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Fault-Tolerant Training for Optimal Interpolative Nets 
Dan Simon and Hossny EI-Sherief 

Abstract-The optimal interpolative (01) classification network 
is extended to include Cault tolerance and make the network more 
robust to the loss oC a neuron. The 01 net has the characteristic 
that the training data are fit with no more neurons than necessary. 
Fault tolerance Curther reduces the number oC neurons generated 
during the learning procedure while maintaining the geueraliza­
tion capabilities oC the network. The learning algorithm Cor the 
Cault-tolerant 01 net is presented in a recursive Cormat, allowing 
Cor relatively short training times. A simulated Cault-tolerant 01 
net is tested on a navigation satellite selection problem. 

I. L"ITRODUCTION 

ONE of the difficulties that a neural net trainer often faces 
is deciding how many neurons to use in the network. 

If too many neurons are used, training time may be much 
longer than necessary, and the resultant network may have 
poor generalization properties [1]. If too few neurons are 
used, the learning algorithm may not converge to a suitable 
configuration. It is clearly desirable to use a training method 
which intelligently and automatically generates the optimal 
number of neurons. 

One solution to this difficulty is the optimal interpolative 
(OJ) net [2]. The OJ net is a three-layer classification network 
which grows only as many middle layer neurons as necessary 
to correctly classify the training set. The efficient recursive 
learning procedure presented in [3] and [4] makes the OJ net 
an attractive architecture. 

In the present paper we extend the OJ net learning algorithm 
to include fault tolerance. Biological systems are inherently 
fault tolerant due to the distributed nature of information 
representation [5]. Fault tolerance has also been touted as an 
inherent property of artificial neural systems. But this has often 
been taken for granted rather than being explicitly provided 
for in the learning method. In this paper we explicitly account 
for fault tolerance in the choice of the optimal weights. This 
increases learning time but makes the resulting network more 
robust to failures. 

Section II reviews the architecture of the 01 net and the 
concept of fault tolerance. Section III presents a recursive 
learning algorithm for a fault-tolerant 01 net. Section IV 
presents some simulation results, and Section V presents 
concluding remarks. 

II. PRELIMINARIES 

A. The Optimal Interpolative Net 

Suppose we are given a training set with q sets of in­
put-output pairs. Each of the q training inputs xi E Rn maps 

into one of m classes Cj. Let yi E Rm be the desired output 
corresponding to xi. The output yi is defined as 

0) 

where OJ is the m-dimensional vector containing all zeros 
except for the jth element, which is one. 

The 01 net consists of three layers of neurons. The first 
layer has n neurons, one for each component of the input. 
The second layer has p neurons, where p is a number which is 
chosen during training. The third layer has m neurons, one for 
each component of the output. The weight from the ith input 
neuron to the jth middle layer neuron is given by Vij, where 

(2) 

The vectors v i are called prototypes and are chosen from 
the training set inputs during the learning procedure. The 
activation function at each middle layer neuron is given by 
¢(s) = exp (s/p) where p is a learning constant chosen by 
the user. The weight from the jth middle layer neuron to the 
kth output layer neuron is given by Wjb where W is the 
weight matrix to be chosen during training 

mJp IIY WTGIIF ~ W = (GGT)-lGyT E RPxm (3) 

where II . IIF refers to the Frobenius norm of a matrix [10]. 
Hereafter the subscript F will be omitted for convenience. 
y E Rmxq and G E Rpxq are given by 

q
<p(vl:, x ) 1 

(4) 

(5) 

¢(vP, xq) 

where (-, .) denotes the dot product of two vectors. A training 
input is included as a prototype only if it does not induce ill 
conditioning in GGT. This reduces the number of prototypes, 
and hence limits the number of middle layer neurons in the 
network. 

