)

where OJ is the m-dimensional vector containing all zeros
except for the jth element, which is one.

The 01 net consists of three layers of neurons. The first
layer has n neurons, one for each component of the input.
The second layer has p neurons, where p is a number which is
chosen during training. The third layer has m neurons, one for
each component of the output. The weight from the ith input
neuron to the jth middle layer neuron is given by Vij, where

(2)

The vectors v i are called prototypes and are chosen from
the training set inputs during the learning procedure. The
activation function at each middle layer neuron is given by
¢(s) = exp (s/p) where p is a learning constant chosen by
the user. The weight from the jth middle layer neuron to the
kth output layer neuron is given by Wjb where W is the
weight matrix to be chosen during training

mJp IIY WTGIIF ~ W = (GGT)-lGyT E RPxm (3)

where II . IIF refers to the Frobenius norm of a matrix [10].
Hereafter the subscript F will be omitted for convenience.
y E Rmxq and G E Rpxq are given by

q
<p(vl:, x) 1

(4)

(5)

¢(vP, xq)

where (-, .) denotes the dot product of two vectors. A training
input is included as a prototype only if it does not induce ill
conditioning in GGT. This reduces the number of prototypes,
and hence limits the number of middle layer neurons in the
network.

In practice, the learning procedure is presented with q
exemplars during training, one at a time. A given exemplar
is included in the minimization problem of (3)-(5) only if it
cannot be correctly classified by the network which has been
trained up to that point. Those exemplars which are included
in Y and G are referred to as subprototypes and are collected
in the vectors Zi. So Y and G in (4)-(5) are replaced with

Y =[yl ... yl] (6)

G [<P(V
1

:, zl)
(7)

¢(vp,zl)

where l is the number of subprototypes chosen from the
exemplar inputs (l :::; q).

B. Fault Tolerance

Fault tolerance is a measure of the ability of a system to
maintain its functionality in the presence of damage. For a
neural network, fault tolerance can be defined as the ability
of the network to correctly classify inputs in the presence of
a failed neuron.

The OI net is trained to minimize ilY - WTGil with respect
to the weight vector W. A failure of the jth middle layer
neuron is equivalent to replacing the jth row of G with zeros.
If we assume that all p middle layer neurons are equally
susceptible to failure, then we can add fault tolerance to the
learning procedure by solving

m~n {IIY - WTGII + a ~ IIY - WTGjll} (8)

where Gj is equal to G except that the jth row is replaced with
zeros, and a is the relative weight placed on fault tolerance.
This problem is in tum equivalent to solving

min IIY - wTgl1 =? W = (QgT)-lgyT (9) w
where y E Rmxl(p+!) and 9 E Rpxl(p+1) are given by

Y =[Y aY '" aY] (10)

9 = [G aG1 •.. aGp]. (11)

ill. THE RECURSIVE LEARNING ALGORITHM

In this section we extend the recursive 01 net learning
algorithm [3], [4] to include the fault tolerance described in
the previous section. We have q exemplars,'l subprototypes,
and p prototypes such that q ? l ? p. Denote the initial set of
training exemplars by A. We try to classify the exemplar Xi

under consideration with the neural network which has been
generated so far. If the learning procedure has so far generated
p prototypes and l subprototypes, the network mapping is
denoted by f;: Rn ~ RID. If Xi can be correctly classified
{i.e., max lJ;(x i)] = max (yin we retain xi in A and proceed
with the next exemplar. If Xi cannot be correctly classified, we
remove xi from A, append it to the matrix Z of subprototypes,
and solve the minimization problem (9). We then consider also
including Xi as a prototype and appending it to the weight
matrix V. For xi to qualify as a prototype, it must not induce ill
conditioning in the matrix ggT. This process is repeated until
all of the exemplars remaining in A are correctly classified.
The notation used in the learning algorithm is summarized in
Table I.

1) Initialization.

p 	 l = 1

Y~ = [Yi aYi] n q - 1.

Reindex the exemplars x 2 , •.. , x q and their correspond
ing outputs from one to n, place them in the set A, and
compute

WI = Y[T
p 4>(v l , VI)

g~ = [G~ 0].

