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Figure 26 :  time restricted feeding demonstrates clear rhythms in 

activation of mTORC1 signaling in the liver tissue. 

Western blot of liver tissues collected from WT mice fed at ZT 14 with 100% of 

daily food intake. Tissues were collected over 24 hours starting at ZT14 with 4 

hours interval. At ZT 14 phosphorylation of S6K1 at T389 started to increase until 

ZT 22 and then decreased as indicated by low levels at ZT 2 and ZT6. At ZT14 

even though food was not provided, phosphorylation of S6K1 at T389 showed an 

increase, indicating anticipation of food. β-actin was used as loading control. 
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3. B.9 Daily rhythms in activation of mTORC1 signaling in liver are 

endogenous and independent of food. 

Once we confirmed that under tRF regimen mTORC1 displays rhythmic activation, 

next we wanted to check if this rhythmicity is endogenous and can be sustained 

independent of food. For this purpose, we used 52 hours fasting conditions for 

animals. For fasting experiments, the same amount of food as tRF was provided 

at ZT14 and then no food was provided for the next 2 feeding cycles (48 hours). 

Tissues were collected and stored as described before. Western blot analysis was 

performed as described earlier. We observed that both S6K1phosphorylation sites, 

T421/S424 and T389 show rhythms, but they were in different phases.T421/S424 

is not mTORC1 specific phosphorylation site and is known to be activated by 

MAPK. But T389, mTORC1 specific phosphorylation site showed activation at 

ZT14-ZT22 periodically starting from 1hr, 24hrs, and 48hrs after the food was 

provided. 4EBP1 phosphorylation also showed similar pattern of rhythms but with 

delayed onset occurring at ZT18 (4 hr after food was provided) and repeated every 

24 hr (Figure 27).  Even when no food was provided at time points when it was 

expected such as at time points 24 hr and 48 hr, we observed increased 

phosphorylation of S6K1 at T389, indicating anticipation of food. It shows that 

rhythmic activation of mTORC1 signaling is endogenous and independent of food. 

This result supported our hypothesis that mTOR pathway shows endogenous 

oscillations in activation. These oscillations in mTOR activation are independent of 

food and nutrients and are probably driven by circadian clock.   
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Figure 27 : Oscillations in activation of mTORC1 signaling in liver tissues are 

endogenous and independent of food. 

A. Western blotting for mTORC1 downstream targets in WT liver. At 0 hr, 24 hr, 

48 hr after food was provided At 24 and 48 hr, phosphorylation at T389 was 

increased even when no food was provided. 4EBP1 also shows similar pattern of 

phosphorylation but with delayed onset. No significant changes in total protein 

levels were observed. GAPDH was used as loading control. B. Quantification 

shows circadian oscillations in phosphorylation of S6K1, S6 and 4EBP1. Peaks 

marked with red asterisks indicate maximum phosphorylation. For S6K1, 

phosphorylation at T389 (mTORC1specific site) shows 3 asterisks at  0hr,24 hr 

and 48 hr indicating oscillations in phosphorylation with  periodicity of 24 hrs. 

Phosphorylation at T421/S424 does show a 24 hr periodicity but is in anti-phase 

with T389. 4EBP1 also shows 2 peaks in phosphorylation that are delayed 
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compared to S6K1 and occurring with a periodicity of 24 hr. Data represent mean 

and standard deviation for 3 replicates (*) p < 0.05. 
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3. B.10 Bmal1 deficiency (disruption of circadian clock) results in increased 

mTORC1 signaling and change in phase of activation of mTORC1 in vivo. 

Having determined that Bmal1 deficiency results in increased mTORC1 signaling 

in primary and immortalized lung fibroblasts and different tissues showed 

oscillations in activation of mTORC1 signaling, we next hypothesized that Bmal1 

deficiency would result in alteration in mTORC1 activity in different tissues. The 

alternation could be a change in level of phosphorylation, change in phase of 

activation of downstream targets or change in amplitude of oscillation. We also 

hypothesized that tissues which are known to be under circadian clock control will 

be affected most by Bmal1 deficiency. To test this hypothesis, we decided to 

perform western blotting analysis on liver tissue from BMAL1 KO mice. We 

checked mTORC1 signaling in BMAL1 deficient mice kept on time restricted 

feeding regimen. We followed a similar food regimen as in the WT mice used 

before. 