In practice, the learning procedure is presented with q 
exemplars during training, one at a time. A given exemplar 
is included in the minimization problem of (3)-(5) only if it 
cannot be correctly classified by the network which has been 
trained up to that point. Those exemplars which are included 
in Y and G are referred to as subprototypes and are collected 
in the vectors Zi. So Y and G in (4)-(5) are replaced with 

Y =[yl ... yl] (6) 

G [<P(V 
1 

:, zl) 
(7) 

¢(vp,zl) 

where l is the number of subprototypes chosen from the 
exemplar inputs (l :::; q). 



B. Fault Tolerance 

Fault tolerance is a measure of the ability of a system to 
maintain its functionality in the presence of damage. For a 
neural network, fault tolerance can be defined as the ability 
of the network to correctly classify inputs in the presence of 
a failed neuron. 

The OI net is trained to minimize ilY - WTGil with respect 
to the weight vector W. A failure of the jth middle layer 
neuron is equivalent to replacing the jth row of G with zeros. 
If we assume that all p middle layer neurons are equally 
susceptible to failure, then we can add fault tolerance to the 
learning procedure by solving 

m~n {IIY - WTGII + a ~ IIY - WTGjll} (8) 

where Gj is equal to G except that the jth row is replaced with 
zeros, and a is the relative weight placed on fault tolerance. 
This problem is in tum equivalent to solving 

min IIY - wTgl1 =? W = (QgT)-lgyT (9) w 
where y E Rmxl(p+!) and 9 E Rpxl(p+1) are given by 

Y =[Y aY '" aY] (10) 

9 = [G aG1 •.. aGp]. (11) 

ill. THE RECURSIVE LEARNING ALGORITHM 

In this section we extend the recursive 01 net learning 
algorithm [3], [4] to include the fault tolerance described in 
the previous section. We have q exemplars,'l subprototypes, 
and p prototypes such that q ? l ? p. Denote the initial set of 
training exemplars by A. We try to classify the exemplar Xi 

under consideration with the neural network which has been 
generated so far. If the learning procedure has so far generated 
p prototypes and l subprototypes, the network mapping is 
denoted by f;: Rn ~ RID. If Xi can be correctly classified 
{i.e., max lJ;(x i )] = max (yin we retain xi in A and proceed 
with the next exemplar. If Xi cannot be correctly classified, we 
remove xi from A, append it to the matrix Z of subprototypes, 
and solve the minimization problem (9). We then consider also 
including Xi as a prototype and appending it to the weight 
matrix V. For xi to qualify as a prototype, it must not induce ill 
conditioning in the matrix ggT. This process is repeated until 
all of the exemplars remaining in A are correctly classified. 
The notation used in the learning algorithm is summarized in 
Table I. 

1) Initialization. 

p 	 l = 1 

Y~ = [Yi aYi] n q - 1. 

Reindex the exemplars x 2 , •.. , x q and their correspond­
ing outputs from one to n, place them in the set A, and 
compute 

WI = Y[T 
p 4>(v l , VI) 

g~ = [G~ 0]. 

TABLE I 

OI NET NOTATION 


Symbol !f~~llg_ 
training input vector,,' 
dimension of each input vedorn 
,et of all training input vedorsA 
training output vedorV' 
dimension of each output vectorm 
number of training exemplars q 

vi prototype vector (taken from A)  
V  matrix containing prototypes 

number of prototypesz,p 
subprototype vector (taken from V)  

Z  matrix containing sUbprototypes 
number of sUbprototypes 

fault tolerance weight 


I 

" the OJ neural map based on the p prototypesIi 
in V and Ihe I in Z 

2) Main Recursion. 
For i = 1to n, do the following. 

a) 	 Compute ii = f;(x i ). If xi E Cj and 
max(Ol, ... , y:r,) = yj, then xi has been correctly 
classified by f;. We therefore retain Xi in A and 
proceed with the next exemplar in A. 

b) 	 If f; does not correctly classify Xi, however, we 
set zl+1 == xi and form the matrices 

Yi+1 	== [Yi yi] E Rmx(l+l) (12) 

y!+1 = [Yi+1 aYi+l'" aYi+I] E RIDX (l+I)(p+l) (13) 

k~+1 	= [¢(v1, zl+I) ...¢(vP, zl+l)] E RP X1 (4) 