TABLE I

OI NET NOTATION

Symbol !f~~llg_
training input vector,,'
dimension of each input vedorn
,et of all training input vedorsA
training output vedorV'
dimension of each output vectorm
number of training exemplars q

vi prototype vector (taken from A)
V matrix containing prototypes

number of prototypesz,p
subprototype vector (taken from V)

Z matrix containing sUbprototypes
number of sUbprototypes

fault tolerance weight

I

" the OJ neural map based on the p prototypesIi
in V and Ihe I in Z

2) Main Recursion.
For i = 1to n, do the following.

a) 	 Compute ii = f;(x i). If xi E Cj and
max(Ol, ... , y:r,) = yj, then xi has been correctly
classified by f;. We therefore retain Xi in A and
proceed with the next exemplar in A.

b) 	 If f; does not correctly classify Xi, however, we
set zl+1 == xi and form the matrices

Yi+1 	== [Yi yi] E Rmx(l+l) (12)

y!+1 = [Yi+1 aYi+l'" aYi+I] E RIDX (l+I)(p+l) (13)

k~+1 	= [¢(v1, zl+I) ...¢(vP, zl+l)] E RP X1 (4)

Gl+ I == [G I k l +1) E RPX(l+1) 	 (15)
p p P

Gl+ 1 = Gl+ 1 except that the ith row
P' p

is replaced with zeros. (16)

91+1 = [GI+1 aGI+! ...aGI+1] E Rpx(p+1)(1+1) (17)p p pI pp 	 .

c) 	 We then use a recursive method to solve

min 	Ilyl+1 - (Wl+1)Tgl+1ll. (18)
W I + 1 P P P

p

To obtain a recursive solution, we let

Rl+l == gl+l(gl+I)T
P p p

= R~ + k~+I(k~+1)T + a2[k~tl(k~tlf
+... + kl+1(k l+l)T]

PP PP
P

(19)== R~ + L: K.iK.[
i=O

where kl+1 is the same as kpl+1 except that the p. 	 .
ith element is replaced with a zero. Recursively
applying the matrix inversion lemma [6] to (19)
gives the algorithm

(R~+1)-1 :;;:: (R~)-I

for 	 i =0 to p,
(R1+1)-1K.'K.T(RI+l)-1

(RI+1)-l _ P • t p (20)
p - 1+K.'[(R1+1)-IK.i

Equation (18) is then solved as

W~+1 :;;:: (R~+I)-lg~+1(y;+lf. (21)

d) 	 We next consider including zl+1 as a prototype.
We will include z!+1 as a prototype only if we
do not encounter ill conditioning in the solution
of the problem

where

To determine if 9!t\ (9~t\)T is well conditioned
and to obtain a recursive solution to (22), we note
that

where the (p + 1)(l + I)-element vector rl+1 is
given by

(26)

Recursively applying the matrix inversion lemma
as in (20) results in

(27)

where A -1 is computed as

A- l 	 = (R~+1)-1

for 	 i =:: 1 to l + 1,

A-I T A-IA- l 	 _ gig; icl

- 1 + gT A-Igi .

(28)

The vector gi is defined as the ith column in G~+1 ,
and f3 and '11 are given by

'11=--':---	 (30)

e) 	 We monitor the value of f3 to prevent iII condi
tioning. A threshold "(is chosen such that Zl+I is
included as a prototype only if f3 > "(. If in fact
f3 is greater than ,,(, we compute (R~·:;'lI)-l using
(27)-(30), form the m x (l + 1)(p + 2) matrix

(31)

and solve (22) as

w~ti = (R~~11)-19!t\(y;tlf. (32)

We then augment the subprototype Zl+1 to the
prototype matrix V and the sub prototype matrix
Z, and increment p and l by one.

f) 	 If f3 < 'Y then zl+I cannot be included as a
prototype. We augment zl+ 1 to the subprototype
matrix Z and increment l by one to reflect the
addition of a new subprototype.

3) Reiterate.
After Step 2) we check if any new subprototypes were

added to Z. If so, then the network has been modified,
and we have to check if the exemplars remaining in A
can still be correctly classified. So we set n = q l,
reindex the exemplars in A from one to n, reindex the
corresponding outputs, and go back to Step 2).

If no new subprototypes were added during Step 2),
then the learning procedure tenninates. It is clear that
Step 2) is executed q 1 times at the most [3].

In the basic 01 net learning algorithm [3] a recursive
computation of the error was derived. A given exemplar was
included as a prototype only if the resultant decrease in classifi
cation error was large enough to justify the associated increase
in variance. When fault tolerance is added to the learning
algorithm as presented in this section, however, there is no
apparent way to recursively compute the classification error.
Of course, a user can still compute the error decrease to ensure
that an exemplar is worth adding as a prototype. But since there
is no recursive method available for this computation, it has
not been included in the algorithm presented in this section.

IV. SIMULATION REsULTS

The fault-tolerant 01 net discussed in this paper was applied
to the problem of navigation satellite selection. Comparison of
the 01 net, backpropagation, and nearest-neighbor classifica
tion has previously been presented [3]. So the data in this
section are limited to 01 net results.

A. Navigation Satellite Subset Selection
A global positioning system (GPS) receiver generates a user

position and time by measuring the range from the user to
four or more GPS satellites [7]-[8], but a GPS receiver can
process only a subset of available satellite signals. So before
processing, the receiver must decide which subset to use. The
optimal choice can be made by using the subset which results
in the smallest magnification of satellite errors onto resultant
user position and time.