As expected, we observed non-rhythmic phosphorylation of mTORC1 targets 

S6K1 (T389) and 4EBP1 (T37/46) indicating an effect of Bmal1 deficiency on 

regulation of mTORC1 signaling. In addition we also observed significantly 

increased phosphorylation of S6K1 at T389 for many time points, indicating a 

continuous activation of mTOCR1 signaling. Phosphorylation at T421/S424 (non 

mTOR specific site) on S6K1 did not show significant change in oscillations or in 

level of phosphorylation, indicating Bmal1 deficiency results in deregulation of 

mTORC1 signaling specifically (Figure 28). It results in constitutive activation of 

mTORC1 signaling in BMAL1-deficient mice, supporting our hypothesis that the 
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circadian clock negatively regulate mTORC1 signaling through a BMAL1- 

dependent mechanism.      

  



102 

A. 
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B. 

    

Figure 28 : Bmal1 deficiency results in non-rhythmic activation of mTORC1 

signaling in liver. 

A. Western blot of liver tissues collected from BMAL1 mice over 40 hours starting 

at ZT14 with 4 hours interval. Blots were incubated with specific primary antibodies 

as shown. B-actin was used as loading control. Bmal1-/- mice show nonrhythmic 

oscillations in the phosphorylation of S6K1 at T389 (mTOR site) which is 

constitutively active at almost all time points. In contrast, phosphorylation at 

T421/S424 (non mTOR site) does not show significant difference in oscillations 
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and level of phosphorylation. 4EBP1 also shows disrupted pattern of 

phosphorylation in BMAL1 deficient mice. 

Quantification of phosphorylation of S6K1 (T389), 4EBP1 (T37/46) and S6K1 

(T421/S424) in WT (Black line) and BMAL1 KO (Grey line) liver. Data represent 

mean and standard deviation for 4 replicates. (*) p < 0.05 Figure from Khapre R V 

et al. Aging (Albany NY). 2014 Jan; 6(1):48-57 

 

  



105 

3. B.11 Regulation of mTORC1 signaling at mRNA level by BMAL1 as 

transcription factor. 

Finally, in an effort to determine, how the circadian clock, especially BMAL1 

regulates mTORC1 signaling, we used quantitative PCR approach. Considering 

that BMAL1 is a transcription factor, we expected to observe regulation at mRNA 

level. mTORC1 signaling is regulated either at upstream (activators and inhibitors) 

level or at mTORC1 complex level (different components of the complex). 

Therefore, we decided to check mRNA expression of mTOR complex and mTOR 

pathways genes. We found that expression of tor and deptor mRNA was highly 

affected by Bmal1 deficiency. In support of our hypothesis that circadian clock 

negatively regulates mTORC1 signaling, we observed that expression of tor was 

significantly upregulated at several time points (Figure 29a), while expression of 

deptor (negative regulator of mTOR) was significantly downregulated at several 

time points (Figure 29b) in the liver of Bmal1-/- mice.                                                                      
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Figure 29 : mRNA expression of mtor and deptor in liver from WT and 

BMAL1 KO mice.  

The mRNA expression of tor (a) and deptor (b), in liver of tRF WT ((black 

diamonds) and BMAL1 KO (grey squares) mice were analyzed over a daily cycle 

(24 hours) by real-time RT PCR. All data was normalized to 18s ribosomal RNA 

expression.  Bars on top of the figure represent the light (open bars) and dark 

(black bars) part of the day. Data represent mean and standard deviation for 3 

replicates. P < 0.05. (*) Statistically significant difference.  
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CHAPTER IV 

DISCUSSION 

 

 

4.1 Overview 

Over the last century, through progression in drug development, 

improvement in living conditions and increased health awareness, human life 

expectancy has increased dramatically. As a result, a substantial percentage of 

population lives significantly longer than in the past. With increasing human 

lifespan, we have to cope with growing problems and difficulties due to age related 

pathologies. These pathological conditions not only affect the quality of life but also 

affects economic status. Therefore, elucidation of mechanisms involved in age 

related pathologies are becoming extremely important with eventual goal of 

developing effective and preventive therapies. 

For centuries, humans have been looking for ways to avoid aging, which gave rise 

to a foundational need for understanding the process of aging. Albeit several 

proposed theories, the mechanisms of aging are not well understood. As inevitable 
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as it is, aging is a complex process and can be defined in many ways. In simple 

terms, it involves deterioration of biological systems with reduced fitness and over 

all well-being of living organisms. It can also be seen as a risk factor for causing 

new diseases or consequence of many diseases.  

Development of various aging models has made remarkable progress in the field. 