Gl+ I == [G I k l +1) E RPX(l+1) 	 (15)
p p P 

Gl+ 1 = Gl+ 1 except that the ith row 
P' p 

is replaced with zeros. (16) 

91+1 = [GI+1 aGI+! ...aGI+1] E Rpx(p+1)(1+1) (17)p p pI pp 	 . 

c) 	 We then use a recursive method to solve 

min 	Ilyl+1 - (Wl+1)Tgl+1ll. (18)
W I + 1 P P P 

p 

To obtain a recursive solution, we let 

Rl+l == gl+l(gl+I)T
P p p 

= R~ + k~+I(k~+1)T + a2[k~tl(k~tlf 
+... + kl+1(k l+l)T]

PP PP 
P 

(19)== R~ + L: K.iK.[ 
i=O 

where kl+1 is the same as kpl+1 except that the p. 	 . 
ith element is replaced with a zero. Recursively 
applying the matrix inversion lemma [6] to (19) 
gives the algorithm 

(R~+1)-1 :;;:: (R~)-I 

for 	 i =0 to p, 
(R1+1)-1K.'K.T(RI+l )-1

(RI+1)-l _ P • t p (20) 
p - 1+K.'[(R1+1)-IK.i 

Equation (18) is then solved as 

W~+1 :;;:: (R~+I)-lg~+1(y;+lf. (21) 



d) 	 We next consider including zl+1 as a prototype. 
We will include z!+1 as a prototype only if we 
do not encounter ill conditioning in the solution 
of the problem 

where 

To determine if 9!t\ (9~t\)T is well conditioned 
and to obtain a recursive solution to (22), we note 
that 

where the (p + 1)(l + I)-element vector rl+1 is 
given by 

(26) 

Recursively applying the matrix inversion lemma 
as in (20) results in 

(27) 

where A -1 is computed as 

A- l 	 = (R~+1)-1 

for 	 i =:: 1 to l + 1, 

A-I T A-IA- l 	 _ gig; icl 

- 1 + gT A-Igi . 

(28) 

The vector gi is defined as the ith column in G~+1 , 
and f3 and '11 are given by 

'11=--':---	 (30) 

e) 	 We monitor the value of f3 to prevent iII condi­
tioning. A threshold "( is chosen such that Zl+I is 
included as a prototype only if f3 > "(. If in fact 
f3 is greater than ,,(, we compute (R~·:;'lI)-l using 
(27)-(30), form the m x (l + 1)(p + 2) matrix 

(31) 

and solve (22) as 

w~ti = (R~~11)-19!t\(y;tlf. (32) 

We then augment the subprototype Zl+1 to the 
prototype matrix V and the sub prototype matrix 
Z, and increment p and l by one. 

f) 	 If f3 < 'Y then zl+I cannot be included as a 
prototype. We augment zl+ 1 to the subprototype 
matrix Z and increment l by one to reflect the 
addition of a new subprototype. 

3) Reiterate. 
After Step 2) we check if any new subprototypes were 

added to Z. If so, then the network has been modified, 
and we have to check if the exemplars remaining in A 
can still be correctly classified. So we set n = q l, 
reindex the exemplars in A from one to n, reindex the 
corresponding outputs, and go back to Step 2). 

If no new subprototypes were added during Step 2), 
then the learning procedure tenninates. It is clear that 
Step 2) is executed q 1 times at the most [3]. 

In the basic 01 net learning algorithm [3] a recursive 
computation of the error was derived. A given exemplar was 
included as a prototype only if the resultant decrease in classifi­
cation error was large enough to justify the associated increase 
in variance. When fault tolerance is added to the learning 
algorithm as presented in this section, however, there is no 
apparent way to recursively compute the classification error. 
Of course, a user can still compute the error decrease to ensure 
that an exemplar is worth adding as a prototype. But since there 
is no recursive method available for this computation, it has 
not been included in the algorithm presented in this section. 