A user's GPS receiver measures a set of n ranges
(Rl' R2 , "', Rn) between the user and n GPS satellites. The
GPS satellites are at positions (Xi, Yi, Zi), (i = 1, ... , n).
The four unknowns which the user needs to determine are
the offset T between receiver time and GPS time, and the
user position (x, y, z). We denote the user's best estimate of
time offset and position as T and (x, fj, z). We denote the
corresponding best estimates of range as eRI, R2, ... , Rn).

The errors between the true and estimated quantities are
denoted by .6.X, .6.y, .6.z, .6.T, and .6.Ri . The errors of the
user's estimate of time and position can be determined by
solving the follo\ving n simultaneous nonlinear equations for
.6.x, .6.y, .6.z, and .6.T [9}

(x +.6.x Xi)2 + (fj + .6.y - Yi)2 + (£ + .6.z - Zi)2 =
~ ~ 2

(Ri + .6.Ri - cT - cAT) (i = 1, "', n) (33)

where c is the speed of light. These equations can be linearized
to obtain the equation

:=} Ax= r. (34)

If the covariance of r is normalized to an identity matrix,
we obtain a Simplified expression for the covariance of user
position and time

cov(T):::: I:=} cov(x) = (AT A)-l. (35)

A useful scalar measure of the magnification of GPS range
measurement errors onto user position and time errors is the
square root of the trace of the above matrix. This quantity is
referred as geometric dilution of precision (GOOP)

GDOP Jtrace(AT A)-I. (36)

How can GOOP be computed without resorting to matrix
inversion? Recall the following general facts about the trace
and eigenvalues of a matrix [10J, [11 J:

1) The trace of a matrix is equal to the sum of its eigen
values,

2) The determinant of a matrix is equal to the product of
its eigenvalues, and

3) If A has eigenvalues Ai then A k has eigenvalues Af,
where k is any integer.

Using X to denote the four-element vector of the eigenvalues
of AT A, we can define the following four functions

h(.~)=Al+'x'2+A3+A4 trace (ATA) (37)

heX) =Ai + A~ + A~ +,X,~ = trace [(ATA)2] (38)

hCX) =Ai + A~ + A~ + A~ trace [(AT A)3] (39)
- T14(A) AIA2A3A4 =det (A A). (40)

Using the above notation, the GOOP which we wish to
n4calculate is given as a scalar functional of the n4 --+

mapping leX)

GOOP =JXlI + ,X,;-1 + .\;-1 + A4 1

= GDOP[leX)]. (41)

The mapping from leX) to GOOP cannot be determined
analytically. But this complex, nonlinear mapping is the type

Fault Tolerance Weight

Fig. 1. Effect of fault tolerance weight on number of neurons.

of problem at which neural networks exceL A neural network
can be designed to inductively generate a GOOP classifi
cation algorithm by generalizing from known input--output
relationships [12J, [13].

V. RESULTS

The fault-tolerant OI net described in this paper was sim
ulated on a VAX 8650 computer. Training took place for
a GPS receiver located at 5000 feet above San Francisco
(37.5 degrees latitude, 122 degrees longitude) in an I8-satellite
constellation. Once each hour, for 12 hours, the functions Ii
(i I, 2, 3, 4) were calculated for each visible four-satellite
subset, and GOOP was calculated by explicitly inverting AT A.
If 14 was less then 0.12, the satellite set was immediately
discarded from consideration. Such a low determinant can be
shown by simulation to correspond to a GDOP too high for
consideration. At each training time there were between five
and seven visible satellites. There were thus between 15-35
four-satellite sets from which to choose.

The network was then tested on a simulated 120-second
missile trajectory. The trained neural network was used to

. classify each satellite group (according to GDOP) every two
seconds. There were between five and seven satellites visible
during the boost phase, and the satellite configuration with the
best GDOP changed twice during that time.

Several 01 nets were trained and tested for different val
ues of the weight a. Each 01 net had three input neurons
corresponding to 12, 13, and 14 (since /J was constant), and
each 01 net had two output neurons. A satellite group with
a GDOP less than the classification threshold should have an
output vector of [1, OJ, and a group with a GDOP greater
than the threshold should have an output vector of [0, 1].
Each 01 net used a fitting parameter p = 0.1 and an ill
conditioning threshold f 10-8 • Fig. 1 shows the number of
prototypes (hidden layer neurons) generated as a function of
the weight a. In general, the number of prototypes decreases
as a increases. This is because we have assumed that each
hidden layer neuron has a fixed probability of failure, so the
probability of a network failure increases linearly with the
number of hidden layer neurons. Fig. 1 reflects the fact that a
smaller network has a smaller probability of failure. If we wish

No Neuron Failures

One Neuron Failureo

Fault Tolerance Weight

Fig. 2. Classification perfonnance on training data.