Our lab is also working with one of the models of premature aging in mice. This 

model represents disrupted circadian clock due to deficiency of core circadian 

clock protein BMAL1. The circadian clock is an endogenous time keeping system 

in organisms which helps them synchronize their physiology and behavior with 

environmental changes surrounding them such as day-night cycle.  Circadian clock 

creates rhythms in various physiological processes. In mammals, it is represented 

by an autoregulatory negative feedback loop of core clock proteins. BMAL1 and 

CLOCK are transcription factors which heterodimerize and bind to E- box elements 

in promoter region of many genes to drive their expression.  Circadian clock also 

drives expression of genes which are not part of the loop but their rhythmic 

expressions are important for physiological outputs (1, 2, 3) 

The area of circadian clock has been explored for over 45 years. It was 

discovered that administration of mutagenic substance in fruit flies resulted in 3 

mutants with different circadian cycles (142). After 25 years of the first discovery, 

the first mammalian circadian clock gene CLOCK was discovered in mice leading 

to discovery of other core clock genes required for circadian rhythms. In recent 

years, extensive research in circadian clock field has linked it to many sleep, 

neurological, cardiovascular, and metabolic disorders (17,35). Even certain types 
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of cancer have been linked to disruption of circadian clock. It was demonstrated in 

various studies that shift workers (clock is disrupted) have higher risk of developing 

cardiovascular, metabolic, neurological disorders and cancer. Considering 

noteworthy percentage of world’s population works in shifts, study of disrupted 

circadian clock is getting even more emphasis especially to identify role of clock 

proteins in aging and age related pathologies. Various animal models of disrupted 

circadian clock are available which exhibit conditions that are related to different 

aging pathologies.  

Our lab focus has been deeply invested to determine molecular 

mechanisms involved in premature aging in BMAL1 (core Clock component) 

deficient mice. BMAL1 is the only known circadian clock component, which in 

deficiency, causes complete arrhythmicity in constant darkness in mice. Our lab 

has previously demonstrated that Bmal1-/- mice display reduced lifespan. They 

also develop many age related pathologies such as cataract, memory loss, 

sarcopenia and infertility prematurely. Our lab has previously shown that BMAL1 

plays a significant role in Reactive Oxygen Species (ROS) homeostasis. Bmal1 

deficient mice displayed increased accumulation of ROS in different organs such 

as heart, kidney and spleen. Interestingly, similar tissues also displayed age 

dependent reduction in size. In addition to that, Bmal1-/- mice treated with 

antioxidant N-acetyl-L-cysteine through their lifespan showed increased average 

and maximum life span. Treatment with antioxidant also reduced certain age 

related pathologies such as cataract and weight loss but surprisingly had no effect 
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on many other pathologies observed in Bmal1-/- mice. This indicated that ROS 

can affect aging but ROS independent mechanisms are involved. 

It has been documented that aging is associated with increased accumulation of 

senescent cells in tissues. Senescence is a specific state of cells characterized by 

irreversible growth arrest, flat and enlarged morphology, changed gene 

expression, resistance to apoptosis and secretion of degradative enzymes which 

are believed to disrupt surrounding tissue environment and might contribute to 

aging. Senescence is categorized into 3 different types; 1) Replicative,2) Stress 

induced,3) Oncogene induced. Though senescence was first reported as 

replicative senescence in cell culture, its significance in age associated 

senescence is not clear. Conversely, other research shows that stress induced 

senescence plays a role as anticancer mechanism and can be related to 

mechanisms of aging. We further investigated role of different types of senescence 

in Bmal1 deficient mice. Interestingly tissues from Bmal1-/- mice showed 

significantly higher number of senescent cells when compared to WT mice of same 

age. These observations drove us to further investigate molecular mechanisms 

involved in role of BMAL1 in cellular senescence which contribute to aging 

observed in Bmal1-/- mice. Results presented in this dissertation present different 

mechanisms with role of BMAL1 in premature aging in mice. In this proposal, we 

identified that BMAL1 regulates oxidative stress induced senescence which is in 

correlation with our previously published data displaying disrupted ROS regulation 

in Bmal1 deficient mice. In this thesis, we demonstrated that there is no significant 

difference in replicative senescence between WT and Bmal1-/- primary fibroblasts 
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in vitro. This also indicates BMAL1 does not contribute to replicative senescence 

and also replicative senescence might not contribute to premature aging in Bmal1-

/- mice. 