IV. SIMULATION REsULTS 

The fault-tolerant 01 net discussed in this paper was applied 
to the problem of navigation satellite selection. Comparison of 
the 01 net, backpropagation, and nearest-neighbor classifica­
tion has previously been presented [3]. So the data in this 
section are limited to 01 net results. 

A. Navigation Satellite Subset Selection 
A global positioning system (GPS) receiver generates a user 

position and time by measuring the range from the user to 
four or more GPS satellites [7]-[8], but a GPS receiver can 
process only a subset of available satellite signals. So before 
processing, the receiver must decide which subset to use. The 
optimal choice can be made by using the subset which results 
in the smallest magnification of satellite errors onto resultant 
user position and time. 

A user's GPS receiver measures a set of n ranges 
(Rl' R2 , "', Rn) between the user and n GPS satellites. The 
GPS satellites are at positions (Xi, Yi, Zi), (i = 1, ... , n). 
The four unknowns which the user needs to determine are 
the offset T between receiver time and GPS time, and the 
user position (x, y, z). We denote the user's best estimate of 
time offset and position as T and (x, fj, z). We denote the 
corresponding best estimates of range as eRI, R2, ... , Rn). 



The errors between the true and estimated quantities are 
denoted by .6.X, .6.y, .6.z, .6.T, and .6.Ri . The errors of the 
user's estimate of time and position can be determined by 
solving the follo\ving n simultaneous nonlinear equations for 
.6.x, .6.y, .6.z, and .6.T [9} 

(x +.6.x Xi)2 + (fj + .6.y - Yi)2 + (£ + .6.z - Zi)2 = 
~ ~ 2

(Ri + .6.Ri - cT - cAT) (i = 1, "', n) (33) 

where c is the speed of light. These equations can be linearized 
to obtain the equation 

:=} Ax= r. (34) 

If the covariance of r is normalized to an identity matrix, 
we obtain a Simplified expression for the covariance of user 
position and time 

cov(T):::: I:=} cov(x) = (AT A)-l. (35) 

A useful scalar measure of the magnification of GPS range 
measurement errors onto user position and time errors is the 
square root of the trace of the above matrix. This quantity is 
referred as geometric dilution of precision (GOOP) 

GDOP Jtrace(AT A)-I. (36) 

How can GOOP be computed without resorting to matrix 
inversion? Recall the following general facts about the trace 
and eigenvalues of a matrix [10J, [11 J: 

1) The trace of a matrix is equal to the sum of its eigen­
values, 

2) The determinant of a matrix is equal to the product of 
its eigenvalues, and 

3) If A has eigenvalues Ai then A k has eigenvalues Af, 
where k is any integer. 

Using X to denote the four-element vector of the eigenvalues 
of AT A, we can define the following four functions 

h(.~)=Al+'x'2+A3+A4 trace (ATA) (37) 

heX) =Ai + A~ + A~ +,X,~ = trace [(ATA)2] (38) 

hCX) =Ai + A~ + A~ + A~ trace [(AT A)3] (39) 
- T14(A) AIA2A3A4 =det (A A). (40) 

Using the above notation, the GOOP which we wish to 
n4calculate is given as a scalar functional of the n4 --+ 

mapping leX) 

GOOP =JXlI + ,X,;-1 + .\;-1 + A4 1 

= GDOP[leX)]. (41) 

The mapping from leX) to GOOP cannot be determined 
analytically. But this complex, nonlinear mapping is the type 

Fault Tolerance Weight 

Fig. 1. Effect of fault tolerance weight on number of neurons. 

of problem at which neural networks exceL A neural network 
can be designed to inductively generate a GOOP classifi­
cation algorithm by generalizing from known input--output 
relationships [12J, [13]. 