No Neuron Faiiures

One Neuron Fililure

. Fault Tolerance Weight

Fig. 3. Classification perfonnance on test data.

to assume that a network failure is equally likely regardless
of the number of neurons, we could replace a in (8) with
alp. This change can be reflected in the learning algorithm of
Section m in a straightforward manner.

Figs. 2 and 3 show the performance of the fault-tolerant
01 net for various values of a. It is seen that increasing a
significantly improves the fault tolerance of the OJ net. It is
also seen that increasing a does not hurt the performance of
the net even if there are no neuron failures. At first glance this
result is surprising. But adding fault tolerance can be thought
of as protecting the net against miscIassification due to noisy
data. This leads to improved generalization properties and
good performance even for the nominal network. This shows
that even if we consider the probability of failure negligible,
it pays to build fault tolerance into the network.

Of course, we cannot get something for nothing. The price
we pay for fault tolerance is increased learning time. The
addition of fault tolerance results in an increase by a factor ofp
of the size of many of the matrices in the learning algorithm of
Section III. But the recursive learning algorithm is so efficient
that this increase in training time is probably not a critical
factor. Table II shows the increase in training time due to the
introduction of fault tolerance.

TABLE n
OJ NET TRAINING TIMES IN VAX CPU SECONDS (150 TRAINING INpUTS)

VI. CONCLUSION

A recursive learning algorithm for a fault-tolerant 01 net has
been presented. The inclusion of fault tolerance increases the
training time by a factor of between two and five, depending
on the weight given to fault tolerance. But fault tolerance
improves the generalization properties of the network while at
the same time decreasing the number of hidden layer neurons
(and hence decreasing the complexity of the network).

The fault tolerance discussed in this paper applies to a single
neuron failure. An extension to tolerance for failures of two
or more neurons is conceptually straightforward, but may give
rise to large increases in training time.

The fault-tolerant OJ net has been applied to the navigation
satellite selection problem. The simulated results show that not
only is fault tolerance increased, but nominal performance does
not suffer relative to an 01 net without fault tolerance. This is
because the introduction of fault tolerance can be viewed as
protecting the network against noisy data, and hence improving
the generalization properties of the network .

REFERENCES

[1] E. Kamin, "A simple procedure for pruning backpropagation trained
neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 239-242,
June 1990.

[2] R. deFigueiredo, "An optimal matching-score net for pattern classifica
tion," in Proc. lJCNN, vol. m, San Diego, CA, June 17-21, 1990, pp.
909-916.

[3J S. Sin and R. deFigueiredo, "An evolution-oriented learning algorithm
for the optimal interpolative net," IEEE Trans. Neural Networks, vol. 3,
no. 2, pp. 315-323, 1992.

[4] __, "Efficient learning procedures for optimal interpolative nets,"
Neural Networks, vol. 6, pp. 99--113, 1993.

(5] C. Neti, M. Schneider, and E. Young, "Maximally fault tolerant neural
networks," IEEE Trans. Neural Networks, vol. 3, pp. 14-23, Jan. 1992.

[6] L. Ljung and T. Soderstrom, Theory and Practice ofRecursive Identifi-
cation. Cambridge, MA: MIT Press, 1985.

(7] H. El-Sherief, "Aerospace applications of global positioning system," in
Proc. Electrical Engineering Seminar, Univ. Nevada, Reno, 1992.

[8] P. Janiczek and S. Gilbert, &is., Global Positioning Syst., vols. 1-3.
Washington, DC: Institute Navigation, 1980, 1984, 1986.

(9] P. Jorgensen, "Navstar/global positioning system 18-satellite constella
tions," in Global Positioning Syst., vol. 2. Washington, DC: Institute
Navigation, 1984, pp. 1-12.

[10] G. Golub and C. Van Loan, Matrix Computation, 2nd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1990.

[11] R. Hom and C. lohnson, Matrix Analysis. New York, NY: Cambridge
Univ. Press, 1990.

[l2] C. Townsend and D. Feucht, Designing and Programming Personal
Expert Systems. Blue Ridge Summit, PA: Tab Books, 1986.

[13] D. Simon and H. El-Sherief, "A fault tolerant optimal interpolative net,"
in Proc. IEEE Con! Neural Networks, vol. n, San Francisco, CA, Mar.
28-Apr. 1, 1993. pp. 825-830.

VernM
Typewritten Text

VernM
Typewritten Text
Post-print prepared by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University (2015)

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

VernM
Typewritten Text

	Fault Tolerant Training for Optimal Interpolative Nets
	Original Citation
	Repository Citation

	20140512_1631570001
	20140512_1631570002
	20140512_1631570003
	20140512_1631570004
	20140512_1631570005