Oxidative stress is a potent stress inducer and probably has role in stress 

induced senescence in vivo. We demonstrate here that BMAL1 plays a role in 

oxidative stress sensitivity and oxidative stress induced senescence. BMAL1 

deficiency results in increased oxidative stress in mice. Recent studies with shift 

workers, demonstrated increased oxidative stress measured by oxidative stress 

markers. As shift work is known to disrupt circadian clock, these results very well 

support our observations of increased oxidative stress in BMAL1 KO mice (142). 

Our results pointed to a new question if the sensitivity of Bmal1-/- cells is specific 

to oxidative stress or they are also sensitive to genotoxic stress. Role of BMAL1 in 

cell sensitivity to genotoxic stress and cell cycle is well documented (our review). 

We checked effect of BMAL1 deficiency in genotoxic stress using different DNA 

damaging agents each with different mode of action. Previous studies suggest, 

tumor cells with downregulation of Bmal1 expression with shRNA were more 

resistant to Etoposide induced apoptosis (143). In agreement with this data, we 

observed that Bmal1-/- cells show more resistance to some DNA damaging agents 

such as Etoposide or Daunorubicin. But no difference was observed with another 

DNA damaging agent named 5-flurouracil. Other research suggests that BMAL1 

interferes with p53 dependent DNA damage response (144). However, we further 

observed that role of BMAL1 in oxidative stress response was independent of p53. 

After collective analysis of this data, we revealed that BMAL1 does not play any 
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role in replicative senescence but it regulates oxidative stress induced senescence 

in vivo. Bmal1 deficiency results in accumulation of senescent cells in vivo which 

can contribute to premature aging. Our work is supported by a recently published 

work on role of Bmal1 in neuronal oxidative damage and neurodegeneration 

suggesting its role brain aging (145). 

It is well known that, senescent cells display over activation of growth 

promoting pathways such as mTORC1. mTORC1 is a nutrient sensing pathway 

involved in various cellular processes such as cell growth and proliferation. Many 

growth related processes such as nutrient uptake, protein synthesis, ribosome 

biogenesis are regulated by mTORC1. In senescent cells, though cell cycle 

progression is arrested, cell growth is not. Therefore, increased mTORC1 activity 

results in senescent phenotype such as enlarged morphology. In immortalized 

cells, where cell cycle is not arrested, increase in mTORC1 activity can result in 

increased proliferation rate. Consistent with previous data, Bmal1-/- deficient cells 

have significantly increased proliferation rate, protein content, cell size and cell 

biomass compared to WT. This hinted us for overactivation of mTORC1 in Bmal1 

deficient mice. 

mTOR acts as a sensor of nutrients and regulator of cellular processes, its 

role underlines its importance in metabolism, body homeostasis and overall well-

being of organisms. Deregulation of mTORC1 signaling is linked to various 

metabolic disorders, cancer and aging. Genetic mutations and pharmacological 

inhibition of mTORC1 signaling in various models have been shown to extend 

lifespan which suggests mTORC1 is a key regulator of aging. Though mTORC1 
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regulation under nutrients or stress conditions have been studied, its regulation 

under physiological conditions is unknown. 

In our present work, we demonstrate for the first time that mTORC1 is 

regulated by circadian clock under physiological conditions. Considering mTORC1 

is a nutrient sensor, and nutrients are available only at feeding (wake cycle) 

dictated by circadian clock, we hypothesized that mTORC1 might be controlled by 

circadian clock. This regulation can help organisms to synchronize food availability 

with anabolic processes such as protein synthesis, lipid biosynthesis which are 

under mTORC1 control. The connection between circadian clock and mTORC1 

has never been explored before. Results presented here illustrate circadian 

regulation of mTORC1 and effect of disrupted circadian clock on mTORC1 

signaling. We demonstrated that mTORC1 is rhythmically activated as confirmed 

by phosphorylation of its downstream targets. This rhythmic activation is 

independent of food suggesting presence of endogenous regulation supporting our 

hypothesis.  The next question was if mTORC1 is under circadian control, then 

how does disrupted circadian clock affects mTORC1 signaling? In Bmal1 deficient 

mice, we observed that mTORC1 activation is non rhythmic and even elevated at 

several different time points. This indicates that circadian clock negatively 

regulates mTORC1 and disruption of circadian clock results in overactivation of 

mTORC1 signaling. Thus our current data suggests that constitutively elevated 

mTORC1 signaling may result in premature aging in Bmal1 deficient mice. To test 

this hypothesis, our collaborators checked whether pharmacological suppression 

of mTORC1 by Rapamycin (potent and specific mTORC1 inhibitor) can extend 
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lifespan in Bmal1 deficient mice. Previous studies with Rapamycin to inhibit 

mTORC1 demonstrated increased life span and delayed onset of age related 

pathologies in old mice. In support with this, our collaborators demonstrated that 

lifelong treatment with Rapamycin extended lifespan of Bmal1 deficient mice. This 

work is still in progress. 