V. RESULTS 

The fault-tolerant OI net described in this paper was sim­
ulated on a VAX 8650 computer. Training took place for 
a GPS receiver located at 5000 feet above San Francisco 
(37.5 degrees latitude, 122 degrees longitude) in an I8-satellite 
constellation. Once each hour, for 12 hours, the functions Ii 
(i I, 2, 3, 4) were calculated for each visible four-satellite 
subset, and GOOP was calculated by explicitly inverting AT A. 
If 14 was less then 0.12, the satellite set was immediately 
discarded from consideration. Such a low determinant can be 
shown by simulation to correspond to a GDOP too high for 
consideration. At each training time there were between five 
and seven visible satellites. There were thus between 15-35 
four-satellite sets from which to choose. 

The network was then tested on a simulated 120-second 
missile trajectory. The trained neural network was used to 

. classify each satellite group (according to GDOP) every two 
seconds. There were between five and seven satellites visible 
during the boost phase, and the satellite configuration with the 
best GDOP changed twice during that time. 

Several 01 nets were trained and tested for different val­
ues of the weight a. Each 01 net had three input neurons 
corresponding to 12, 13, and 14 (since /J was constant), and 
each 01 net had two output neurons. A satellite group with 
a GDOP less than the classification threshold should have an 
output vector of [1, OJ, and a group with a GDOP greater 
than the threshold should have an output vector of [0, 1]. 
Each 01 net used a fitting parameter p = 0.1 and an ill­
conditioning threshold f 10-8 • Fig. 1 shows the number of 
prototypes (hidden layer neurons) generated as a function of 
the weight a. In general, the number of prototypes decreases 
as a increases. This is because we have assumed that each 
hidden layer neuron has a fixed probability of failure, so the 
probability of a network failure increases linearly with the 
number of hidden layer neurons. Fig. 1 reflects the fact that a 
smaller network has a smaller probability of failure. If we wish 



No Neuron Failures 

One Neuron Failureo 

Fault Tolerance Weight 

Fig. 2. Classification perfonnance on training data. 

No Neuron Faiiures 

One Neuron Fililure 

. Fault Tolerance Weight 

Fig. 3. Classification perfonnance on test data. 

to assume that a network failure is equally likely regardless 
of the number of neurons, we could replace a in (8) with 
alp. This change can be reflected in the learning algorithm of 
Section m in a straightforward manner. 

Figs. 2 and 3 show the performance of the fault-tolerant 
01 net for various values of a. It is seen that increasing a 
significantly improves the fault tolerance of the OJ net. It is 
also seen that increasing a does not hurt the performance of 
the net even if there are no neuron failures. At first glance this 
result is surprising. But adding fault tolerance can be thought 
of as protecting the net against miscIassification due to noisy 
data. This leads to improved generalization properties and 
good performance even for the nominal network. This shows 
that even if we consider the probability of failure negligible, 
it pays to build fault tolerance into the network. 

Of course, we cannot get something for nothing. The price 
we pay for fault tolerance is increased learning time. The 
addition of fault tolerance results in an increase by a factor ofp 
of the size of many of the matrices in the learning algorithm of 
Section III. But the recursive learning algorithm is so efficient 
that this increase in training time is probably not a critical 
factor. Table II shows the increase in training time due to the 
introduction of fault tolerance. 

TABLE n  
OJ NET TRAINING TIMES IN VAX CPU SECONDS (150 TRAINING INpUTS) 


VI. CONCLUSION 

A recursive learning algorithm for a fault-tolerant 01 net has 
been presented. The inclusion of fault tolerance increases the 
training time by a factor of between two and five, depending 
on the weight given to fault tolerance. But fault tolerance 
improves the generalization properties of the network while at 
the same time decreasing the number of hidden layer neurons 
(and hence decreasing the complexity of the network). 

The fault tolerance discussed in this paper applies to a single 
neuron failure. An extension to tolerance for failures of two 
or more neurons is conceptually straightforward, but may give 
rise to large increases in training time. 

The fault-tolerant OJ net has been applied to the navigation 
satellite selection problem. The simulated results show that not 
only is fault tolerance increased, but nominal performance does 
not suffer relative to an 01 net without fault tolerance. This is 
because the introduction of fault tolerance can be viewed as 
protecting the network against noisy data, and hence improving 
the generalization properties of the network . 
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