During our experiments with time restricted feeding and fasting regimen, we 

made interesting observations of differential regulation of S6K1 and 4EBP1 

phosphorylation by mTORC1.  S6K1 is phosphorylated at earlier time point (ZT14) 

when compared with 4EBP1 (ZT18). Both S6K1 and 4EBP1 function as translation 

regulators.  

Eukaryotic initiation factor 4E (eIF4E) is a mRNA 5’ cap binding protein and part 

of eukaryotic initiation factor 4F (eIF4F) complex involved in a cap dependent 

translation (146). In the absence of growth factors or nutrient signals, 

hypophoshorylated 4EBPs associate with eIF4E tightly, inhibiting assembly of 

eIF4F complex. In the presence of nutrients and growth factors, 4EBPs are 

phosphorylated by mTORC1 at multiple sites resulting in its dissociation from the 

eIF4E (110). Many targets of S6K1 like ribosomal protein S6, SKAR, mRNA 

splicing factor (147), eIF4B, which is activator of eIF4A helicase (part of eIF4F 

complex) (148), PDCD4, an inhibitor of eIF4A (149) are also part of translation 

machinery. If both S6K1 and 4EBP proteins are involved in translation, then why 

are they phosphorylated at different time points? What is the significance of this 

differential phosphorylation? Recent studies demonstrated that, eIF3-preinitiation 

complex (eIF3-PIC) acts as dynamic scaffold for S6K1 and mTOR/Raptor 
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TIM interacts with ATR/ATRIP (ATR interacting protein) and CHK1 kinase in 

response to stalled replication forks for G2/M arrest and the interaction is critical 

for CHK1 activation (161,162,163). 

Based on our observations of increased proliferation of immortalized 

Bmal1-/- fibroblasts we hypothesized that Bmal1 deficiency can result in 

deregulation of clock controlled cell cycle regulators that can result in change in 

progression though cell cycle for Bmal1-/- cells.To test this hypothesis we propose 

following experiments. We will perform cell cycle analysis of WT and Bmal1-/- 

immortalized lung fibroblasts using flow cytometry. This analysis will indicate 

relative number of cells in G1, S, G2 and M stage of cell cycle. The stage with least 

number of cells is likely the stage affected by Bmal1 deficiency. Depending on the 

number of cells per stage, we can assess expression of cell cycle regulators at 

mRNA level by Quantitative PCR and protein level by western blotting.  

During our experiments, we also observed that Bmal1 deficiency results in 

reduced sensitivity to certain anticancer drugs such as Etoposide and 

Daunorubicin. Based on our observations, we can hypothesize that the reduced 

sensitivity to Etoposide and Daunorubicin can be due to deregulation of cell cycle 

check points, we can perform cell cycle analysis. WT and Bmal1-/- cells treated 

with Etoposide and Daunorubicin can be analyzed for cell cycle distribution. The 

Bmal1-/- cells demonstrating higher number of cells in specific stage compared 

with WT suggests regulation by BMAL1.   
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4.2 Conclusions 

Even after extensive work in the field of aging, mechanisms are poorly 

understood. Many studies with mutations of mTORC1 pathway components that 

either inhibit mTORC1 activity itself or its downstream effects have shown that 

inhibition of mTORC1 extends lifespan in various models from flies to mice. 

Treatment with Rapamycin (mTOR inhibitor) or calorie restriction (can affect 

mTORC1 activity) have been shown to extend life span in mice. This indicates that 

mTORC1 plays a significant role in aging.  

Our results show that the circadian clock regulates mTORC1 activity 

through BMAL1 dependent mechanism and that increased mTORC1 activity can 

contribute to premature aging and age related pathologies in Bmal1-/- mice. Our 

findings suggest importance of appropriate function of circadian clock in 

organism’s well-being and in aging with the fact that, we revealed two different 

ways (oxidative stress induced senescence and regulation of mTORC1 activity) 

through, which Clock is connected to aging. The research presented in this 

dissertation also indicates a vast unexplored area of mechanisms through that 

circadian clock is involved in aging. 
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